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1. Introduction. The nature of the eigenvalues of a square quaternion matrix had been
considered by Lee [1] and Brenner [2]. 1In this paper the author gives another elementary
proof of the theorems on the eigenvalues of a square quaternion matrix by considering the
equation Gy = py, where G is an n x n complex matrix, y is a non-zero vector in C", it is a com-
plex number, and j is the conjugate of y. The author wishes to thank Professor Y. C. Wong
for his supervision during the preparation of this paper.

2. Notations. Let R and C be the field of real numbers and the field of complex numbers
respectively, and Q be the algebra of real quaternions. Then Q has a base composed of four
elements ¢, e,, e,, e whose multiplication table is given by the following formulae:

€0l = €60 = €, €5 = e,
el = —ey eLp=—ee,=e,
where 1 Lo, B, y £ 3, and (a, B, y) is a cyclic permutation of (1, 2, 3). Ifge Q, then
q = apegtase +ase,; t+ase,,
where ¢;e R (i =0, 1, 2, 3). We shall identify e, and e, with 1 and i (=,/—1) respectively,
so that we can write ¢ = ag+ia, +e,(a, —ia;) = A+e,u, where A, pe C (see Chevalley [3,
pp. 16—17]). We define the norm of g as the real number.ioa?, and the trace of g as a.

We regard R” and C" as vector spaces over R and C, respectively, and " as a right vector
space over Q.

3. The nature of the eigenvalues of a square quaternion matrix.

THEOREM 1. Let F = G, +e,G, be an n x n quaternion matrix, where G, and G, are complex
matrices, and let

Gz Gl_AI"

G(1)5<—Gl+,11" é, ) g =161,

where the bar denotes the complex conjugate, | G(X) | the determinant of the matrix G(4), I, the
nx n identity matrix, and A a complex variable.

(@) If a+iB+e,(y+id) is any eigenvalue of F, then a+ ik, where k* = B> +y*+ 62, is a zero
point of g(A).

(b) Conversely, if a+ik is any zero point of g(A), then a+if+e,(y+id), for any real
numbers, B, y and & such that f*+y*+6% = k?, is an eigenvalue of F.
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Proof. As a first step in the proof of Theorem 1, we consider the following equation
Fx = xq, 1)
where x = x, +e,x, + 0 with x,, x, € C"and g = A+e,p with 4, pe C. Since
Fx = Gyx; —Gyx;,+€,(Gpx, + Gy xy),
xq = X A=Top+ey (X2 +X ),
equation (1) is equivalent to
Gix,—Gyxy = X A~X,, )
G2x1 +GIX2 = x2/1+)?1,u,
which we can write as

<G1 —/11,. ——_ Gz ><x1> — “(__xz) . (3)
G, G —AlJ\x, X,
GI—AI" —Gz xl —_ Gl'—lI" —Gz 0 I" —x2
Gz GI—AI" x2 GZ (_;I—A,I" —In 0 xl

_ 62 GI—AI" ‘—xz
—Gl"}‘lln G2 Xy '

Therefore, equation (1) is equivalent to

But

Gy = uy, 4

where G = _Gz G =4, , y={ "*)ec™.
_GI+AI,. Gz xl

Several lemmas are required to complete the proof of Theorem 1.

LemMmA 1. Let U, V, W be nx n complex matrices and p be a complex number; then

ul, U\ _ _
voowl= | uWw—=VU].
Proof. If p =0, the result follows from Laplace’s expansion.
If u#+ 0, then
ul, U I, ol |ul, Ul \u, U
v owl=|-tv nl|v w|T|o w-lw
It It

and again Laplace’s expansion yields the result.
LemMA 2. Let G = H,+iH,, where H, and H, are nx n real matrices, and let

H,—yl, —H,-4I,

b9 = o TR p0=168-1,1,
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where y, 5 and t are real variables; then(y,, 8,)is a zero point of h(y, 8) if and only if yi +% is a
zero point of p(t).
Proof.
— (1 lln In Hl_yln _HZ_(sIn
W) =D 5" U g 61 H, 4l
2il, G+il,
G+al, H,+vyl,

i, O
I, I

n

= (-1

3

where p = y+id. By Lemma 1, we have
h(y, 0) = (= 1)" | 2a(H, +yI,)~(G+AL)(G+il,) |

=(—1"| 2aH, +2iyl,~ GG -23H, — i°I, |
=(-D)"taQy-mI,~GG |
=(=1D"(b*+6)1,~GG |
= (=1 GG-(*+67)1, |
= p(y*+%).

Thus Lemma 2 is proved.

LemMA 3. Let G = H,+iH,, where H, and H, are nx n real matrices, and let h(y, 6) and
p(t) be defined as in Lemma 2. Then the equation

Gy = uj, %
where y =y, +iy, £ 0 with y,, y, € R" and p = y+id with y, 6 € R, is consistent if and only if
p(y*+6%) =0.

Proof. Since

Gy =Hy,—H,y,+i(Hyy,+Hy,),

1y =7yy1+0y2+i(6y;—vy2)
equation (5) is equivalent to

(Hl_yln)yl+(—H2—5In)y2=0}’ (6)
(Hy=él)y +(H +71,)y, =0

where y,, y, are not both zero. It follows from our definition of 4(y, ) that equations (6) are
consistent if and only if (y, 6) is a zero point of A(y, ). Therefore, by Lemma 2, equations (6),

and hence also equation (5), are consistent if and only if p(y2+6%) =0. Thus Lemma 3 is
proved.

LeMMA 4. Let G(2) be defined as in Theorem 1 and let p(A, t) = | G(l)a_(}T)-—tIZ,, |, where
t is a real variable. Then
(a) Equation (4), and hence also equation (1), and A = a+if, u = y+i8 are consistent
if and only if p(a+iB, y*+5%) = 0.
(b) pla+ip, y*+6%) = p(a+ip,, yi +6%) for all real numbers B, y, and &, such that
Bi+yi+67=pr4+yi+6%
o
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Proof. (a) follows directly from Lemma 3. To prove (b), we note that for all real «, §, y

and 9,
pla+if, y*+6%) = | Ga+if)G(a+if)—(»* +6")],, |
Gsz_Glcl +20(G1‘—(a2+ﬁ2)1,, 62614-61(_;2—2(162
= =G+,
—GIGZ_G2G1+2(ZG2 _6161+G262+2a61_(az"}'ﬂz)[n
”"(')’2+52)I,|
GZGZ—GIGI +2OCG1—OLZI,, GzGl'*‘Gle—zan
= _(B2+y2+52)1n
_GIGZ_GZGI +20(G2 _GIGI""Gsz""zaGl—aZI"
= (B2 +y*+8%)1,
=| G@G@—(B*+y*+N)],, | = p(a, B2 +y*+57).
From this it follows that
pa+if, y*+6%) = p(a+iBy, yi+47) ™M

for all real B, y, and &, such that B3 +y2+67 = % +92+6°.
Thus assertion (b) of Lemma 4 is proved.

The proof of Theorem 1 is now immediate. It follows from the definition that
gDg®) =1 GAG@) | =p(4, 0).
Therefore we have, by Lemma 4,
g(a+ik)g(a+ik) = p(a+ik, 0) = p(a+if, y*+6°), (8)

where f, y and § are any real numbers such that k> = p2+y*+6% If g =a+if+e,(y+id) is
any eigenvalue of F, then, by Lemma 4, p(x+if, y>+6%) = 0. Therefore it follows from (8)
that o+ ik is a zero point of g(1). Thus assertion (a) of Theorem 1 is proved. Conversely, if
a+ik is any zero point of g(4), then it follows from (8) that p(x+ip, y>+6%) = 0 for any rea
B, y and & such that p2+y%+62 = k% Therefore, by Lemma 4, «+iB +e,(y+i5) is an eigen-
value of F. Thus assertion (b) of Theorem 1 is proved.

CorOLLARY 1. If't is an eigenvalue of F and q is a quaternion such that t and q have equal
norms and traces, then q is an eigenvalue of F.

Proof. This is an immediate consequence of Theorem 1.

CoROLLARY 2. Ifq, and q, are two quaternions having equal norms and traces, then there
exists a quaternion o % 0 such that g, = ¢~ 'q,0.

Proof. Take F =gq,; then, since q,1 = 1q,, Corollary 2 follows from Corollary 1.
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THEOREM 2. Let F and g (2) be defined as in Theorem 1; then a complex number A is an eigen-
value of Fif and only if A is a zero point of g (). Andif t is an eigenvalue of F, then 6™ "0 is also
an eigenvalue of F for all 6+ 0 in Q. The class 6™ ‘16 contains just two complex numbers
(4 and 7).

Proof. Since 7 and ¢~ '76 have equal norms and traces, by Theorem 1, Corollaries 1 and 2,
Theorem 2 follows.

4. Remark. The polynomial g(1) defined in Theorem 1 has real coefficients. In fact,

we have
(A)—‘ GZ Gl—ll,, - O I" Gz Gl_lln 0 _In
IW=| _g,+M, G, |~ |-I, O ’—Gl+un G, I, o
. GZ Gl—lIn =
1 _Gl+AI" 62 —g(l)'
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