GENERATING GROUPS FOR NILPOTENT VARIETIES

FRANK LEVIN¹

(Received 2 May 1968; revised 14 October 1968)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. E. Wall

Let \mathfrak{N}_c denote the variety of all nilpotent groups of class $\leq c$, that is, \mathfrak{N}_c is the class of all groups satisfying the law

$$[x_1, \cdots, x_{c+1}] = 1,$$

where we define, as usual, $[x_1, x_2] = x_1^{-1}x_2^{-1}x_1x_2$ and, inductively, $[x_1, \dots, x_n] = [[x_1, \dots, x_{n-1}], x_n]$. Further, let $F_k(\mathfrak{N}_c)$ denote a free group of \mathfrak{N}_c of rank k. In her book Hanna Neumann ([4], Problem 14) poses the following problem: Determine d(c), the least k such that $F_k(\mathfrak{N}_c)$ generates \mathfrak{N}_c . Further, she suggests, incorrectly, that d(c) = [c/2] + 1. However, as we shall prove here, the correct answer is d(c) = c-1, for $c \geq 3$.² More generally, we shall prove the following result.

THEOREM. Let var $F_i(\mathfrak{N}_c)$ denote the variety generated by $F_i(\mathfrak{N}_c)$. Then

(1) var $F_1(\mathfrak{N}_c) < \operatorname{var} F_2(\mathfrak{N}_c) < \cdots < \operatorname{var} F_{c-1}(\mathfrak{N}_c) = \mathfrak{N}_c$ for all $c \geq 3$.

For convenience we will divide the proof into two parts. In part I the inequalities in (1) are established by constructing, for each $k \leq c$, a law in $F_{k-2}(\mathfrak{N}_c)$ which is not a law in $F_{k-1}(\mathfrak{N}_c)$. In part II the final equality in (1) is established by showing that $F_k(\mathfrak{N}_c)$ is residually a (c-1) generator group, for any $k \geq c$.³

Part I:

$$\operatorname{var} F_{k-1}(\mathfrak{N}_c) < \operatorname{var} F_k(\mathfrak{N}_c), \qquad 2 \leq k \leq c-1.$$

PROOF OF PART I. To show (2) for $3 \leq k \leq c-1$ (the case k=2 is trivial) it is sufficient to find a law $Q_{k,c} = 1$ which holds in $F_{k-1}(\mathfrak{R}_c)$ but

³ All notation and terminology not specified follows that of [3] or [4].

 $\mathbf{28}$

¹ The author gratefully acknowledges the support of the National Science Foundation.

² Since preparing this manuscript the author has received a letter reporting two independent proofs of this result from M. F. Newman in Canberra [1], both based on somewhat less elementary arguments, however.

not in $F_k(\mathfrak{N}_c)$. The particular law we have chosen is constructed as follows: Let

(3)
$$Q_k = \prod_{\sigma} [x_k, x_{\sigma(1)}, \cdots, x_{\sigma(k-1)}]^{|\sigma|}$$

where σ runs through all permutations of $\{1, \dots, k-1\}$ and $|\sigma| = 1$ if σ is even, $|\sigma| = -1$ if σ is odd. Then we define $Q_{c-1,c}$ to be Q_c and, for $3 \leq k \leq c-2$, $Q_{k,c} = [Q_{k+1}, x_{k+2}, \dots, x_c]$. We first prove the following. (A) $Q_c = 1$ holds in $F_{c-2}(\mathfrak{N}_c)$ but not in $F_{c-1}(\mathfrak{N}_c)$, $c \geq 3$.

PROOF OF (A). Let $R_k = Z[y_1, \dots, y_k]$ be a free associative ring over Z in the free non-commuting indeterminates y_1, \dots, y_k , and let $I_{k,c+1}$ be the (two-sided) ideal in R_k generated by all monomials of degree c+1. In $R_{k,c} = R_k/I_{k,c+1}$ any element $1+y_i$ has an inverse $1-y_i+y_i^2-\cdots \pm y_i^c$, and, hence, we may consider the multiplicative group $G_{k,c}$ in $R_{k,c}$ generated by the elements $1+y_i$, $i = 1, \dots, k$. We define $(z_1, z_2) = z_1 z_2 - z_2 z_1$ and, inductively, $(z_1, \dots, z_n) = ((z_1, \dots, z_{n-1}), z_n), z_i \in R_k$. A direct computation shows that

(4)
$$[1-z_1, \dots, 1+z_n] = 1+(z_1, \dots, z_n) + \text{terms of higher degree}$$

for any $1+z_i \in G_{k,c}$. Since the *n*-length commutator (z_1, \dots, z_n) is a homogeneous polynomial of degree *n* in the z_i , it follows that $G_{k,c} \in \mathfrak{N}_c$. In fact (cf., [3], Chapter 5), $G_{k,c} \cong F_k(\mathfrak{N}_c)$. In particular,

$$\prod_{\sigma} [1+z_{c}, 1+z_{\sigma(1)}, \cdots, 1+z_{\sigma(c-1)}]^{|\sigma|} = 1 + \sum_{\sigma} |\sigma|(z_{c}, z_{\sigma(1)}, \cdots, z_{\sigma(c-1)}),$$

for elements $1+z_i \in G_{k,c}$. Hence, to prove (A) it is sufficient to prove

(5)
$$Q'_{\sigma} = \sum_{\sigma} |\sigma| (x_{\sigma}, x_{\sigma(1)}, \cdots, x_{\sigma(c-1)}) = 0$$

in $R_{c-2,c}$ but not in $R_{c-1,c}$. (In this context, Q'_c may be considered as element in the free associative ring $R_c(x) = Z[x_1, \dots, x_c]$ just as Q_c may be considered as an element of the free group on x_1, \dots, x_c (cf., [3]).)

The proof of (5) is based on the following lemma.

LEMMA. Let $P \neq 0$ be a homogeneous polynomial in R_c of total degree $c \ (\geq 3)$ and of degree 1 in each indeterminate y_1, \dots, y_c . If P is a linear combination of c-fold commutators, i.e., elements of the form (a_1, \dots, a_c) , then for some $i \neq j$, $P \neq 0$ modulo $y_i = y_j$. (The latter statement will be abbreviated by $P\{y_i = y_j\} \neq 0$.)

PROOF. First we note that the polynomial

(6)
$$P_c = P_c(y_1, \cdots, y_c) = \sum_{\sigma} |\sigma| y_{\sigma(1)} \cdots y_{\sigma(c)},$$

where σ runs through all permutations of $\{1, \dots, c\}$ satisfies $P_c\{y_i = y_i\} = 0$, for any $i \neq j$. P_c , $c \geq 3$. is not a linear combination of c-fold commutators. For, if it were, then by the Dynkin-Specht-Wever Theorem (cf., [3]), we would have

$$\{P_c\} = \sum_{\sigma} |\sigma|(y_{\sigma(1)}, \cdots, y_{\sigma(c)}) = cP_c.$$

However, a straightforward induction starting with

$$P_3 = 2(x_1, x_2, x_3) + 2(x_2, x_3, x_1) + 2(x_3, x_1, x_2),$$

which is 0 by the Jacobi identity, and noting that, for c > 3,

$$\{P_c\} = \sum_{k=1}^{c} \sum_{\sigma(c)=k} |\sigma|(y_{\sigma(1)}, \cdots, y_{\sigma(c)}),$$

shows that $\{P_c\} = 0$ for all $c \ge 3$.

To complete the proof of the Lemma it suffices to show that any P described in the Lemma which satisfies $P\{y_i = y_i\} = 0$ for all $i \neq i$, is a multiple of P_c . The proof is by induction on c (starting with c = 2, however). For c = 2, $P = ny_1y_2 + my_2y_1$, and $P\{y_1 = y_2\} = 0$ implies that m = -n, i.e., $P = nP_2$.

Next, let c > 2 and write P in the form

$$P = \sum_{k=1}^{c} A_k y_k,$$

where the A_i are homogeneous of total degree c-1 in $y_1, \dots, \hat{y}_i, \dots, y_e$ (y_i omitted). Since $P\{y_q = y_q\} = 0$ for any $p, q \neq k$, it follows by induction that

$$A_k = n_k P_{c-1,k}, \qquad n_k \in \mathbb{Z},$$

where $P_{c-1,k} = P_{c-1}(y_1, \dots, \hat{y}_k, \dots, y_c)$, as defined by (6). Thus,

(7)
$$P = \sum_{k=1}^{c} n_k P_{c-1..k} y_k,$$

However, since $P\{y_1 = y_k\} = 0$ for any $k \neq 1$, it follows from a comparison of the first and k-th summands in (7) that this is possible only if

$$n_1 P_{c-1, 1} y_1 + n_k P_{c-1, k} y_k = n_1 \sum_{\sigma} |\sigma| y_{\sigma(1)} \cdots y_{\sigma(c)}$$

where the summation is restricted to all those σ for which either $\sigma(c) = 1$ or $\sigma(c) = k$. Since this is to be true for all k. it follows that $P = n_1 P_c$. This proves the Lemma.

We may now apply the Lemma to (5). Since the component of Q'_{σ} (considered as a polynomial in R_{σ}) of terms with left factor x_{σ} is precisely

$$\sum_{\sigma} x_c x_{\sigma(1)} \cdots x_{\sigma(c-1)},$$

it is clear that $Q'_{c} \neq 0$. Further, Q'_{c} is antisymmetric in the x_{1}, \dots, x_{c-1} , so that $Q'_{c}\{x_{i} = x_{j}\} = 0$ for any $i, j \neq c, i \neq j$. Since $Q'_{c} \neq 0$, it follows from the Lemma that $Q'_{c}\{x_{c} = x_{j}\} \neq 0$ for some $j \neq c$. Thus, $Q'_{c} = 0$ is not a law in $R_{c-1,c}$, which means that $Q_{c} = 1$ is not a law in $F_{c-1}(\mathfrak{R}_{c})$ as well.

As just observed, $Q'_{e} = 0$ if any two of the x_1, \dots, x_{e-1} , are identified. Thus, in $R_{e-2,e}$ if the x_i are replaced by the y_i , then since there are just e-2 distinct y_i it follows that Q'_{e} will vanish. To decide whether $Q'_{e} = Q'_{e}(x_1, \dots, x_e)$ (i.e., considered as a function of the x_i) vanishes over all of $R_{e-2,e}$ or not it is enough modulo $I_{e-2,e+1}$ to consider linear substitutions of the y_i for the x_i . However, since $Q'_{e}(x_1, \dots, x_e)$ is multilinear in the x_i , such a substitution yields a linear combination of terms of the form $Q'_{e}(v_1, \dots, v_e)$, $v_i \in \{y_1, \dots, y_{e-2}\}$. By the previous remark, each of these terms vanishes. Hence, $Q'_{e} = 0$ is a law in $R_{e-2,e}$ and $Q_{e} = 1$ is a law in $F_{e-2}(\mathfrak{N}_{e})$. This completes the proof of (5) and, hence, of (A).

The above argument shows that $\operatorname{var} F_{c-2}(\mathfrak{N}_c) < \operatorname{var} F_{c-1}(\mathfrak{N}_c)$. To complete the proof of Part I we must show that $Q_{k,c}$ is trivial over $F_{k-1}(\mathfrak{N}_c)$ but not over $F_k(\mathfrak{N}_c)$, $3 \leq k \leq c-2.4$ That $Q_{k,c} = 1$ is a law for $F_{k-1}(\mathfrak{N}_c)$ follows immediately from the above arguments regarding Q_c . Further, as we have seen above, $Q'_c\{x_k = x_i\} \neq 0$ for some $i \neq k$. This implies, however, that

(8)
$$[Q_k\{x_k = x_c\}, z_{k+1}, \cdots, z_c] \neq 1$$

where $z_i \in \{x_1, \dots, x_k\}$, so that $Q_{k,c}$ will not be a law for $F_k(\mathfrak{N}_c)$. This is a direct consequence of the more general remark that if $P \in \mathbb{R}_n$ is a polynomial with at least two distinct y_i appearing in each term, then for any y_i , $(P, y_i) \neq 0$. To see this, express P in the form $P = \sum y_i^m A_m$, where the A_m are polynomials without terms with left y_i factors. We may assume that no A_m has a term of degree 0. Then,

$$y_i P = \sum y_i^{m+1} A_m \neq P y_i = \sum y_i^m A_m y_i.$$

This completes the proof of Part I.

Part II:

For any $k \ge c \ge 3$, $F_k(\mathfrak{N}_c)$ is residually a (c-1) generator group.

PROOF OF PART II. The proof is by induction on $c \ge 3$. First, it is known, for any $c \ge 3$, that the variety of metabelian groups nilpotent of

⁴ This portion of the proof of Part 1 based on the law $Q_{k,c}$ for $k \leq c-2$, has been suggested to the author by M. F. Newman and is included here with his permission. It replaces the author's original proof which was based on a slightly more complicated law with a resulting lengthier argument.

Frank Levin

class c is generated by its 2-generator groups (Baumslag, Neumann, Neumann, Neumann [2], cf., [4], 36. 34). This proves the case c = 3. Next, let c > 3 and set $F = F_k(\mathfrak{R}_c)$, for an arbitrary $k \ge c$. By induction,

$$F/\gamma_{c}F = F_{k}(\mathfrak{N}_{c-1}),$$

where $\gamma_c F$ denotes the *c*-th term of the lower central series of *F*, is residually (c-2) generator. Hence, consider $g \in \gamma_c F$. Note that *g* is a product of commutators of the form $[a_1, \dots, a_c]$. If *g* involves more than *c* generators, say g_1, \dots, g_m , set $g' = g\{g_{c+1} = \dots = g_m = 1\}$. We may assume, after a possible reordering of the indices of the g_i , that $g' \neq 1$. From the Lemma it follows that $g'\{g_i = g_j\} \neq 1$ for some $i \neq j$, $i, j \leq c$. Thus, if *N* is the normal closure of the elements $g_i g_j^{-1}, g_{c+1}, \dots, g_m$ in *F*, it follows that $g' \notin N$, and since F/N is generated by (c-1) elements, it follows that $F_k(\mathfrak{N}_c)$ is residually a (c-1) generator group, as desired. This completes the proof of Part II and, hence, of the theorem.

References

- L. G. Kovács, M. F. Newman and P. F. Pentony, 'Generating groups of Nilpotent varieties', Bull. AMS, 74 (1968), 968-971.
- [2] G. Baumslag, B. H. Neumann, Hanna Neumann, Peter M. Neumann, 'On varieties generated by a finitely generated group', Math. A. 86 (1964), 93-122.
- [3] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory (New York and London, Interscience, 1966).
- [4] Hanna Neumann, Varieties of Groups (Berlin, Heidelberg and New York, Springer-Verlag, 1967).

Rutgers, The State University New Brunswick, N.J. 08903 U.S.A. [5]