
J. Fluid Mech. (2019), vol. 873, pp. 260–286. c© The Author(s) 2019
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2019.376

260

Direct numerical simulations of Taylor–Couette
turbulence: the effects of sand grain roughness

Pieter Berghout1,†, Xiaojue Zhu1,2, Daniel Chung3, Roberto Verzicco1,4,5,
Richard J. A. M. Stevens1 and Detlef Lohse1,6

1Physics of Fluids Group and Max Planck Center Twente, MESA+ Institute and J. M. Burgers Centre
for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

2Center of Mathematical Sciences and Applications, and School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA

3Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
4Dipartimento di Ingegneria Industriale, University of Rome ‘Tor Vergata’, Via del Politecnico 1,

Roma 00133, Italy
5Gran Sasso Science Institute – Viale F. Crispi, 7 67100 L’Aquila, Italy

6Max Planck Institute for Dynamics and Self-Organisation, Am Fassberg 17, 37077 Göttingen, Germany

(Received 30 October 2018; revised 11 March 2019; accepted 3 May 2019;
first published online 24 June 2019)

Progress in roughness research, mapping any given roughness geometry to its
fluid dynamic behaviour, has been hampered by the lack of accurate and direct
measurements of skin-friction drag, especially in open systems. The Taylor–Couette
(TC) system has the benefit of being a closed system, but its potential for
characterizing irregular, realistic, three-dimensional (3-D) roughness has not been
previously considered in depth. Here, we present direct numerical simulations (DNSs)
of TC turbulence with sand grain roughness mounted on the inner cylinder. The
model proposed by Scotti (Phys. Fluids, vol. 18, 031701, 2006) has been modified to
simulate a random rough surface of monodisperse sand grains. Taylor numbers range
from Ta = 1.0 × 107(corresponding to Reτ = 82) to Ta = 1.0 × 109 (Reτ = 635). We
focus on the influence of the roughness height k+s in the transitionally rough regime,
through simulations of TC with rough surfaces, ranging from k+s = 5 up to k+s = 92.
We analyse the global response of the system, expressed both by the dimensionless
angular velocity transport Nuω and by the friction factor Cf . An increase in friction
with increasing roughness height is accompanied with enhanced plume ejection from
the inner cylinder. Subsequently, we investigate the local response of the fluid flow
over the rough surface. The equivalent sand grain roughness k+s is calculated to be
1.33k, where k is the size of the sand grains. We find that the downwards shift of the
logarithmic layer, due to transitionally rough sand grains exhibits remarkably similar
behaviour to that of the Nikuradse (VDI-Forsch., vol. 361, 1933) data of sand grain
roughness in pipe flow, regardless of the Taylor number dependent constants of the
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logarithmic layer. Furthermore, we find that the dynamical effects of the sand grains
are contained to the roughness sublayer hr with hr = 2.78ks.

Key words: plumes/thermals, Taylor–Couette flow, turbulent boundary layers

1. Introduction

Many turbulent flows in nature and industry are bounded by rough boundaries.
Examples are the surface of planet Earth with respect to geophysical flows or fouling
on ship hulls with respect to open waters. Such rough boundaries strongly influence
the total drag, with often adverse consequences in the form of higher transport costs.
Therefore, it becomes of paramount importance to understand the physics behind such
changes in drag, ultimately leading to better informed management of the problem.
One key recurring question concerns the influence of the roughness topology on the
drag coefficient.

Seminal work by Nikuradse (1933) investigated the influence of the height of
closely packed, monodisperse, sand grains in pipe flow. This work has become one
of the pillars in the field. Later, a vast amount of research was carried out to study
the influence of roughness on the canonical systems of turbulence – pipe, channel and
boundary layer flows – aiming for a better understanding of the roughness effects on
turbulent flows Ligrani & Moffat (1986), Schultz & Flack (2007), Chan et al. (2015),
Busse, Thakkar & Sandham (2017); also see Jiménez (2004) and Schultz & Flack
(2010) for comprehensive reviews.

Next to pipe flow, Taylor–Couette (TC) flow – the flow between two coaxial,
independently rotating cylinders – is another canonical system in turbulence
(Grossmann, Lohse & Sun 2016). Closely related to its ‘twin’ of Rayleigh–Bénard
(RB) turbulence (Busse 2012; Eckhardt, Grossmann & Lohse 2007), it serves as an
ideal system to study the interaction between boundary layer and bulk flow. Very
long spatial transients, as found in open systems, are bypassed by the circumferential
restrictions. Since the domain is closed, global balances can easily be derived and
monitored, giving room for extensive comparison between theory, experiments and
simulations. Further, the streamwise curvature effects find many applications in
industry. For these reasons, we set out to investigate the effects of roughness on the
turbulent fluid flow in the TC system.

Over the last century, much work has been carried out with the aim of understanding
the effect of the roughness topology on fluid flow. One of the consequences of
roughness is the change of the wall drag, which can be expressed as a shift of
the mean streamwise velocity profile 1u+ ≡ (us − ur)/uτ , where 1u+ is known as
the Hama roughness function (Hama 1954) and us, ur are the smooth-wall and the
rough-wall mean streamwise velocities, respectively. Clauser (1954) and Hama (1954)
observed that roughness effects are confined to the inner region of the boundary layer.
This idea was postulated by Townsend (1956), who referred to it as Reynolds number
similarity. The hypothesis states that outside the roughness sublayer, the structure
of the flow is independent of the wall roughness, except for the role of the wall
in setting the wall stress τw. The hypothesis, now known as Townsend’s outer layer
similarity, has found strong support over time (Raupach, Antonia & Rajagopalan 1991;
Flack & Schultz 2014). The logarithmic region is thus dynamically not influenced
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262 P. Berghout and others

by the roughness and the mean streamwise velocity profile u(y) there becomes
(Pope 2000)

u+(y+)=
1
κ

log y+ + A−1u+. (1.1)

As usual, the superscript ‘+’ indicates a scaling in viscous units (i.e. length y+= yuτ/ν
and velocity u+ = u/uτ ) and uτ is the friction velocity, uτ =

√
τw/ρ with τw being the

total stress at the wall, and ρ the fluid density. We calculate τw at the outer wall,
which is smooth. Because the torque is the same on both cylinders, we can calculate
the wall shear stress on the inner cylinder by τw,i = τw,o/η

2, where η is the radius
ratio. Note that in this representation, the skin-friction coefficient Cf is related to the
friction velocity by Cf = 2(uτ/U0)

2, where U0 is the centreline velocity (Pope 2000).
It has been found that for TC turbulence κ and A are not constant anymore, but are
functions of the inner cylinder Reynolds number Rei at least until Rei= 106 (Huisman
et al. 2013). Therefore, for TC we here suggest the generalization,

u+(y+)= f1(Rei) log(y+)+ f2(Rei)−1u+, (1.2)

with f1(Rei) and f2(Rei) being unknown functions. The questions now are: (i) How
does 1u+ depend on the parameters that characterize the surface geometry; and (ii)
Can 1u+ be generalized to other flows?

Although many parameters influence the Hama roughness function 1u+ (Schlichting
1936; Musker 1980; Napoli, Armenio & De Marchis 2008; Chan et al. 2015;
MacDonald et al. 2016), the most relevant parameter is the characteristic height
of the roughness k+. In a regime in which the pressure forces dominate the drag
force, any surface can be collapsed onto the Nikuradse data by rescaling the roughness
height to the so-called ‘equivalent sand grain roughness height’ k+s . Nikuradse (1933)
found that three regimes of the characteristic roughness height k+s can be identified
with respect to the effect of roughness (Flack, Schultz & Rose 2012). For k+s . 5, the
rough wall appears to be hydrodynamically smooth and the roughness function 1u+
goes to zero. For k+s & 70, the wall drag scales quadratically with the fluid velocity
and the friction factor Cf is independent of the Reynolds number, indicating that
hydrodynamic pressure drag (also called form drag) on the roughness dominates the
total drag. The transitionally rough regime is in between these two regimes. Where
in the fully rough regime, a surface is fully determined by k+s to give a collapse
onto the fully rough asymptote (Schultz & Flack 2010), in the transitionally rough
regime, different surfaces give rise to different roughness functions, see e.g. figure 3
in Jiménez (2004). This can be attributed to the delicate interplay between pressure
drag, viscous drag and the weakening of the so-called turbulence generation cycle
(Jiménez 2004).

An intriguing feature of the data from Nikuradse (1933) is at k+s ≈ 5, where
roughness effects suddenly result in an inflectional increase of 1u+, as compared
to the gradual increase of the roughness function found by Colebrook (1939) who
extracted an empirical relationship from many industrial surfaces (Shockling, Allen
& Smits 2006). Later, this inflectional behaviour was also observed for tightly
packed spheres (Ligrani & Moffat 1986), honed surfaces (Shockling et al. 2006) and
grit-blasted surfaces (Thakkar, Busse & Sandham 2018). Chan-Braun, Garcia-Villalba
& Uhlmann (2011) had too few points to find the inflectional behaviour; however,
their two simulations of monodisperse spheres in regular arrangement collapsed onto
the Nikuradse curve. In the Moody (1944) representation, this inflectional behaviour
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manifests itself as a dip in the friction factor Cf , leading to a significantly lower
drag coefficient (≈20 % (Bradshaw 2000)) in comparison to the monotonic behaviour
of Colebrook (1939), on which the original Moody diagram is based. Although it
is proposed that the inflectional behaviour has to do with the monodispersity of
the roughness leading to a critical Reynolds number at which the elements become
active (Jiménez 2004), recent simulations by Thakkar et al. (2018) for a polydisperse
surface (containing irregularities with a range of sizes) also show this inflectional
behaviour. In a broader sense, the direct numerical simulations (DNSs) by Thakkar
et al. (2018) are interesting since they show, for the first time, a surface that very
closely resembles the Nikuradse (1933) roughness function in all regimes; the authors
found k+s = 0.87k+t , where kt is the mean peak-to-valley height.

Regarding TC flow, only a few studies have looked at the effect of roughness (Cadot
et al. 1997; van den Berg et al. 2003). Recently, the effect of regular roughness on
TC turbulence has also been investigated by means of DNS (Zhu et al. 2016; Zhu,
Verzicco & Lohse 2017; Zhu et al. 2018b). Zhu et al. (2016) looked at the effect
of axisymmetric grooves on the torque scaling, boundary layer thickness and plume
ejections. They find that enhanced plume ejection from the roughness tips can lead to
an ultimate torque scaling exponent of Nu∝Ta0.5, although for higher Ta the exponent
saturates back to the ultimate scaling effective exponent of 0.38. Zhu et al. (2017)
then simulate transverse bar roughness elements on the inner cylinder to disentangle
the separate effects of viscosity and pressure, and find that the ultimate torque scaling
exponent of Nu∝Ta0.5 is only possible when the pressure forces dominate at the rough
boundary (Zhu et al. 2018b).

In contrast to the above mentioned previous work, in which the roughness consisted
of well-defined transverse bars with constant distance and heights (Zhu et al. 2017,
2018b), in this research we set out to investigate the effects of irregular, monodisperse
roughness, resembling the sand grain roughness reported by Nikuradse (1933). We
model the roughness as randomly rotated and semi-randomly translated ellipsoids
of constant volume and aspect ratio, based on the roughness model (subgrid scale)
of Scotti (2006). Previously, a fully resolved version of the model by Scotti (2006)
was used for large-eddy simulations in channel flow (Yuan & Piomelli 2014). Taylor
numbers in our DNS range from Ta = 1.0 × 107 (Reτ = 82) to Ta = 1.0 × 109

(Reτ = 635); therefore, we capture both classical (laminar-like boundary layers) and
ultimate (turbulent boundary layers) regimes (Ostilla-Mónico et al. 2014; Grossmann
et al. 2016; Zhu et al. 2018b). Moreover, whereas previous research on roughness in
TC flow focussed on the torque scaling, we now look at the effects of the roughness
height on the Hama roughness function 1u+ in the transitionally rough and fully
rough regimes, ranging from k+s = 5 to k+s = 92.

This manuscript is structured as follows. In §§ 2 and 3, we elaborate on the
TC set-up, the roughness model and the numerical procedure. In § 4.1, we study
the velocity profiles and present the effects of the roughness height on the Hama
roughness function. In § 4.2, we present the global response of the system. In § 4.3
we study the flow structures. In § 4.4 the fluctuations close to the roughness are
studied and in § 4.5 we present radial profiles of various other quantities. Finally, in
§ 5 we draw our conclusions and propose future research directions.

2. Taylor–Couette flow

The TC set-up, as shown in figure 1, comprises independently co- or counter-
rotating concentric cylinders around their vertical axes. The flow, driven by the
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(a) (b)
ro

ri

øi

d

FIGURE 1. (Colour online) Illustration of the Taylor–Couette (TC) set-up. (a) TC set-up
with inner cylinder sand grain roughness: ωi is the inner cylinder angular velocity, ri is
the inner cylinder radius, ro is the outer cylinder radius and d = ro − ri the gap width.
(b) A zoom of the sand grain roughness that is modelled. The outer cylinder is stationary
and smooth.

shear on both of the cylinders, fills the gap between the cylinders; ri is the inner
cylinder radius, ro is the outer cylinder radius and the radius ratio is defined as
η= ri/ro. For this research, we set η≈ 0.714, to match the experimental T3C set-up
(Huisman et al. 2013), and previous simulations (Zhu et al. 2017). Γ = L/d is the
aspect ratio, where L is the height of the cylinders, and d = ro − ri = 0.4ri is the
gap width. Here, Γ ≈ 2 such that one pair of Taylor vortices fits in the gap, and
the mean flow statistics become independent of the aspect ratio (Ostilla-Mónico,
Verzicco & Lohse 2015). In the azimuthal direction we employ a rotational symmetry
of order 6 to save on computational expense such that the streamwise aspect ratio
of our simulations becomes Lθ/d = (ri2π/6)/d = 2.62. Brauckmann & Eckhardt
(2013) and Ostilla-Mónico et al. (2015) found that this reduction of the streamwise
extent does not affect the mean flow statistics. This gives Lθ/(d/2) = 5.24 and
L/(d/2)≈ 4.0.

To maintain convenient boundary conditions, we solve the Navier–Stokes (NS)
equations in a reference frame rotating with the inner cylinder (ωiez). The NS
equations, with (u, v,w) the (streamwise/azimuthal, spanwise/axial, wall-normal/radial)
velocity components respectively, in that reference frame become

∂t̂ŵ+ û · ∇̂ŵ−
û2

r̂
=−∂r̂P̂+

f (η)
Ta1/2

(∇̂2ŵ−
ŵ
r̂2
−

2
r̂2
∂θ û)− Ro−1û, (2.1)

∂t̂û+ û · ∇̂û−
ûŵ
r̂
=−

1
r̂
∂θ̂ P̂+

f (η)
Ta1/2

(∇̂2û−
û
r̂2
+

2
r̂2
∂θ ŵ)+ Ro−1ŵ, (2.2)
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∂t̂v̂ + û · ∇̂v̂ =−∂ẑP̂+
f (η)
Ta1/2

(∇̂2v̂), (2.3)

∇̂ · û= 0, (2.4)

with no-slip boundary conditions u|r=ri = 0, u|r=ro = ro(ωo − ωi). Equation (2.4)
expresses the incompressible restriction. Hatted symbols indicate the respective
dimensionless variables, with u = ri|ωi − ωo|û, r = dr̂ and t = d/ri|ωi −ωo|t̂.
f (η)/Ta1/2

= Re−1 where f (η) is the so-called ‘geometric Prandtl’ number (Eckhardt
et al. 2007),

f (η)=
(1+ η)3

8η2
, (2.5)

here f (0.714) ≈ 1.23. Ta is the Taylor number, which is a measure of the driving
strength of the system,

Ta=
(1+ η)4

64η2

(ro − ri)
2(ri + ro)

2(ωi −ωo)
2

ν2
. (2.6)

Note that the pressure in the equations above represents the ‘reduced pressure’ that
incorporates the centrifugal term; P̂= p′ − (ω2

i d2r̂2/2r2
i |ωi −ωo|

2)er with p= ρr2
i |ωi −

ωo|
2p′ and p is the physical pressure. It is directly clear that the centrifugal force in

TC flow is analogous to the gravitational force in RB flow (Eckhardt et al. 2007). The
final term on the right-hand side of (2.1) and (2.2) gives the Coriolis force, with Ro−1

being the inverse Rossby number

Ro−1
=

2ωid
ri|ωi −ωo|

. (2.7)

Analogous to RB flow, the global response of TC flow can be expressed in terms of
a Nusselt number. In the former, the Nusselt number expresses the dimensionless
conserved heat flux, whereas in the latter the Nusselt number expresses the
dimensionless conserved angular velocity flux Jω, calculated by,

Jω = r3(〈wω〉θ,z,t − ν∂r〈ω〉θ,z,t), (2.8)

with the laminar flux given by Jωlam = 2νr2
i r2

o(ωi −ωo)/(r2
o − r2

i ) where ν is the
kinematic viscosity and 〈.〉θ,z,t indicates averaging over the spatial directions θ , z and
time t. For incompressible flows, it can be derived from the NS equations that Jω is
conserved in the radial direction, ∂rJω = 0 (Eckhardt et al. 2007). In both cases, the
values are made dimensionless by their respective laminar, conducting, values. For
TC flow the Nusselt number becomes,

Nuω =
Jω

Jωlam
. (2.9)

The angular velocity flux Jω can be written in terms of the torque T on any of the
cylinders: Jω = T (2πLρ)−1 with ρ being the fluid density. Consequently, the shear
stress on the inner cylinder τw,i is related to the angular velocity flux by τw,i= ρJω/r2

i .
Since part of our endeavour is to compare the effects of sand grain roughness on

TC turbulence with the effects of sand grain roughness in other canonical systems
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(e.g. pipe flow), where the use of Nuω is not conventional, we choose to also present
the global response in terms of the friction factor Cf . Here we follow Lathrop,
Fineberg & Swinney (1992), and define Cf ≡ G/Re2

i , where G is the dimensionless
torque G = T /(ρν2L) and Rei is the inner cylinder Reynolds number Rei = riωi d/ν.
The translation between Nuω and Cf is straightforward:

Cf ≡
2πτw,i

ρd2|ωi −ωo|
2
= 2πNuωJωlam(νRei)

−2. (2.10)

Note that one can also define Cf ≡ 2τw,i/(ρ(riωi)
2) = (1− η)2/πη2G/Re2

i , which is
different from (2.10) by a factor which depends on the radius ratio η (Lathrop et al.
1992). Here we use the definition of Cf of 2.10.

3. Numerical procedure
3.1. Roughness model

Figure 2 exhibits the set-up of the ‘virtual’ sand grain roughness model that is used
in this research. The inner cylinder is divided up into square tiles of size 2k × 2k,
each tile containing exactly 1 ellipsoid, with k the length of the minor radius of the
ellipsoid. The height L is slightly varied (0.85ri ± 0.03ri) to ensure that an integer
amount of tiles fits into the domain. Unlike in the original model by Scotti (2006),
we also introduce a random translation of the centre of the ellipsoid by applying ri1θ
and 1z, where ri1θ , and 1z are random uniform translations from the centre of the
2k× 2k tile. This random translation allows for the surface to be more irregular and
as such to relate more closely to a realistic sand grain surface. As also introduced by
Scotti (2006), we employ a constant translation of the centre of the ellipsoid in the
radial direction, with 1r=−0.5k from r= ri. It is shown in figure 1(a) that part of
the cylinder (≈15 %) is not covered by rough elements. The projected area of the
ellipsoids equals the area of the inner cylinder that is rough. This means that the
surface is not ‘overhanging’, resulting from the offset of the centre of the ellipsoid
in the radial direction 1r = −0.5k. This makes the computations significantly less
involved. By saying that part of the surface is not covered by rough elements, we
mean that the neighbouring ellipsoids do not close the entire surface. This could be
achieved by stacking multiple layers of ellipsoids. Statistics of the rough surfaces are
found in the Appendix, table 2.

3.2. Numerical method
The NS equations are spatially discretized by using a central second-order finite-
difference scheme and solved in cylindrical coordinates by means of a semi-implicit
procedure (Verzicco & Orlandi 1996; van der Poel et al. 2015a). The staggered grid is
homogeneous in both the spanwise and streamwise directions (the axial and azimuthal
directions respectively). We apply no-slip boundary conditions at the cylinder walls
and axially periodic boundary conditions at the top and bottom.

The wall-normal grid consists of a double cosine (Chebyshev-type) grid stretching.
Below the maximum roughness height, we employ a cosine stretching such that the
maximum grid spacing is always smaller than 0.5 times the viscous length scale. In
the bulk of the fluid, we employ a second stretching, such that the maximum grid
spacing in the bulk is approximately 1.5 times the viscous length scale. The minimum
grid spacing is located at the position of the maximum roughness height, where we
expect the highest shear stress, see table 1 for the exact values.
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FIGURE 2. (a) Visual comparison between a surface with translational degrees of freedom
as employed presently and (b) the original model by Scotti (2006) without translational
degrees of freedom. (c) Probability density function (p.d.f.) of the surface height h(θ, z)/k
distribution of a rough surface with 952 roughness elements (B2). For the statistics of
all rough surfaces used in this study, we refer the reader to the Appendix, table 2.
(d) Schematic of an ellipsoidal building block of the rough surface. Every rectangular
tile of size 2k × 2k contains exactly one ellipsoid; M indicates the centre of the tile.
The radii l1 = 2.0k, l2 = 1.4k, l3 = 1.0k are kept constant for each ellipsoid to maintain a
monodisperse rough surface. Randomness is ensured by giving the ellipsoid five degrees
of freedom; two translational shifts of the centre of the ellipsoid from the centre of the
tile M, (1z and ri1θ ) and three rotational degrees of freedom (α1, α2, α3) from (r, θ, z)
to (l1, l2, l3). We also employ a constant translation of the centre of the ellipsoid in the
radial direction, with 1r=−0.5k from r= ri.

Time advancement is performed by using a fractional-step third-order Runge–Kutta
scheme in combination with a Crank–Nicolson scheme for the implicit terms. The
Courant–Friedrichs–Lewy (CFL) (U1t/1x < 0.8, with 1x being the grid size, and
U the velocity, both in the respective coordinate direction) condition is tested in all
directions and accordingly the time-step constraint for the nonlinear terms is enforced
to ensure stability.

Sand grain roughness is implemented in the code by an immersed boundary method
(IBM) (Fadlun et al. 2000). In the IBM, the boundary conditions are enforced by
adding a body force f to the momentum (2.1–2.3). A regular, non-body fitting, mesh
can thus be used, even though the rough boundary has a very complex geometry.
We perform linear interpolation in the spatial direction for which the component
of the normal surface vector is largest. The IBM has been validated previously
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Case Ta k/d nθ × nz Nell Nθ ×Nz ×Nr Cf Nuω k+s Reτ r+i 1θ 1r+

AS 1.0× 107 — — — 280× 240× 256 0.161 6.41 0.00 81.9 1.51 0.26
A1 1.0× 107 0.022 59× 48 64 472× 384× 256 0.170 6.79 4.96 84.3 1.10 0.22
A2 1.0× 107 0.038 34× 28 64 272× 224× 300 0.182 7.31 8.93 87.4 1.60 0.20
A3 1.0× 107 0.055 24× 20 144 288× 240× 300 0.191 7.63 12.93 89.3 1.55 0.22
A4 1.0× 107 0.073 18× 15 256 288× 240× 400 0.208 8.30 18.00 93.2 1.62 0.20

BS 5.0× 107 — — — 280× 240× 448 0.098 8.78 0.00 143.3 2.67 0.18
B1 5.0× 107 0.022 60× 48 64 720× 576× 600 0.107 9.58 8.86 149.7 1.11 0.17
B2 5.0× 107 0.038 34× 28 64 272× 224× 600 0.124 11.06 16.43 160.9 3.08 0.19
B3 5.0× 107 0.055 24× 20 144 288× 240× 600 0.136 12.12 24.49 168.4 3.06 0.20
BY 5.0× 107 0.055 24× 20 144 288× 240× 600 0.136 12.20 24.57 169.0 3.06 0.20
B4 5.0× 107 0.073 18× 15 256 288× 240× 600 0.148 13.24 33.99 176.0 3.20 0.22
B5 5.0× 107 0.087 14× 12 400 280× 240× 600 0.155 13.84 41.71 180.0 3.37 0.23

CS 5.0× 108 — — — 512× 512× 640 0.060 16.94 0.00 354.0 3.62 0.23
C1 5.0× 108 0.019 68× 56 144 816× 672× 800 0.076 21.48 20.39 398.6 2.56 0.29
C2 5.0× 108 0.026 50× 40 256 800× 640× 800 0.084 23.66 29.11 418.4 2.74 0.26
C3 5.0× 108 0.034 38× 32 256 608× 512× 800 0.091 25.77 39.95 436.6 3.76 0.23
C4 5.0× 108 0.041 32× 26 256 512× 416× 800 0.096 26.98 48.55 446.7 4.57 0.28
CX 5.0× 108 0.041 32× 26 256 512× 416× 1000 0.096 27.01 48.66 447.0 4.57 0.20
C5 5.0× 108 0.047 28× 23 324 504× 414× 800 0.101 28.50 56.98 459.2 4.77 0.35

DS 1.0× 109 — — — 512× 512× 640 0.054 21.70 0.00 476.5 4.87 0.30
D1 1.0× 109 0.026 50× 40 256 800× 640× 1000 0.080 31.81 40.13 576.8 3.78 0.27
D2 1.0× 109 0.034 38× 32 400 760× 640× 1000 0.086 34.20 54.74 598.2 4.12 0.29
D3 1.0× 109 0.041 32× 26 484 704× 572× 1200 0.089 35.75 66.47 611.6 4.55 0.23
D4 1.0× 109 0.047 28× 23 784 784× 644× 1000 0.094 37.45 77.66 625.9 4.18 0.45
D5 1.0× 109 0.055 24× 20 1024 768× 640× 1000 0.097 38.54 91.95 635.0 4.33 0.46

TABLE 1. Input parameters, numerical resolution and global response of the simulations.
We run four sets of simulations, which are separated by an empty horizontal line. Within
every set we keep Ta constant. nθ × nz gives the number of ellipsoids in the streamwise
(θ ) and spanwise (z) directions, respectively. Nell expresses the resolution (Nθ × Nz) per
elementary building block of size 2k × 2k. Nθ × Nz × Nr presents the total resolution of
the computational domain. Cf is the friction factor. Nuω is the dimensionless torque. k+s =
1.33k+ is the equivalent sand grain roughness height in viscous units, where k+ is the
size of the sand grains (ellipsoids with axes 2k× 1.4k× k, see figure 2), also in viscous
units. Reτ is the friction Reynolds number, Reτ = (d/2)uτ ,i/ν. r+i 1θ =1z+ the grid spacing
in the streamwise and spanwise directions in viscous units and 1r+ is the minimal grid
spacing, at the maximum roughness height, in the wall-normal direction in viscous units.
Normalization in viscous units is done with respect to the inner cylinder, i.e. uτ = uτ ,i.

(Fadlun et al. 2000; Iaccarino & Verzicco 2003; Stringano, Pascazio & Verzicco
2006; Zhu et al. 2016, 2017, 2018b).

Simulations run until they become statistically stationary, such that the Nusselt
Nuω number remains constant to within ≈1 %, which requires t̂ ≈ 200. Thereafter,
we gather statistics until the results converge, which requires t̂ ≈ 50. The resolution
constraints of the domain are typically derived from the literature and are based on the
grid spacing in ‘+’ (viscous) units. Grid independence checks of the time-averaged
statistics are performed by ensuring that Nuω remains constant with increasing grid
resolution in all directions and presented along with the results in table 1. Throughout
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the manuscript we employ superficial averaging – both over solid and fluid regions –
unless stated otherwise.

4. Results
4.1. Roughness function

Figure 3(a,c,e,g) presents the streamwise (i.e. azimuthal) velocity profiles u+ =
〈u(r)− u(ri)〉θ,z,t/uτ (solid) and angular velocity profiles ω+ = 〈u(ri)− riu(r)/r〉θ,z,t/uτ
(dashed) versus the wall-normal distance y+ = r+ − r+i − h+m , where 〈.〉θ,z,t indicates
averaging over the streamwise and spanwise directions and in time, and h+m is the
mean roughness height. Every row corresponds to simulations at constant rotation
rate of the inner cylinder (Taylor number), and increasing roughness height.

In line with the previous observations of Huisman et al. (2013) and Ostilla-Mónico
et al. (2014), we also find that the logarithmic profiles of the streamwise velocity
u+ in smooth-wall TC do not fit the κ = 0.4 slope, as found in other wall-bounded
flows (e.g. pipe, boundary layer, channel) – for similar values of the friction Reynolds
number Reτ . However, this asymptotic value is experimentally observed at very high
shear rates of Ta = O(1012) and Reτ = O(104) (Huisman et al. 2013), much higher
than can be obtained by the present DNS. The logarithmic profiles of angular velocity
ω+ have a slope that is closer to the κ = 0.4 asymptote (Ostilla-Mónico et al. 2015),
especially for the higher Ta figure 3(g, h). Here we investigate the effects of roughness
on both u+ and ω+.

For rough-wall simulations, the logarithmic region shifts downwards – a hallmark
effect of a drag increasing surface. Figure 3(b,d, f,h) presents the shifts, where 1u+=
u+s − u+r and 1ω+ = ω+s − ω

+

r . All shifts of the angular and azimuthal profiles are
calculated at the centre of the gap, that is at y+ + h+m = Reτ . As one can see in
figure 3(b,d, f,h) of the manuscript, the values of 1u+ and 1ω+ do not depend on
y+ if one is sufficiently far away from the wall. For lower Ta, there is a small but
observable difference between 1u+ and 1ω+, see figure 3(b), whereas for the higher
Ta, this difference diminishes, see figure 3( f,h).

Figure 4(a,b) presents the shift of the streamwise and angular velocity profiles,
respectively, versus the equivalent roughness height k+s , for all Ta. Care is taken to
ensure overlap for varying Ta and similar k+, to study the Ta dependence of 1u+
and 1ω+. However, despite the varying Ta numbers, all data collapse onto a single
curve, with some scatter. Note that scatter is expected due to the randomness of the
surfaces, which are reproduced for every simulation. To obtain an estimate of the
expected scatter, we run two simulations with statistically similar surfaces. These are
indicated by B3 and BY in table 1 and the velocity profiles are found in figure 3(c,d).
We find a difference between the two cases of . 0.21u+, 0.21ω+. The measure of
this scatter is indicated in figure 4 as a vertical bar (= spread). We figure 4 as a
vertical bar (= spread). We conclude that the variability in 1u+ and 1ω+ at constant
k+ and varying Ta falls within the size of that vertical bar, and such conclude that
1u+ and 1ω+ and thus the equivalent roughness height k+s shows little dependence
on Ta.

A comparison with the findings of Nikuradse (1933) can be carried out by scaling
the fully rough regime to obtain k+s =Ck+, where C is a constant that depends on the
surface topology. In figure 5(a) we plot the velocity profiles versus (r− hm)/ks for the
highest roughness (D3, D4 and D5 respectively, see table 1). Excellent collapse of the
D4 and D5 profiles indicates that those simulations are indeed fully rough. In this fully
rough regime viscosity can be neglected (y� k� δν), whereas the velocity profile is
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FIGURE 3. (Colour online) (a,c,e,g) Profiles of the streamwise – azimuthal – velocity u+
(solid) and the angular velocity ω+ (dashed) versus the wall-normal distance y+. Black
solid lines indicate the viscous sublayer profile u+ = y+ and the logarithmic law u+ =
κ−1 log y+ + B, with κ = 0.4 and B = 5.0. (b,d, f,h) Profiles of the streamwise velocity
shift 1u+ (solid) and the angular velocity shift 1ω+ (dashed). Every row corresponds to
a constant Taylor number, (a,b) Ta= 1.0× 107, (c,d) Ta= 5.0× 107, (e, f ) Ta= 5.0× 108

and (g,h) Ta = 1.0 × 109, see table 1. The grey lines in (g) are logarithmic fits to the
smooth profiles for y+ = [150, 500].
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FIGURE 4. (Colour online) (a) Azimuthal velocity shift (Hama roughness function) 1u+
versus the equivalent sand grain roughness height k+s , where k+s = 1.33k+. (b) Angular
velocity shift ω+ versus k+s . Close overlap with the Nikuradse curve is observed in
the transitionally rough regime. The overlap is slightly better for the angular velocity
shift, for which we also obtain k+s = 1.33k+. The solid blue line represents the fully
rough asymptote; 1u+ = 2.44 log(k+s ) + 5.2 − 8.5. The green lines represent the fully
rough asymptotes obtained from the simulations, with κu, κω, Au and Aω extracted from
figure 3(g). The spread between statistically similar surfaces, with similar mean and
maximum heights, is indicated by the vertical bar. ks is determinded by a best fit between
the two data points in the fully rough regime (i.e. cases D4 and D5, see table 1) and the
Nikuradse fully rough asymptote.
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FIGURE 5. (Colour online) (a) Azimuthal velocity u+ (solid) and the angular velocity
ω+ (dashed) versus the wall-normal distance y/ks, where y = (r − hm) and hm is the
mean roughness height. The three simulations with the highest roughness are plotted (D3,
D4 and D5 respectively, see table 1) to convey collapse of the profiles for the fully
rough cases. (b) The Nikuradse constant B̃ versus the equivalent sand grain roughness
height k+s for both the azimuthal velocity (squares) and the angular velocity (diamonds).
Horizontal black line at B̃=6.0 gives the asymptotic value that is observed for fully rough
behaviour.

also independent of the system outer length scales (y� d) i.e. the overlap argument
(Pope 2000). The gradient of the velocity profile becomes d〈U〉/dy = (uτ/y)Φ(y/k),
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where Φ(y/k) is a universal function that will go to 1/κ . Integration then gives

u+r =
1
κ

log (y/k)+ B=
1
κ

log (y/ks)+ B̃, (4.1)

where B is a constant and y = r − hm; B̃ is the Nikuradse constant. The roughness
function in the fully rough regime, (i.e. the fully rough asymptote), is obtained by
subtracting (4.1) from the smooth-wall profile u+s = (1/κ) log (y+) + A and rescaling
it to overlap with the Nikuradse data,

1u+ =
1
κ

log (k+s )+ A− B̃. (4.2)

In figure 4(a), the blue solid line is the fully rough asymptote, with κ,A, B̃ as found in
pipe flow (Pope 2000). The green solid line is the fully rough asymptote as obtained
from our simulations; κ−1

u = 1.22 and Au = 8.0 are taken from the fit of the smooth-
wall simulation at identical Ta as the fully rough cases (figure 3g). The fits are in the
domain y+=[150,500], as there the slope becomes approximately constant (figure 3h).
The value of B̃ is plotted in figure 5(b), where we find that B̃ ≈ 6.0 for the fully
rough cases. The mismatch of the slopes in the fully rough regime makes a rescaling
to find k+s a priori impossible – a statement that we wish to emphasize. However, to
proceed with the comparison of the transitionally rough cases in TC and pipe flow, we
choose to rescale the fully rough cases (D4 and D5) with the Nikuradse fully rough
asymptote in figure 4. We find that k+s = 1.33k+ and very close collapse of our data
with the Nikuradse data.

In parallel, we analyse the behaviour of 1ω+ versus k+s , shown in figure 4(b).
Again, the blue solid line represents the fully rough asymptote of Nikuradse. The
green solid line is the fully rough asymptote obtained from fits (y+ = [150, 500]) of
the smooth-wall angular velocity profile at identical Ta as the fully rough cases, see
figure 3(g). We find κ−1

ω = 2.17 (Aω = 3.7), close to the asymptotic value κ−1
= 2.44.

Although the differences are marginal, 1ω+ fits to the Nikuradse data slightly better
than 1u+ (note that also here the rescaling is, ks = 1.33k). However, the major
difference is the closeness of the fully rough asymptotes.

These results suggest that the near-wall effects of transitionally rough sand grains
(and other rough surfaces) in TC flow are similar to the effects of transitionally rough
sand grains (and other rough surfaces) in pipe flow (and other canonical systems).
Further, we find that these transitionally rough effects are independent of slope of
the velocity profile in the logarithmic region, whereas in the fully rough regime, they,
a priori, depend on this slope. This is confirmed with similar values of 1u+ at similar
k+s , for varying Ta, see figure 4. Also the similarity between 1u+ and 1ω+ in the
transitionally rough regime confirms this, whereas the fully rough asymptotes are very
dissimilar. We like to point out that simulations (or experiments) at high enough Ta
(= 1012 (Huisman et al. 2013)), where κ = 0.4, then are expected to also give a
collapse to the Nikuradse data in the fully rough regime.

4.2. Global response
Figure 6(a) presents the friction factor Cf versus the dimensionless roughness height
k/d for varying Rei. For lower Ta numbers, the friction factor Cf decreases with
increasing Ta, indicating the relevance of viscous drag. For the two highest Ta
numbers, representing the higher k+s cases, the friction factor almost collapses onto
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FIGURE 6. (Colour online) Profiles of (a) the friction factor Cf , and (b) the Nusselt
number Nuω versus the roughness height. k/d is the roughness height k relative to the
gap width d. (c) Normalized friction coefficient Cf (k+s )/Cf (k+s = 0) versus the equivalent
sand grain roughness height k+s . (d) Normalized Nusselt number Nuω(k+s )/Nuω(k+s = 0)
versus the equivalent sand grain roughness height k+s .

one line. This tells that τw∝ u2, and thus that pressure drag is dominant over viscous
drag, in accordance with the overlap argument presented above. For constant Ta, as
expected, the friction factor increases for increasing roughness height. Figure 6(b)
presents the global response in terms of Nuω. We observe an increase in Nuω for
increasing Ta, corresponding to the increased transport of the angular velocity that
is due to the increased turbulent mixing. Higher roughness leads to increased Jω as
compared to the smooth wall at the same Ta, which also relates to a higher intensity
of the turbulent mixing (the r3(〈wω〉θ,z,t) term of (2.8)) and more plumes ejecting
from the boundary layer radially outwards (Zhu et al. 2017), on which we will
elaborate in § 4.3.

By assuming a logarithmic profile, and integrating this profile over the entire
gap (thereby neglecting the contributions of the viscous sublayer), we arrive at an
implicit equation for the friction factor Cf , namely the celebrated Prandtl’s friction
law,

(Cf /2)−1/2
=C1 log((Cf /2)1/2Rei)+C2, (4.3)

where C1(Rei) and C2(Rei) for TC at these Rei. Figure 7 shows the friction factor
Cf versus the inner cylinder Reynolds number Rei, for both smooth-wall (solid) as
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FIGURE 7. (Colour online) (a) Moody representation, showing the friction factor Cf as
a function of the inner cylinder Reynolds number Rei for varying roughness height k/d.
The solid line is the fit of the Prandtl friction law to the smooth-wall simulation data.
(b) Compensated plot of the Nusselt number versus the Taylor number for constant k/d.
In this regime, Nu∝ Ta0.33. The solid black line indicates the asymptotic scaling of Nu∝
Ta0.50.

the rough-wall (symbols) simulations. An upward shift of the friction factor for
increasing roughness height is consistent with what is observed for sand grains in
pipe flow (Nikuradse 1933) and recently also for transverse ribs in Taylor–Couette
flow (Zhu et al. 2018b). Note that this upward shift is directly related to the
downward shift of the mean streamwise velocity profile (the roughness function).
Since the friction factor and the Nusselt number are related, as expressed in (2.10),
we expect the Nusselt number to increase, for increasing roughness height. This
is confirmed in figure 7(b), where we plot the Nu number versus the Ta number.
The number of simulations with constant k/d is limited, and we vary the Ta
number over 2 decades only. However, we observe that the asymptotic, ultimate
scaling of Nuω ∝ Ta0.5, as found for fully rough transverse ribs in (Zhu et al.
2018b), is not reached. This is expected, as only the inner cylinder is covered with
roughness.

4.3. Flow structures
To obtain a qualitative understanding of the effect of inner cylinder roughness on
the turbulent flow in the gap, we present two series of snapshots of the streamwise
azimuthal velocity u(r, θ, z, t). Figure 8(a–c) exhibits the snapshots for Ta= 5.0× 107.
It is known, and observed here, that for this Taylor number the coherence length of
the dominant flow structures becomes smaller than the gap width d, and turbulence
develops in the bulk (Grossmann et al. 2016). On the other hand, the boundary
layers remain predominantly laminar and as such the regime is referred to as the
‘classical regime’ of TC turbulence. A divergent colour map is chosen to highlight the
turbulent structures in the bulk. A snapshot for the smooth inner cylinder simulation is
presented in figure 8(a). At z/d≈ 0.3, one observes an ejecting structure (plume) that
detaches from the inner cylinder laminar boundary layer at the location of an adverse
pressure gradient. Locally, where this ejecting plume detaches, the flow will be
different (i.e. more chaotic) to that in the other parts of the boundary layer. As such,
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FIGURE 8. (Colour online) (a–c) Classical turbulent state: contour fields of the
instantaneous azimuthal velocity u(r, θ, z, t) for Ta = 5.0 × 107 in the meridional plane.
(a) Smooth-wall simulation (BS) in which we observe one ejecting plume and one
impacting plume. (b) Rough inner cylinder k/d= 0.039 (B2), with the roughness indicated
in grey, exhibiting more plumes ejecting from the inner cylinder radially outwards.
(c) Rough inner cylinder k/d= 0.073, with the roughness indicated in grey, (B4) leading
to a more chaotic flow field, with enhanced mixing and enhanced radial transport of
the conserved angular velocity flux. (d–f ) Ultimate turbulent state: contour fields of the
instantaneous azimuthal velocity u(r, θ, z, t) for Ta = 1.0 × 109 in the meridional plane.
(d) Smooth inner cylinder (DS) with many plumes ejecting, considerably more chaotic
than in (a). (e) Inner cylinder wall roughness (indicated in grey) k/d = 0.035 (D2) and
( f ) inner wall roughness k/d= 0.055 (D5). For the rough cases, we observe more plumes
ejecting and more mixing in the bulk, leading to enhanced radial transport of the angular
velocity Jω, expressed in a higher Nuω.

one also expects the local variables (e.g. skin friction, turbulence intensity) to be
different. Later we will therefore employ local averaging, to investigate the spatial
differences in the flow associated with this structure (van der Poel et al. 2015b;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

37
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.376


276 P. Berghout and others

Ostilla-Mónico et al. 2016; Zhu et al. 2018a). The ejecting and impacting (located at
z/d≈ 1.3) plumes have very strong radial velocity components w. From the first term
on the right-hand side of (2.8), r3(〈wω〉θ,z,t), we then directly see that they strongly
contribute to Nuω. This brings us to the remaining (figure 8b,c) snapshots. Many
more, small, plumes are seen to eject from the inner cylinder. The roughness there
promotes the detachment of ejecting structures and in that way contributes to a higher
Nuω. An increase in the level of turbulence, as suggested by the increased level of
turbulence dissipation, is quantitatively reflected by a decrease in the Kolmogorov
scale (η = (ν3/ε)1/4), namely η/d = 7.1 × 10−3 for the smooth-wall case BS and
η/d = 6.5 × 10−3 for the highest roughness case B5. Note that the decrease in
the Kolmogorov scale η is only small, since η/d ∝ (εd4/ν3)−1/4. For TC flow, the
volume-averaged dissipation rate ε is related to the angular velocity transport Nuω
with: ε = ν3d−4σ−2(Nuω − 1)Ta + εlam, where εlam is the laminar volume-averaged
dissipation rate, d is the gap width of the set-up and σ = ((1+ η)/2/

√
η)4 a

geometric parameter (Eckhardt et al. 2007). As such, we see that η/d ∝ Nu−1/4
ω

only.
Figure 8(d–f ) presents snapshots of a flow in the ultimate turbulent state at Ta =

1.0 × 109 (Grossmann et al. 2016). Although less pronounced than for Ta = 5.0 ×
107, we still observe distinct ejecting and impacting regions, indicating the survival
of the turbulent Taylor rolls. A similar rationale as applied above, to the classical
turbulence case, can also be used to explain the enhancement of the Nusselt number
for rough inner cylinders in the ultimate turbulent state. In fact, we can also observe
more intense plumes for the highest roughness (D5, figure 8f ), in comparison to a
lower roughness case (D2, figure 8e). Note that here we do not observe the stable
vortex formation in between roughness elements and the associated ejection of plumes
from sharp peaks, as was reported by Zhu et al. (2016) for grooved cylinders, for
similar Taylor numbers and roughness heights. The increase in the turbulence level is
also quantitatively confirmed by a decrease in the Kolmogorov scale here, η/d= 2.7×
10−3 for the smooth-wall case DS and η/d = 2.1 × 10−3 for the highest roughness
case D5.

4.4. Roughness sublayer
The existence of Taylor roll structures is already anticipated in the snapshots of the
instantaneous flow in figure 8, from which we observe the ejecting and impacting
plume regions. Contour plots of the time and azimuthally averaged azimuthal velocity
field, as presented in figure 9, confirm this. Note that the Taylor roll is spatially
fixed, allowing for convenient averaging over impacting (solid line), shearing (dashed
line) and ejecting (dashed dotted line) regions, a method that we also employed
in RB flow (van der Poel et al. 2015b). For an increasing roughness height, the
white region (representing 〈u〉θ,t ≈ 0.5) shifts radially outwards and the azimuthal
velocity in the bulk increases. This process previously has been seen in Zhu et al.
(2018b), where it is referred to as the bulk velocity ‘getting slaved to’ to the velocity
of a cylinder covered with roughness, reflecting the enhanced drag on the rough
side.

A better impression of the local fluid flow disturbances induced by the roughness
elements, is obtained from the time-averaged azimuthal velocity 〈u〉t, a contour of
which we show in figure 10. We zoom in on only a few roughness elements and
overlay the contour with isolines of 〈u〉+t . We observe that local disturbances are
limited to a region of only a few times the roughness height, above which the
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FIGURE 9. (Colour online) Contour field of the mean azimuthal velocity 〈u〉θ,t in the
meridional plane for Ta = 1.0 × 109. (a) Smooth inner cylinder (DS) (b). Inner cylinder
wall roughness k/d = 0.0517 (D2) and (c) inner wall roughness k/d = 0.0818 (D5).
The solid vertical lines indicate the height of the roughness sublayer hr, calculated
over the entire cylinder height. plume ejection regions, sheared regions,

plume impacting regions.

isolines relax to approximate horizontal lines. We observe small recirculation zones
(closed isolines) in open regions behind high roughness elements. To quantify the
degree of roughness-induced velocity disturbance, we apply a triple decomposition to
the instantaneous azimuthal velocity u(r, θ, z, t) (Pokrajac et al. 2007),

u(r, θ, z, t)= 〈u〉θ,t(r, z)+ ũ(r, θ, z)+ u′(r, θ, z, t), (4.4)

where u′(r, θ, z, t) = u(r, θ, z, t) − 〈u〉t(r, θ, z), the temporal fluctuation and
ũ(r, θ, z) = 〈u〉t(r, θ, z) − 〈u〉θ,t(r, z), the component that is strongly related to the
roughness induced disturbances and therefore termed the form-induced (or dispersive)
velocity fluctuation. Note that by applying the triple decomposition to the full NS
equations and then averaging in θ and t, one will recover the related form-induced
stress tensor 〈ũiũj〉θ,t. However, here we only discuss ũ(r, θ, z). The root mean square
of the form-induced fluctuations

√
ũ(r, θ, z)2

+

at various heights above the roughness
is given in figure 11(a). The horizontal axis corresponds to the roughness elements
shown in figure 10. Already for r/k= 4.5 (with k being the roughness height, i.e. the
smallest radius of the ellipsoidal building block) we find it hard to detect spatial
fluctuations along θ . For r/k = 12.0, the line is barely distinguishable from the
horizontal axis. If we average the lines over the azimuthal direction, we obtain the
behaviour of the dispersive fluctations as a function of the wall-normal distance;
see figure 11(b). We plot the lines for three respective axial locations, that is the
impacting, sheared and ejecting regions, and find little variance in the wall-normal
extent of the form-induced fluctuations, for the varying locations. The vertical black
line represent the maximum roughness height, below which we average only over fluid
regions.
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FIGURE 10. (Colour online) Contour of the time-averaged azimuthal velocity 〈u〉+t ,
zoomed in on only a few roughness elements, indicated in grey, for Ta= 1.0× 109 (D2).
Flow is from left to right. Isolines of 〈u〉+t overlay the contour. On the vertical axis, we
display the wall-normal coordinate normalized by the gap width d (left) and in viscous
units (right). On the horizontal axis, we display the azimuthal coordinate, normalized by
the gap width d (below) and in viscous units (above).

Rough elements on the inner cylinder destroy the streamwise homogeneity of the
flow, and thus the root mean square of the dispersive fluctuation is non-zero. Some
distance from the wall, the turbulence is well able to ‘mix out’ the form-induced
structures and the flow regains streamwise homogeneity. The distance from the wall at
which the dispersive fluctuations are zero (or reasonably close to zero), is called the
roughness sublayer height hr. In this research, we define y+=h+r where

√
〈ũ+2〉θ,z(r)=

0.01〈u+〉θ,z,t and find hr = 3.70k (hr = 2.78ks). This value agrees well with a
roughness sublayer height of 2 . ks . 5, as typically found in other canonical flows
(Pokrajac et al. 2007).

The existence of a finite height of only a few times the roughness height, at which
the dynamical effects of the roughness on the fluid flow vanish, is an important finding
in wall-bounded turbulence. As written in Flack & Schultz (2014): ‘...the utility of the
roughness function itself hinges on similarity of the flow’. This idea (‘wall similarity’)
is already heavily tested in other systems (Raupach et al. 1991; Chung, Monty &
Ooi 2014; Flack & Schultz 2014) and in the vast majority of the research found
to be correct. However, in a heavily stratified system as TC, where wall-attached
structures result from the unstable stratification of centrifugal pressure, the notion
of wall similarity is not yet investigated. As such, the findings presented here, that
such similarity exists in TC, strengthen our believe that TC could be a valued
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FIGURE 11. (Colour online) (a) Profiles of the root mean square of the form-induced
azimuthal velocity fluctuations ũ+ = (〈u〉t − 〈u〉θ,t)/uτ at incremental heights above the
roughness for identical location and conditions as in figure 9. The radial coordinate r+
is made dimensionless by the roughness height k+. The horizontal axis represents the
azimuthal coordinate in viscous units. (b) Root mean squares of the azimuthally averaged
form-induced velocity fluctuations. The profiles are obtained at three heights, namely
where the Taylor roll impacts, ejects and in the centre (sheared region) – the extent
of the regions are estimated from time-averaged velocity fields. The cyan line gives the
mean over the entire height of the cylinder. The solid black lines indicate the maximum
roughness height k+max and the height of the roughness sublayer h+r .

system to characterize the equivalent sand grain roughness height of a given rough
surface.

4.5. Radial profiles
The effects of roughness on a turbulent shear-driven flow, where the shear rate
is constant, can be separated into two effects. The first is the change in the wall
shear stress τw. The second is the change in the structure of the turbulent flow at a
given wall shear stress. Sand grains increase τw and therefore we find an increased
momentum transfer to the bulk region with respect to a smooth-wall TC case, at
fixed Taylor number. This increased momentum transfer to the bulk (through plumes,
very similar to Rayleigh–Bénard flow) leads to a more intense turbulence in the bulk
flow, and also to higher velocity fluctuations.

We plot the time and azimuthally averaged azimuthal velocity for Ta = 5.0 × 108

in figure 12(a). The roughness covers the inner cylinder, i.e. (r− ri)/d 6 0.07. In this
section we focus on the behaviour of the statistics above the roughness. Therefore,
averaging over both solid and fluid regions is carried out. For increasing roughness
height, see the legend for viscous roughness heights, the azimuthal velocity in the bulk
increases. Figure 12(b) then presents the corresponding azimuthal velocity profiles for
constant k/d= 0.060± 0.002 and varying Taylor number.

Figure 13(a) shows the double-averaged radial profiles (u)+rms = 〈〈u
2
〉θ,z,t −

〈u〉2θ,z,t〉
1/2/uτ for constant Taylor number Ta = 1.0 × 109. For the smooth-wall case,

the peak of (u+)rms is located at y+ ≈ 10. This agrees with the smooth case in
(Ostilla-Mónico et al. 2016) for TC flow, but is closer to the solid boundary than is
found in channel flow; y+ ≈ 12. We observe a slight decrease in the viscous scaled
turbulence intensity (u)+rms for increasing roughness heights, close to the inner cylinder.
Further outside the profiles, the profiles collapse.
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FIGURE 12. (Colour online) Profiles of the mean streamwise velocity 〈u〉θ,z,t versus the
radial coordinate (r − ri)/d, where ri is the radius of the inner cylinder and d is the
gap width. (a) Constant Taylor number Ta= 5.0× 108 and increasing roughness heights.
The profiles exhibit clear ‘slaving’, i.e. the bulk velocity moves towards the velocity of
the roughened cylinder. (b) Constant roughness height k/d= 0.060± 0.002 for increasing
Taylor number. Increased slaving of the bulk velocity is observed for increasing viscous
scaled roughness height k+s , respectively: (blue) k+s = 9, (green) k+s = 24, (red) k+s = 47 and
(cyan) k+s = 65.
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FIGURE 13. (Colour online) (a) Root mean square of the mean streamwise velocity
(u)+rms=〈〈u

2
〉θ,z,t−〈u〉2θ,z,t〉

1/2/uτ versus the radius (r− ri)/d for Ta= 1.0× 109. We observe
an overall decrease of the viscous scaled turbulence intensity for increasing roughness
height k+s . (b) The viscous Ĵων (y

+)≡−r3ν∂r〈ω〉θ,z,t/Jων (ro) (solid line) and Reynolds stress
Ĵωwω(y

+) ≡ r3
〈wω〉θ,z,t/Jων (ro) (dashed line) terms of the conserved angular velocity flux

Ĵω versus the wall-normal distance y+ for Ta = 1.0 × 109. The sum of the individual
terms represents the total conserved angular velocity flux radially outwards. The black
horizontal line at Ĵω= 1.0 is the sum of the two blue lines for the smooth-wall case. It is
observed that Ĵω is conserved above the maximum roughness height (indicated by cross
markers).

The reason why we choose to make the variables dimensionless using their friction
equivalents is to assess those changes to the flow that go beyond the effects coming
from ‘simply’ increasing the momentum input to that region, i.e. to study the
structural changes of the turbulent flow for the same momentum input. We can
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thus infer from figure 13(a) that the bulk of the TC flow is not affected by the
roughness elements, other than increasing the momentum input into the bulk would
do. A gedankenexperiment (see e.g. Chung et al. (2014)) would make this clear. If
one would be placed into the bulk of a rough TC flow, without being able to look
into the boundary layer, one could not tell whether the wall is rough or smooth. The
reason is that a smooth wall with a higher Taylor number can produce the same τw

as a rough wall with a lower Taylor number. This idea is, in fact, Townsend’s outer
layer similarity hypothesis (Townsend 1956). (Note: we can only be sure that this
holds for the relatively small sand grain surface under scrutiny here, owing to the
sufficient scale separation!) As such, we conclude that the influence of the roughness
elements pertains only to a region close to the wall.

It has already been mentioned that the angular velocity flux Jω(y+) is conserved in
the radial direction, see § 4.2. However, the individual components – i.e. the viscous
Jων (y

+) and Reynolds stress Jωwω(y
+) terms – are functions of the wall-normal (radial)

coordinate. The profiles of these terms are shown in figure 13(b). We normalize
all terms with Jων (ro). The viscous stress terms are presented as solid lines and the
Reynolds stress terms as dashed lines. The blue lines represent the smooth-wall
case. Very close to the inner cylinder (y+ = 1), Jω ≈ Jων ; this is expected, since
there the gradient of the mean streamwise velocity is maximum and the wall-normal
component of the velocity vector goes to zero. On the far right of figure 13(b),
the gradient of the mean velocity approaches zero in the bulk, and the correlation
function between the wall-normal and angular velocity goes to a maximum; as such
Jω ≈ Jωwω. The black line represents the sum of the viscous and Reynold stress terms,
for the smooth (blue) case, and is independent of y+. The situation for the rough
cylinder cases is more complex. For increasing roughness height, the viscous stress
reaches a maximum below the maximum roughness height. This can be explained
by the recirculation zones behind the roughness elements. Then, above the roughness,
the viscous stress goes to zero in the bulk. For the Reynolds stress terms the
increase is monotonic, and similar to the smooth-wall case. However, we observe
a steeper increase for the rough cases. Note that under the maximum roughness
height, the viscous and Reynolds stress terms do not add up to unity, since the
rough surface acts as a radial dependent momentum source term to the NS equations
there.

5. Summary and conclusions

We have performed direct numerical simulations of turbulent Taylor–Couette flow
with inner cylinder rotation and inner cylinder sand grain roughness. The Taylor
number ranges from Ta = 1.0 × 107 (Reτ = 82) up to Ta = 1.0 × 109 (Reτ = 635),
covering thereby both the classical and the ultimate regimes of turbulent TC flow.
In particular, we studied the effects of the roughness height on the fluid flow in
the transitionally rough and fully rough regimes, with the equivalent sand grain
roughness height ranging from k+s = 5 to k+s = 92. We modelled the sand grains as
randomly rotated and translated ellipsoids of constant size and shape (monodisperse),
similar to the model proposed by Scotti (2006). The surface was implemented
into a second-order finite difference code by means of the immersed boundary
method.

We confirm an increase in the dimensionless torque, expressed as the Nusselt
number, for increasing roughness height. This is attributed to the enhanced boundary
layer detachment, resulting in plume ejection regions, which we observed in snapshots
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of the azimuthal velocity field. The plumes contain a strong radial velocity component,
and as such contribute strongly to the Reynolds stress term of the angular velocity
flux. This mechanism is analogous to what was found for the Nu increase for grooved
TC turbulence by Zhu et al. (2016).

To quantify the degree of roughness-induced disturbance to the velocity field,
we measured the dispersive fluctuations of the azimuthal velocity component,
ũ=〈u〉t−〈u〉θ,t. This dispersive term was obtained by means of a triple decomposition
to the azimuthal velocity. We defined the height of the roughness sublayer hr there
where the dispersive fluctuations become very small, such that

√
〈ũ+2〉θ,z=0.01〈u+〉θ,z,t

and found the height of the roughness sublayer to be hr = 2.78ks. This height of the
roughness sublayer compares well with values found for other canonical systems
(Pokrajac et al. 2007). The low height of the roughness sublayer in TC flow, and
the existence of similarity of the flow above this sublayer, leads us to believe that
we can utilize the shift of the logarithmic region to find an equivalent sand grain
roughness height.

The hallmark of turbulent flows over rough walls is the shift of the logarithmic
streamwise velocity profile 1u+. The shift is a function of any parameters describing
the roughness topology. Here we focused in particular on the effect of the sand grain
size k and the roughness function becomes 1u+(k+). It was shown in Huisman et al.
(2013) that the constants of the logarithmic law are not constant in the Taylor number
range of our simulations. Hence we proposed the generalization u+= f1(Rei) log(y+)+
f2(Rei)−1u+.

We performed simulations at four Ta and various roughness heights and ensured
that the k+ range for the various Ta numbers overlaps. First, we concluded that the
velocity shift is independent of Ta, despite the Ta dependence of the constant in the
logarithmic layer. As such, all simulations collapse onto a single curve. Second, we
saw a strong overlap between the roughness function calculated from our DNS in TC
flow and the seminal work by Nikuradse (1933) on monodisperse sand grains in pipe
flow, in the transitionally rough regime. We found k+s = 1.33k. Only for very low k+s
values, close to the hydrodynamically smooth regime, we found that the simulations
slightly differ from the Nikuradse curve.

It is remarkable that the Hama roughness function appears to be universal for
similar surfaces in such different systems. Note in particular that we have a streamwise
curvature and strong secondary motions (Taylor rolls), which were absent in the pipe
flow experiments of Nikuradse. As such, our findings point towards a universal
behaviour of the roughness function for very different fluid flow systems. However,
many more comparison studies, of identical rough surfaces and varying fluid flow
systems, are needed to confirm this notion.
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Appendix

Case k̄/kmax k̄/k kstd/k Sk Ku krms/k kp/k ES αrms Sf /r2
i Ss/r2

i Λ

A1 0.38 0.57 0.35 −0.06 −0.77 0.67 1.11 0.44 0.17 0.15 0.21 9
A2 0.38 0.57 0.35 −0.08 −0.78 0.67 1.11 0.44 0.17 0.16 0.21 9
A3 0.37 0.56 0.34 −0.09 −0.76 0.66 1.42 0.46 0.11 0.17 0.24 9
A4 0.37 0.56 0.36 −0.11 −0.87 0.67 1.05 0.48 0.12 0.18 0.28 10

B1 0.38 0.57 0.35 −0.06 −0.77 0.67 1.11 0.44 0.17 0.15 0.21 9
B2 0.38 0.57 0.35 −0.08 −0.78 0.67 1.12 0.44 0.17 0.16 0.21 9
B3 0.37 0.56 0.34 −0.09 −0.76 0.66 1.04 0.46 0.11 0.17 0.24 9
BY 0.38 0.57 0.35 −0.07 −0.75 0.67 1.07 0.47 0.15 0.17 0.25 9
B4 0.37 0.56 0.36 −0.11 −0.87 0.67 1.05 0.48 0.12 0.18 0.28 10
B5 0.37 0.56 0.35 −0.13 −0.86 0.66 1.02 0.44 0.11 0.17 0.26 9

C1 0.38 0.57 0.35 −0.08 −0.81 0.67 1.07 0.47 0.13 0.17 0.24 9
C2 0.37 0.56 0.35 −0.09 −0.85 0.66 1.03 0.47 0.11 0.16 0.24 10
C3 0.37 0.56 0.36 −0.11 −0.85 0.67 1.04 0.48 0.07 0.18 0.29 10
C4 0.37 0.56 0.35 −0.10 −0.80 0.66 1.04 0.47 0.12 0.17 0.25 10
C5 0.37 0.56 0.35 −0.10 −0.82 0.67 1.04 0.48 0.12 0.17 0.26 10

D1 0.37 0.56 0.35 −0.09 −0.85 0.66 1.03 0.47 0.11 0.16 0.24 10
D2 0.37 0.56 0.36 −0.11 −0.85 0.67 1.03 0.48 0.06 0.19 0.30 10
D3 0.37 0.56 0.35 −0.11 −0.82 0.66 1.01 0.48 0.08 0.17 0.27 11
D4 0.37 0.56 0.36 −0.10 −0.83 0.67 1.02 0.49 0.08 0.18 0.29 11
D5 0.37 0.56 0.35 −0.12 −0.85 0.67 1.01 0.50 0.08 0.19 0.32 10

TABLE 2. Parameters describing the surface geometry (including both blank patches and
sand grains). From left to right: case number in accordance with table 1. The roughness
height is measured with respect to the inner cylinder location r = r0. k̄/kmax is the mean
roughness height respective to the maximum roughness height. k̄ is the first moment of the
roughness height distribution, 1/S

∫
S h(θ, z) dS. kstd is the standard deviation of the surface

height distribution (1/S
∫

S(h(θ, z)− k̄)2 dS)1/2, Sk is the skewness 1/k3
stdS

∫
S(h(θ, z)− k̄)3 dS

and Ku the excess kurtosis, 1/k4
stdS

∫
S(h(θ, z)− k̄)4 dS− 3. krms is the root mean square of

the mean height (1/S
∫

S(h(θ, z))
2 dS)1/2. kp is the mean peak height. The peaks are obtained

by a peak finding algorithm (‘find_peak_local’ in van der Walt et al. (2014)) with zero
threshold and a minimum spacing of the peaks of four grid nodes. ES is the effective slope,
ES= 1/LθLz

∫
Lθ

∫
Lz
|∂h(θ, z)/∂(riθ)| dz d(riθ) as introduced by Napoli et al. (2008). It can

be shown that the ES parameter is twice the often used solidity parameter λ (Jiménez
2004). α is the surface gradient in the streamwise direction, ∂h(θ, z)/∂riθ and αrms is the
root mean square of this distribution. Sf is the total frontal projected area of the roughness
(in the streamwise direction). Ss is the total windward wetted area of the roughness. Λ
is the density parameter which relates the latter two parameters by Λ= (S/Sf )(Sf /Ss)

−1.6

where S is the total area of the surface without roughness (Sigal & Danberg 1990). The
fractal dimension of surface B2 is calculated from the slope of the power density spectrum
versus the wavenumber, C∝ q−4.65, for details we refer to Persson et al. (2005). Here we
find a Hurst exponent H of 1.32 and a fractal dimension D of 1.68. As such we conclude
that the surface can at no scale be considered fractal.
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