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In Wang & Pan (J. Fluid Mech., vol. 918, 2021, A19), the authors developed the first
ensemble-based data assimilation (DA) capability for the reconstruction and forecast of
ocean surface waves, namely the EnKF-HOS method coupling an ensemble Kalman filter
(EnKF) and the high-order spectral (HOS) method. In this work, we continue to enrich
the method by allowing it to simultaneously estimate the ocean current field, which is
in general not known a priori and can (slowly) vary in both space and time. To achieve
this goal, we incorporate the effect of ocean current (as unknown parameters) on waves
to build the HOS-C method as the forward prediction model, and obtain a simultaneous
estimation of (current) parameters and (wave) states via an iterative EnKF (IEnKF) method
that is necessary to handle the complexity in this DA problem. The new algorithm,
named the IEnKF-HOS-C method, is first tested in synthetic problems with various forms
(steady/unsteady, uniform/non-uniform) of current. It is shown that the IEnKF-HOS-C
method is able to not only estimate the current field accurately, but also boost the prediction
accuracy of the wave field (even) relative to the state-of-the-art EnKF-HOS method.
Finally, using real data from a shipborne radar, we show that the IEnKF-HOS-C method
successfully recovers the current speed that matches the in situ measurement by a floating
buoy.
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1. Introduction

In recent years, phase-resolved ocean wave models have received increasing attention
due to their close relevancy to the safety and efficiency of marine operations. Unlike
traditional phase-averaged models (e.g. Booij, Ris & Holthuijsen 1999; Tolman et al.
2009), the phase-resolved models aim to predict individual waves, and therefore can
capture detailed information of the wave field (usually of O(1 km2)) as a guidance for
marine operations (e.g. Ma et al. 2018; Xiao & Pan 2021). When nonlinear effects are
considered, phase-resolved models have been constructed via the high-order spectral
(HOS) method (Dommermuth & Yue 1987; West et al. 1987), including its later variants
(e.g. Craig & Sulem 1993; Xu & Guyenne 2009), Zakharov equation (Stuhlmeier &
Stiassnie 2021) and machine learning techniques (Mohaghegh, Murthy & Alam 2021).

In spite of the prosperity of nonlinear wave models, their applications to wave forecast
in realistic situations are limited due to the significant uncertainties that grow with time
in forecasting chaotic wave motion (e.g. Annenkov & Shrira 2001; Janssen 2008). The
source of the uncertainties include (i) the noisy initial conditions of the sea surface, which
are usually taken from radar or buoy measurements with certain error characteristics; and
(ii) the physical effects, say, of wind and ocean current that are not known a priori and
therefore not accurately accounted for in a nonlinear wave model.

In addressing the issues of uncertainty growth, data assimilation (DA) methods have
been developed (mostly in the field of geoscience as discussed in Evensen (2003) and
Carrassi et al. (2018)) which combine measurement data and model predictions to improve
the analysis of the states. Among the available efforts of applying DA to phase-resolved
wave forecast/analysis, most (if not all) focus mainly on addressing the aforementioned
uncertainty (i) from initial conditions or measurements, i.e. assuming the prediction model
is perfect. These include methods based on variational DA (Aragh & Nwogu 2008; Qi et al.
2018; Fujimoto & Waseda 2020; Wu, Hao & Shen 2022) that construct an initial condition
to minimize the difference between predictions and measurements in future times, as well
as methods based on the Kalman filter (Yoon, Kim & Choi 2015) that solve for an optimal
wave state at a particular time using prediction and data at the same time. Since the latter
methods do not require future data for the analysis, they can be favourably applied in
operational wave forecast (as a way to construct an optimal wave state, once data at the
same time are available that can be used as initial conditions for the forecast). In this
regard, the first and last authors of this paper have developed the EnKF-HOS algorithm (as
a substantial extension and improvement to Yoon et al. (2015)) which applies the ensemble
Kalman filter (EnKF) coupled with ensemble HOS predictions for analysis and forecast of
the ocean wave field.

While the EnKF-HOS method (as the first ensemble-based DA method for
phase-resolved ocean waves) has shown remarkable performances in extensive test cases,
the uncertainty due to model parameters, i.e. the aforementioned uncertainty source (ii),
is not considered except some very heuristic treatment through adaptive inflation (see
Wang & Pan (2021) for details). This is a severe problem for ocean wave forecast as
wave evolution can be significantly affected by environmental parameters, e.g. the current
and wind fields. One may think of determining these parameters from the global marine
weather forecast, but it has to be realized that these global forecast results are usually only
available at very coarse grid and sparse time instants. Therefore, a direct interpolation may
result in significant errors and will certainly miss the important spatial–temporal variation
of these fields on the scales of the wave forecast domain and time horizon, e.g. rogue waves
can be triggered as a wave train travels into an opposing current with an increasing current
velocity (e.g. Onorato, Proment & Toffoli 2011; Ducrozet et al. 2021). Another approach
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is to estimate the current field by fitting a current-modified dispersion relation resolved by
the spatial–temporal spectrum of the wave field (Lund et al. 2018). However, this method
ignores the nonlinearity in the problem and it is also not straightforward to capture the
spatial–temporal variation of the current field (which relies on arbitrary placement of
windows in time and space). In addition, it requires dense measurements in both space
and time which is not practical when only buoy data are available.

In this paper, we continue to develop the EnKF-HOS framework, enabling a
simultaneous estimation of the wave states and model parameters. While the developed
algorithm can in principle be applied to the estimation of different environmental
parameters, we focus here on the ocean current field which can generally vary (slowly)
in both space and time. To achieve this goal, we incorporate the current effect on waves
to build the HOS-C method, following Wang, Ma & Yan (2018) and Pan (2020), as the
forward prediction model. When measurements of surface elevation are available, we
then solve a DA problem that estimates both the (current) model parameters and (wave)
states. We note that this is a non-trivial DA problem since the current parameters form
a high-dimensional space (e.g. with the same dimensions as surface elevation in a most
general setting) and can only be inferred from their correlation to the wave field (i.e. no
direct measurement is available). Upon many trials we adopt an iterative EnKF (IEnKF)
(Iglesias, Law & Stuart 2013; Wang & Xiao 2016) which provides a satisfactory solution to
this problem. The developed full method, named IEnKF-HOS-C, is first tested in a series
of synthetic problems with various forms (steady/unsteady, uniform/non-uniform) of the
current fields. It is shown that the IEnKF-HOS-C method not only provides an accurate
estimation of the current field, but also boosts the wave analysis/forecast accuracy even
compared to the state-of-the-art EnKF-HOS method. Finally, using real data of surface
elevations from a shipborne radar, we show that the IEnKF-HOS-C method successfully
recovers the current velocity that matches the in situ measurement by a floating buoy.

The paper is organized as follows. The problem statement and detailed algorithm of
the IEnKF-HOS-C method are introduced in § 2. The validation and benchmark of the
method against synthetic cases and real marine radar data are presented in § 3. We give a
conclusion of the work in § 4.

2. Mathematical formulation and methodology

2.1. Problem statement
We consider the evolution of an ocean wave field under the effect of a surface current
U(x, t), which in general can (slowly) vary in both two-dimensional space x and time t.
We have available a sequence of measurements of the ocean surface in spatial regions Mj,
with j = 0, 1, 2, 3, . . . being the index of time t. In general, we allow Mj to be different
for different j, reflecting a mobile system of measurement, e.g. a shipborne marine radar
or moving probes. We denote the surface elevation and surface potential (for only waves),
reconstructed from the measurements in Mj, as ηm,j(x) and ψm,j(x), and assume that the
error statistics associated with ηm,j(x) and ψm,j(x) are known a priori from the inherent
properties of the measurement equipment.

In addition to the measurements, we have a yet-to-be-developed nonlinear wave model
that is able to simulate the evolution of the surface waves (in particular surface elevation
η(x, t) and wave-only velocity potential ψ(x, t)) under the effect of U(x, t) given initial
conditions. Our purpose is to incorporate measurements ηm,j(x) and ψm,j(x) into the
model prediction sequentially (i.e. immediately as data become available in time) to
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simultaneously construct an optimized analysis of wave states (ηa,j(x), ψa,j(x)) and obtain
an accurate inference/estimation of U(x, t).

2.2. The general IEnKF-HOS-C framework
Our new IEnKF-HOS-C method to solve the above problem is built upon the previous
EnKF-HOS framework developed in Wang & Pan (2021). In order to resolve the
additional complexities associated with the current field U(x, t), the IEnKF-HOS-C
method includes a number of new components (relative to the EnKF-HOS method): (i)
a parameter-augmented state space (η(x, t), ψ(x, t),U(x, t)) which includes the current
parameters; (ii) the HOS-C method which simulates the evolution of wave field under
the effect of U(x, t), as well as a persistence model (Notton & Voyant 2018; Wu, Wang
& Shadden 2019) ∂U(x, t)/∂t = 0, used in the forecast step of the method; and (iii)
an iterative procedure in EnKF to build the IEnKF method which successfully handles
the high-dimensional state/parameter estimation problem. Figure 1 shows a schematic
illustration of the new IEnKF-HOS-C framework. At initial time t = t0, measurements
ηm,0(x) and ψm,0(x) are available together with an initial guess U0(x), based on which
we generate ensembles of perturbed (augmented) states (η(n)m,0(x), ψ

(n)
m,0(x),U (n)

0 (x)), n =
1, 2, . . . ,N, with N the ensemble size. A forecast step is then performed, in which
an ensemble of N HOS-C and persistence-model simulations are conducted, taking
(η
(n)
m,0(x), ψ

(n)
m,0(x),U (n)

0 (x)) as initial conditions for each ensemble member n, until t = t1
when the next measurements become available. We note that the persistence model
simply states that the forecast U (n)

f ,1(x) = U (n)
0 (x), but this is not in contradiction to

the inference of an unsteady current (see details in § 2.4). At t = t1, an analysis step
is performed through EnKF where the model forecasts (η(n)f ,1(x), ψ

(n)
f ,1 (x),U (n)

f ,1(x)) are

combined with new perturbed measurements (η(n)m,1(x), ψ
(n)
m,1(x)) to generate the analysis

results (η(n)a,1(x), ψ
(n)
a,1(x),U (n)

a,1(x)). Since U (n)
a,1 is obtained only through its correlation

to the wave field (i.e. no direct measurement) and the forecast step has been possibly
performed with an inaccurate current field (i.e. U0(x) /= U true(x, t0)), it is necessary to
conduct iterations between the forecast and analysis steps to facilitate the convergence of
the analysed current field to the true situation. In particular, we iterate the forecast and
analysis steps every time using the new estimation U (n)

a,1(x) in analysis to replace U (n)
0 (x)

in forecast until a desired tolerance is reached.
With (η

(n)
a,1(x), ψ

(n)
a,1(x),U (n)

a,1(x)) available after IEnKF, they are taken as initial
conditions for a new ensemble of HOS-C and persistence-model simulations, and the
procedures are repeated for t = t2, t3, . . . until the desired operation time tmax is reached.
We next describe in detail the key components in the IEnKF-HOS-C method, including
the generation of measurement ensembles and state augmentation (§ 2.3), the HOS-C
method and persistence model (§ 2.4) and the IEnKF procedure (§ 2.5). For simplicity,
in the following description we assume that gravitational acceleration and fluid density
are unity (so that they do not appear in equations) by choices of proper time and mass
units.

2.3. Generation of measurement ensembles and state augmentation
As described in § 2.2, ensembles of perturbed measurements of the surface elevation
{η(n)m,j(x)}N

n=1 and velocity potential {ψ(n)m,j(x)}N
n=1 are needed at both the initialization

( j = 0) and analysis ( j = 1, 2, 3, . . .) steps. In addition, an ensemble of initial current
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Initialization step

Forecast step

Analysis step

Repeat the last forecast step Forward models

(HOS & persistence models)

Initialize the next forecast step

No Yes

Ensemble of intial states

(ηm,0, ψm,0, U0
(n)

)(n) (n)

Ensemble of forecast states

(ηf, j, ψf, j, U f, j )
(n) (n) (n)

Ensemble of

analysis states

(ηa, j, ψa, j, Ua, j )
(n) (n) (n)

EnKF

Convergence

Ensemble of perturbed measurements

(ηm, j, ψm, j)
(n) (n)

with Ua,j–1 = Ua,j
(n) (n)

Figure 1. Schematic illustration of the IEnKF-HOS-C coupled framework. The size of each ellipse represents
the amount of uncertainty.

velocity {U (n)
0 (x)}N

n=1 is needed (at t = t0) as a state augmentation to start the full
IEnKF-HOS-C algorithm.

To illustrate the generation of these ensembles, it is convenient to first define a random
field w(x) as a zero-mean Gaussian process with spatial correlation function (Evensen
2003, 2009):

C(w(x1),w(x2)) =
⎧⎨
⎩

cw exp
(

−|x1 − x2|2
a2

w

)
, for |x1 − x2| ≤ √

3aw,

0, for |x1 − x2| >
√

3aw,

(2.1)

with cw the variance of w(x) and aw the decorrelation length scale.
Following the method proposed by Wang & Pan (2021), we first produce η(n)m,j by adding

a random-field perturbation w(x) (defined by (2.1) and with different realizations for
different n) to ηm,j, i.e.

η
(n)
m,j(x) = ηm,j(x)+ w(x), (2.2)
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and construct the surface potential ψ(n)m,j by linear wave theory:

ψ
(n)
m,j(x) ∼

∫
i√|k| η̃

(n)
m,j(k)e

ik·x dk, (2.3)

where η̃(n)m,j(k) denotes the Fourier coefficient of the nth member of the perturbed surface
elevation at vector wavenumber k. We note that (2.3) is a direct result of the linear wave
equation, and it is not modified by the presence of a uniform current (since physically the
current does not affect the velocity field of waves except for a Doppler shift).

To generate the ensemble {U (n)
0 (x)}N

n=1 ≡ {U(n)
x,0(x),U(n)

y,0(x)}N
n=1, we start from an

initial guess U0(x) ≡ (Ux,0(x),Uy,0(x)) which is in general not the same as the truth
U true(x, t0). In practice, U0(x) can be set as zero or taken from the results of large-scale
marine weather forecast. We generate the ensemble of current field by adding another
random-field perturbation u(x) to each component of U0(x), i.e.

U(n)
∗,0(x) = U∗,0(x)+ u(x), (2.4)

where the subscript ∗ represents x or y and u(x) is a random field defined by (2.1) with u
replacing w, i.e. with variance cu and decorrelation length scale au.

2.4. The HOS-C method and persistence model

Given the initial conditions (η(n)m,0(x), ψ
(n)
m,0(x),U (n)

0 (x)) or (η(n)a,j (x), ψ
(n)
a,j (x),U (n)

a,j (x))
with j ≥ 1, for each ensemble member n, the evolution of the (wave and current)
augmented state from tj to tj+1 is solved by integrating a nonlinear wave equation under
the effect of the current:

∂η(x, t)
∂t

+ ∂ψ(x, t)
∂x

·∂η(x, t)
∂x

−
[

1 + ∂η(x, t)
∂x

·∂η(x, t)
∂x

]
φz(x, t)

+ ∂η(x, t)
∂x

·U(x, tj)+ η(x, t)
∂

∂x
·U(x, tj) = 0, (2.5)

∂ψ(x, t)
∂t

+ 1
2
∂ψ(x, t)
∂x

·∂ψ(x, t)
∂x

+ η(x, t)

− 1
2

[
1 + ∂η(x, t)

∂x
·∂η(x, t)

∂x

]
φz(x, t)2 + ∂ψ(x, t)

∂x
·U(x, tj) = 0, (2.6)

and a persistence model
∂U(x, t)
∂t

= 0. (2.7)

In (2.5) and (2.6), φz(x, t) ≡ ∂φ/∂z|z=η(x, t) is the surface vertical velocity with φ(x, z, t)
being the velocity potential of the wave field, and ψ(x, t) ≡ φ(x, η, t). The variable
U(x, tj) in the equations should be considered as the estimated quantity, taking either
U (n)

0 (x) at t = t0 or U (n)
a,j (x) at t = tj. Equations (2.5) and (2.6) describe the evolution of

a nonlinear wave field under the effect of an irrotational current which slowly varies in
space (Wang et al. 2018; Pan 2020). As discussed in Pan (2020), this set of equations
form a Hamiltonian system conserving the total energy of the wave and current, and it is
possible to relax the scale-separation assumption and irrotational assumption with more
developments at certain situations.
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The persistence model (2.7) simply states that the current field remains steady in the
forecast step, i.e. U f ,j+1 = Ua,j (see applications in other contexts, e.g. Santitissadeekorn
& Jones (2015), Notton & Voyant (2018) and Wu et al. (2019)). We remark that this is not
in contradiction to the estimation of an unsteady current field which slowly varies in time
but can be approximated as a constant in the forecast interval (from tj to tj+1). In fact, the
time variation of the unsteady current is captured in the IEnKF procedure that is discussed
in the next section.

2.5. Data assimilation scheme by IEnKF

Let us now assume that we have obtained the forecast ensemble {η(n)f ,j }N
n=1, {ψ(n)f ,j }N

n=1 and

{U (n)
f ,j }N

n=1 by integrating (2.5)–(2.7) from tj−1 to tj. To describe the analysis step, we first
introduce the notation of a covariance operator:

ℭ(x, y) = 1
N − 1

N∑
n=1

(x(n) − x̄)( y(n) − ȳ)T (2.8)

which produces the covariance matrix between two vectors x and y through ensemble
average, with the overbar in the equation denoting the ensemble mean.

The analysis step combines (η(n)f ,j ∈ R
L, ψ

(n)
f ,j ∈ R

L,U (n)
f ,j ∈ R

2L) and (η(n)m,j ∈ R
d, ψ

(n)
m,j ∈

R
d), with L and d being the dimensions of model (forecast) space and measurement space,

respectively. Through EnKF (no iteration yet), this step can be formulated as

η
(n)
a,j = η

(n)
f ,j + Qηη,jG

T(GQηη,jG
T + Rηη,j)−1(η

(n)
m,j − Gη(n)f ,j ), (2.9)

ψ
(n)
a,j = ψ

(n)
f ,j + Qψψ,jG

T(GQψψ,jG
T + Rψψ,j)−1(ψ

(n)
m,j − Gψ(n)f ,j ), (2.10)

U (n)
a,j = U (n)

f ,j + QUη,jG
T(GQηη,jG

T + Rηη,j)−1(η
(n)
m,j − Gη(n)f ,j ), (2.11)

where

Qxy,j = ℭ(xf ,j, yf ,j), (2.12)

Rxy,j = ℭ(xm,j, ym,j). (2.13)

The operator (or matrix) G : R
L → R

d is an observation operator mapping the
L-dimensional model space to the d-dimensional measurement space, which is constructed
by a linear interpolation in this study (e.g. for measurements on grid points, G is reduced
to an operation to take the corresponding elements in the model vector). We note that (2.9)
and (2.10) are equivalent to the analysis equation (2.13) in Wang & Pan (2021) written in
a form of ensemble matrix. Equation (2.11) provides the update (thus estimation) of the
current field, which is achieved through its correlation to the surface elevation field (i.e.
the matrix QUη,j established through ensembles of HOS-C forecast). In addition, (2.9) and
(2.11) combined are equivalent to a standard EnKF equation for an augmented state vector
of (η,U). On the other hand, while it is also possible to estimate U through its correlation
with ψ , this alternative approach is not more beneficial to (2.11) from both first-principle
reasoning and our numerical tests.

Let us next consider the situation that U f ,j(x) is different from the true field U true(x, tj).
While the analysis U (n)

a,j (x) may provide an update that is closer to the truth, the previous
forecast step from j − 1 to j has been performed with an inaccurate current field.
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Algorithm 1 Algorithm for the IEnKF-HOS-C method.

1: Input: ηm,0, ψm,0, U0, tmax, N, δ, hmax
2: Begin
3: initialize:
4: t = t0, j = 0
5: Generate η(n)m,0(x), ψ

(n)
m,0(x), and U (n)

0 (x) with (2.1)–(2.4)
6: time loop:
7: while t ≤ tmax do
8: j = j + 1, h = 1
9: read ηm,j

10: Generate η(n)m,j(x) and ψ(n)m,j(x) with (2.1)–(2.3)
11: while h ≤ hmax do
12: h = h + 1
13: Solve (2.5)–(2.7) until t = tj to obtain η(n)f ,j (x), ψ

(n)
f ,j (x), and U (n)

f ,j (x)

14: Calculate η(n)a,j (x), ψ
(n)
a,j (x), and U (n)

a,j (x) with (2.9)–(2.11)
15: if ||Ū f ,j(x)− Ūa,j(x)||2 < δ then
16: break
17: else
18: U (n)

a,j−1(x) = U (n)
a,j (x)

19: endif
20: end
21: Output η̄a,j(x), ψ̄a,j(x), and Ūa,j(x)
22: end
23: end

To remedy this situation, it is necessary to perform iterations between the forecast and
analysis steps. In particular, for each iteration we replace U (n)

a,j−1(x) by U (n)
a,j (x) and repeat

the forecast (with updated current field) and analysis steps, until convergence is achieved
with a criterion

‖Ū f ,j(x)− Ūa,j(x)‖2 < δ, (2.14)

or if a preset maximum number of iterations hmax is reached. We have now completed the
description of the IEnKF-HOS-C method, with a pseudo-code provided in Algorithm 1.
In addition, in implementation of IEnKF-HOS-C other practical procedures are required,
including the adaptive inflation and localization schemes, and the treatment of the
mismatch between the predictable and measurement regions. These procedures are
discussed in detail in Wang & Pan (2021) and are not re-presented in this paper.

3. Results

We validate the IEnKF-HOS-C method through a series of test cases with both synthetic
and real ocean wave fields. For each case of the former, a reference HOS-C simulation is
conducted with a prescribed current field to produce the true wave solution, onto which
random errors are superposed to generate synthetic noisy measurements. For the latter,
we make use of the real wave data obtained from an onboard Doppler coherent marine
radar (Nwogu & Lyzenga 2010; Lyzenga et al. 2015), with the reference current velocity
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measured by a floating buoy. For both types of cases, we use N = 100 ensemble members
in the IEnKF-HOS-C method.

The performance of the IEnKF-HOS-C method can be evaluated by a natural metric
of the estimated current field, which should be compared with the reference solutions
(prescribed true current fields in the synthetic cases and buoy measurement in the real
case). In addition, for the synthetic cases, since the true wave solution is known, another
metric can be defined as the error of the analysed wave field relative to the true solution:

ε(t) =
∫
A |ηtrue(x, t)− ηsim(x, t)|2 dA

2σ 2
ηA

, (3.1)

where A is the area of the simulation region, σ 2
η is the variance of the reference

surface elevation field and ηtrue(x, t) and ηsim(x, t) represent, respectively, the true
(reference) surface elevation field and the simulation results (that will be obtained through
IEnKF-HOS-C, HOS-C-only and our previous EnKF-HOS methods for comparison).

3.1. Synthetic cases
We consider synthetic cases of both two-dimensional (2-D; with one horizontal direction
x) and three-dimensional (3-D; with two horizontal directions x = (x, y)) wave fields. The
true wave solution ηtrue(x, t) for each case is generated by a reference HOS-C simulation
with an exact initial condition and a prescribed current field. For the 2-D case, we use a
reference initial wave field described by a JONSWAP spectrum with a peak wavenumber
kp = 16k0 (with k0 the fundamental wavenumber), a global steepness kpHs/2 = 0.11 (with
Hs the significant wave height) and an enhancement factor γ = 3.3. For the 3-D case,
the initial wave field is taken from the same JONSWAP spectrum peaked at wavenumber
kp = 6k0, together with a directional spreading function:

D(θ) =
⎧⎨
⎩

2
β

cos2
(

π

β
θ

)
, for − β

2
< θ <

β

2
,

0, otherwise,
(3.2)

where β = π/6 is the spreading angle. Without loss of generality, we assume that the true
current velocity is always along the x direction, expressed as

U true(x) = (Utrue
x (x),Utrue

y (x)), (3.3)

with Utrue
y (x) = 0 which needs to be estimated together with the non-zero component

Utrue
x (x) in 3-D cases through IEnKF-HOS-C. We remark that in making Utrue

y (x) = 0 it
is assumed that the incompressibility of the current field, if required, is satisfied through
the balance of gradients between x-direction and vertical motions. This assumption
brings conveniences in validating the estimated velocity field, and does not considerably
deteriorate the generality of the validation.

To generate the noisy measurements of the wave field, we first superpose a random field
onto the reference solution of surface elevation:

ηm(x) = ηtrue(x)+ w(x), (3.4)

where w(x) is sampled with cw = 0.0025σ 2
η and aw = π/2 in (2.1). Then ψm(x) is

generated based on the linear wave theory (similar to the generation of ψ(n)m (x) from
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Figure 2. Errors ε(t) from IEnKF-HOS-C (red dotted line) and HOS-C-only (black solid line) methods, for
(a) 2-D and (b) 3-D cases with a steady and uniform current field.

η
(n)
m (x) shown in (2.3)):

ψm(x) ∼
∫

i√|k| η̃m(k)eik·x dk, (3.5)

where η̃m(k) denotes the measured surface elevation in Fourier space. Regarding the initial
guess of current velocity U∗,0, we assume it to be uniform, and reasonable to some extent
(with its deviation from Utrue∗ not too large) due to the existence of marine weather forecast
information or other approaches to roughly estimate a constant current field from radar
data (e.g. Lund et al. 2018) in practice. Cases with zero initial current velocity will also be
tested.

Finally, on the computation side, we use L = 256 grid points with a spatial domain
A = [0, 2π) for 2-D simulations and L = 64 × 64 grid points with A = [0, 2π)× [0, 2π)

for 3-D simulations. We next describe all synthetic cases classified by the form of the
current fields that can be uniform/non-uniform and steady/unsteady.

3.1.1. Results for uniform current fields
We start from relatively simple cases with a uniform current field that can be steady or
unsteady. Under this situation, the current field to be estimated at each time instant is
reduced to a scalar for the 2-D cases or a vector with two components for the 3-D cases.
In the analysis step, (2.11) can be modified accordingly in dimensions for the simplified
scalar (vector) velocity fields.
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Figure 3. Surface elevations ηtrue(x) (blue dash-dotted line), ηsim(x) with IEnKF-HOS-C (red dotted line) and
HOS-C-only (black solid line) methods, at (a) t/Tp = 10, (b) t/Tp = 50 and (c) t/Tp = 90, for the 2-D wave
field.

Steady cases
We consider both 2-D and 3-D wave fields with the true current velocity given by

Utrue
x = 0.025vp(kp), (3.6)

where vp(kp) represents the phase velocity of the peak wavenumber kp in the JONSWAP
spectrum. The initial guess of the current velocity is predefined as

Ux,0 = 0.03vp(kp) (3.7)
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Figure 4. Surface elevations ηtrue(x) (blue dash-dotted line), ηsim(x) with IEnKF-HOS-C (red dotted line) and
HOS-C-only (black solid line) methods for the cross-section y/2π = 0.3 in the 3-D wave field, at (a) t/Tp = 10,
(b) t/Tp = 50 and (c) t/Tp = 90.

for the 2-D case and

U0 = (0.03vp(kp), 0.005vp(kp)) (3.8)

for the 3-D case. We note that a non-zero y component is used for U0 even though the
truth is zero. The ensemble of the current velocity is generated by superposing zero-mean
random errors, which are sampled from (2.1) with cu = 0.04(Utrue

x )2 and au → ∞, onto
each component of the initial guess.

949 A31-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.765


Phase-resolved ocean wave forecast with current estimation

0.95

1.00

1.05

1.10

1.15

1.20(a)

(b)

0 20 40 60

t/Tp

80 100

0 20 40 60 80 100

0.8

0.9

U
x/

|U
tr

ue
|

U
y/

|U
tr

ue
|

U
x/

U
xtr

ue

1.0

1.1

1.2

–0.2

–0.1

0

0.1

0.2

Figure 5. Current velocity Ua estimated by the IEnKF-HOS-C method (Ux,a, red dotted line; Uy,a, blue
dash-dotted line), in comparison with the true values (black solid line), for (a) 2-D and (b) 3-D cases with
a steady and uniform current field. In (b) the y component of the velocity is labelled on the right-hand vertical
axis.

For the IEnKF-HOS-C simulations, data from d = 12 locations (randomly selected with
a uniform distribution) are assimilated with an interval τ = Tp/32, with Tp the wave period
for the peak mode kp. The simulations start from the noisy measurements of the initial
wave field (which are generated by (3.4) and (3.5)) and the initial guess of the current
velocity, and are conducted until t = 100Tp.

The errors ε(t) obtained from IEnKF-HOS-C and HOS-C-only simulations (starting
from the same wave field and initial guess of current velocity) are shown in figure 2.
For both 2-D and 3-D cases, as the simulation proceeds ε(t) obtained from the
HOS-C-only method increases from the initial value ε(0) ≈ 0.05 and approaches O(1)
at t/Tp ≈ 100; whereas with the IEnKF-HOS-C method, ε(t) keeps decreasing as the
measurements are assimilated sequentially, and becomes two orders of magnitude smaller
than its initial value at the end of the simulations. To further visualize the wave fields,
figures 3 and 4 show snapshots of ηtrue(x) and ηsim(x) obtained from both IEnKF-HOS-C
and HOS-C-only methods at three time instants of t/Tp = 10, 50 and 90 for the 2-D
and 3-D cases, respectively. It can be found that, for both cases, ηsim(x) from the
IEnKF-HOS-C method exhibits a much better agreement with ηtrue(x) than that from
the HOS-C-only method. At t/Tp = 90, the IEnKF-HOS-C solution is already almost
indistinguishable from ηtrue(x).

Another important metric for evaluating the IEnKF-HOS-C performance is the
estimated current velocity Ua, which is shown in figure 5 together with U true for both
2-D and 3-D cases. It can be found that, as the measurements of the surface elevation are
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Figure 6. Errors ε(t) from IEnKF-HOS-C (with initial guess of current velocity given by (3.7) or (3.8): red
dotted line; with zero initial guess of current velocity: blue dashed line) and EnKF-HOS (magenta solid line)
methods, for (a) 2-D and (b) 3-D cases with a steady and uniform current field.

assimilated, Ua approaches U true (although experiencing some fluctuations) with their
difference practically negligible after t/Tp = 40. This indicates that the IEnKF-HOS-C
algorithm is successful in the estimation of current velocity in these cases.

We further test the performance of the IEnKF-HOS-C method when initial guess of
zero-velocity current field is used. Although in practice better initial guesses are usually
available, this test provides a challenging case with large deviation of initial guess from the
true current field. The error ε(t) and estimated current velocity Ua are shown in figures 6
and 7, respectively. From figure 7 we see that it takes O(60Tp) for the estimated velocity
to converge to the true values, which is slower than the cases with initial guesses (3.7) and
(3.8) shown in figure 5. This is also reflected in figure 6 where the error with zero initial
guess drops slower than that with (3.7) and (3.8). However, it is also clear in figure 6 that
the former drops with a rate that is comparable to or faster than the latter for t > O(60Tp)
since the correct current velocity has been captured by the former. In addition, we also
include in figure 6 the result of the previous EnKF-HOS method developed by Wang &
Pan (2021), which characterizes the situation of a biased physical model coupled with DA
(that can partially correct the solution). We observe that ε(t) from EnKF-HOS decreases
in time with a much slower rate than the two results from IEnKF-HOS-C, with the error
from IEnKF-HOS-C up to one order of magnitude smaller than that from EnKF-HOS at
t = 100Tp.

Finally, we test the robustness of the IEnKF-HOS-C method for opposing current, by
reversing the signs in (3.6), (3.7) and (3.8), and keeping the initial wave states the same as
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Figure 7. Current velocity Ua estimated by the IEnKF-HOS-C method (Ux,a, red dotted line; Uy,a, blue
dash-dotted line), in comparison with the true values (black solid line), for (a) 2-D and (b) 3-D cases with
a steady and uniform current field. In (b) the y component of the velocity is labelled on the right-hand vertical
axis.

before. Results shown in figures 8 and 9 demonstrate the performance of IEnKF-HOS-C
to effectively estimate the opposing current field together with improved accuracy in
wave-field reconstruction. The current estimation now takes O(60Tp) to converge to
the true values (seemingly longer than the following current case) mainly because the
opposing current effect slows down the wave propagation, which makes the time to
convergence longer when normalized by the intrinsic period Tp.

Unsteady cases
In this section, we test the performance of the IEnKF-HOS-C method for unsteady and

uniform current fields. We focus on 3-D wave fields hereafter and for this section we
consider both linear and sinusoidal time variations of the current fields, described by

Utrue
x (t) = (1 + α1t/Tp)Uc (3.9)

and
Utrue

x (t) = (cos(α2t/Tp)+ 1.12)Uc, (3.10)

with α1 = 0.005, α2 = 0.04 and Uc = 0.025vp(kp). The initial guess of current velocity
is also prescribed by (3.8), based on which the ensemble is then produced with
cu = 0.04(Uc)

2 and au → ∞. Noisy measurements of the wave field at 24 randomly
sampled locations are assimilated with an interval τ = Tp/32.
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Figure 8. Errors ε(t) from IEnKF-HOS-C (red dotted line) and HOS-C-only (black solid line) methods, for
(a) 2-D and (b) 3-D cases with opposing current fields.

Figure 10 shows the errors ε(t) from the IEnKF-HOS-C and HOS-C-only methods,
for the two current fields (3.9) and (3.10). For the HOS-C-only simulations, ε(t) grows
quickly in time (somewhat faster than for the steady current cases at the early stage
of simulations) and reaches O(1) at t/Tp ≈ 80. The IEnKF-HOS-C method is again
successful in accurately estimating the wave fields with the error ε(t) reducing to O(10−3)
at t/Tp ≈ 100.

Figure 11 presents the estimated velocity by the IEnKF-HOS-C method, in terms of its
evolution in time and comparison to the true current velocity U true(t). For both types of
current fields (3.9) and (3.10), the IEnKF-HOS-C method is able to track the variation
of the current field, with Ua,j converging to the vicinity of the true time series after
40Tp–60Tp. We remark that the capability to capture the unsteadiness of the current is
achieved through the IEnKF procedure, in spite of the persistence model (2.7) in the
forecast step.

3.1.2. Results for non-uniform current fields
We further demonstrate the effectiveness of the IEnKF-HOS-C method for the 3-D
wave-field evolution under the effect of non-uniform current fields. The results below are
presented for steady and unsteady non-uniform current fields.
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Figure 9. Current velocity Ua estimated by the IEnKF-HOS-C method (Ux,a, red dotted line; Uy,a, blue
dash-dotted line), in comparison with the true values (black solid line), for (a) 2-D and (b) 3-D cases with
opposing current fields. In (b) the y component of the velocity is labelled on the right-hand vertical axis.

Steady case
We consider the wave-field evolution under the effect of a steady and non-uniform

(varying in x direction) current field, which is described by

Utrue
x (x) =

⎧⎪⎨
⎪⎩

U1 + eγ x−qU2

eγ x−q + 1
, for 0 ≤ x ≤ π,

Utrue
x (2π − x), for π < x ≤ 2π

(3.11)

and plotted in figure 12. The parameter values are chosen as U1 = 0.01vp(kp), U2 =
0.025vp(kp), q = 15 and γ = 25/π such that the transitions between the locally uniform
regions are smooth (i.e. slow variation of the current field compared with the wave
oscillation, and thus compatible with (2.5) and (2.6)).

In this case, we set the initial guess of current velocity to be uniform as before (assuming
no spatial distribution information is accessible a priori):

Ux,0(x) = 0.15vp(kp), (3.12)

Uy,0(x) = 0.02vp(kp), (3.13)

with the initial ensemble for both velocity components generated by (2.4) with cu =
0.04(U1)

2 and au = π/2.
With the IEnKF-HOS-C method, data of surface elevation at d = 64 randomly

selected locations are assimilated into the numerical model with an interval τ = Tp/64.
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Figure 10. Errors ε(t) from IEnKF-HOS-C (red dotted line) and HOS-C-only (black solid line) methods for
the cases with unsteady and uniform current fields: (a) (3.9) and (b) (3.10).

Figure 13 plots the errors ε(t) obtained from the IEnKF-HOS-C and HOS-C-only methods
for this case, showing again that IEnKF-HOS-C is successful in estimating the wave states,
in contrast to the HOS-C-only simulation.

The current fields captured by IEnKF-HOS-C, in terms of the snapshots of Ux,a(x)
and Uy,a(x) at three cross-sections of constant y for t/Tp = 10, 50 and 90, are plotted in
figure 14. We see that the estimated velocity starts from a constant value and converges to
the true field (with its variation in x captured at all cross-sections) as the time increases.
This successful estimation of the current field is the basis for the accurate prediction of the
wave states seen in figure 13.

Unsteady cases
The climax of the synthetic cases is the application of the IEnKF-HOS-C method to

the wave-field evolution impacted by a current field featuring both spatial and temporal
variations. In particular, we assign a sinusoidal variation to the current field (3.11) to
produce the true current velocity field:

Utrue
x (x, t) =

⎧⎪⎨
⎪⎩

U1 + eγ x−qU2

eγ x−q + 1
cos(α3t/Tp), for 0 ≤ x ≤ π,

Utrue
x (2π − x), for π < x ≤ 2π,

(3.14)

where α3 = 0.01. For this case we use the same initial guess of current velocity as in the
steady case, i.e. (3.12) and (3.13), as well as the same corresponding initial ensembles
generated by (2.4) with cu = 0.04(U1)

2 and au = π/2.
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Figure 11. Estimations Ua,j from the IEnKF-HOS-C method (Ux,a, red dotted line; Uy,a, blue dash-dotted
line), in comparison with the true values (Utrue

x (t), black solid line; Utrue
y (t) = 0, line with squares), for the

cases with unsteady and uniform current fields: (a) (3.9) and (b) (3.10).
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Figure 12. Plot of Utrue
x (x) as the true steady and non-uniform current field described by (3.11).

The time series of ε(t) from the IEnKF-HOS-C and HOS-C-only methods are
shown in figure 15, which demonstrates, similar to all above cases, the effectiveness
of IEnKF-HOS-C in reproducing the wave states. The estimated current field by
IEnKF-HOS-C is further plotted in figure 16, in terms of the snapshots of Ux,a and Uy,a at
the three cross-sections of constant y for three time instants t/Tp = 10, 50 and 90. Starting
from an initial guess of a constant field, Ux,a captures both the spatial and temporal
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Figure 13. Errors ε(t) from the IEnKF-HOS-C (red dotted line) and HOS-C-only (black solid line) methods
for the current field described by (3.11).

variation of Utrue
x (x, t) and Uy,a approaches zero uniformly in time with sequential data

assimilated to the algorithm.

3.2. The case with real wave data
In what follows, we test the IEnKF-HOS-C method using real measurements of the
ocean wave field presented in Lyzenga et al. (2015). The measurements are obtained
from an onboard 25 kW X-band (9.4 GHz) Doppler coherent marine radar off the coast
of southern California. A patch of the radar-scanned area, which is fixed in the local
radar coordinate system and covers a 480 m × 480 m region, is selected as the domain
of interest. The numerical simulation starts from 23:18:32 UTC on 17 September 2013 and
lasts for 40Tp with Tp = 11.28 s. The initial condition is taken from the measurements in
the computational domain (figure 17) featuring a global wave steepness kpHs/2 = 0.02.
In figure 17 it can be clearly observed that the dominant wavelength is λp ≈ 200 m that
is consistent with the estimated value by the linear wave theory for Tp = 11.28 s. We
use L = 64 × 64 grid points in the simulation, which matches the resolution in the radar
dataset. The DA interval is set to be the same as the data acquisition interval of the radar,
which fluctuates around Tp/4 = 2.82 s, i.e. after each interval we assimilate radar data into
the IEnKF-HOS-C simulation.

The reference velocity of the current field in this case is taken from the track of an in
situ floating buoy from 23:10:10 to 23:25:02 UTC on 17 September 2013, which is shown
in figure 18. While it is preferable to obtain the spatial and temporal variations of the
current field, the available information only allows us to compute the mean velocity of the
floating buoy, as Ub = (0.2958,−0.3944)m s−1. On the other hand, due to the relatively
small size of the simulation domain and short time interval, it can be justified to consider
a uniform and steady current field with velocity specified by Ub.

To generate ensemble of measurements of the wave field, we use (2.2) and
(2.3) with cw = 0.0025σ 2

η and aw = 120 m defined in (2.1). Four different initial
guesses of the current velocity are considered, namely U0 = (0.1958,−0.4944),
U0 = (0.3958,−0.2944), U0 = (0.3958,−0.4944) and U0 = (0.1958,−0.2944), all
representing a shift of 0.1 m s−1 in different directions of each component of Ub. The
ensemble of the initial current velocity is generated by (2.4) with cu = 0.02 m2 s−2 and
au = 120 m.
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Figure 14. Estimations Ux,a (a,c,e) and Uy,a (b,d, f ) by IEnKF-HOS-C at (a,b) t/Tp = 10, (c,d) t/Tp = 50
and (e, f ) t/Tp = 90 in comparison with the true current field (3.11) (black solid line), for three cross-sections:
y/2π = 0.25 (red dotted line), y/2π = 0.50 (blue dash-dotted line) and y/2π = 0.75 (magenta dashed line).

An issue that needs to be considered for such a realistic case with uncertain boundary
conditions is the problem of predictable zone and its potential mismatch with the
measurement region. This issue has been discussed in detail in Wang & Pan (2021), which
involves the application of a modified analysis equation in EnKF (IEnKF in this case). For
conciseness, we do not present the details again in this paper but refer the interested readers
to our previous paper (Wang & Pan 2021). These previously developed techniques are also
applied here, with the only additional complexity that the estimated current velocity Ua,j
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Figure 15. Error ε(t) from the IEnKF-HOS-C (red dotted line) and HOS-C-only (black solid line) methods
for the current field described by (3.14).

now needs to be added to the wave group velocity (accounting for the Doppler shift) to
determine the boundaries of the predictable zones.

Figure 19 presents the estimation Ux,a and Uy,a, in comparison with the reference
velocity Ub, obtained with different initial guesses. For all the initial guesses, we see
that the estimation Ua,j converges to the reference Ub at tj ≈ 40Tp. In order to assess
the performance of IEnKF-HOS-C in terms of the wave-field reconstruction, we use the
following two metrics (since the true wave states are inaccessible and (3.1) is not defined):

ρ(ηm,j, η
sim) =

∫
A ηm,j(x)ηsim(x) dA

σ 2
ηA

, (3.15)

D = tr (ℭ (ηa, ηa))

L
, (3.16)

where tr(Λ) represents the trace of a matrix Λ. The correlation coefficient ρ(ηm,j, η
sim)

provides a measure of the difference between measurements and simulation results, which
is also an indication of the magnitude of the correction (innovation) terms in (2.9)–(2.11).
The quantity D provides the ensemble variance of the analysis field ηa averaged over space
(see (2.8) for the definition of operator ℭ, and L is the total number of grid points), which
measures the uncertainty level after each analysis step in the simulation. For a simulation
with better DA reconstruction of the wave field, it is expected that ρ and D are respectively
higher and lower. This is indeed the case as we observe in figures 20 and 21, which show
the time series of ρ and D respectively obtained from the IEnKF-HOS-C and EnKF-HOS
methods. It is clear that IEnKF-HOS-C provides better results in terms of measures by
both quantities. In addition, we see that the reconstruction quality of IEnKF-HOS-C
gradually increases with time after t/Tp = 15–20, which is mainly due to the improved
estimation of current with time. The above results clearly demonstrate the effectiveness of
IEnKF-HOS-C when applied to real radar data, although tests against more sophisticated
cases are warranted for future studies (which require better and detailed measurements of
the ocean current field together with remote sensing of the surface waves).

We finally test the robustness of the developed IEnKF-HOS-C algorithm by switching
the simulation initialization time t0, with the simulation period remaining at 40Tp.
Specifically, three additional choices of t0 between 23:10:10 and 23:25:02 UTC on 17
September 2013 are tested, namely 23:12:03, 23:14:22 and 23:16:28, for the case with
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Figure 16. Estimations Ux,a (a,c,e) and Uy,a (b,d, f ) by IEnKF-HOS-C at (a,b) t/Tp = 10, (c,d) t/Tp = 50 and
(e, f ) t/Tp = 90 in comparison with the true field (3.14) (black solid line), for three cross-sections: y/2π = 0.25
(red dotted line), y/2π = 0.50 (blue dash-dotted line) and y/2π = 0.75 (magenta dashed line).

U0 = (0.3958,−0.4944)m s−1. Figure 22 presents the estimated current velocity Ua for
four different choices of t0. It can be found that the estimated velocity at 40Tp indeed varies
to some extent, but all within O(10 %) difference compared with the buoy measurement.
This further demonstrates the robustness of the IEnKF-HOS-C algorithm, considering
many factors that can cause the difference in estimated velocity in different windows, e.g.
the (unknown) fluctuation of the true velocity in time and space.
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Figure 17. Initial surface elevation ηm,0(x)/Hs (with Hs = 1.50 m) measured by radar at t = t0, i.e. 23:18:32
UTC on 17 September 2013.
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Figure 18. Ship and buoy tracks for the time interval from 23:10:10 to 23:25:02 UTC on 17 September 2013
(Lyzenga et al. 2015). The initial simulation domain at t0 = 23:18:32 is marked as the grey square box.

4. Conclusions

In this paper, we present a new IEnKF-HOS-C method, which features the capability of
simultaneous phase-resolved ocean wave forecast and current estimation. The performance
of the IEnKF-HOS-C method is examined using both synthetic data and measurements
in the real ocean environment. As indicated by the numerical results, the developed
IEnKF-HOS-C method outperforms not only the HOS-C-only method but also the
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Figure 19. Estimations Ux,a (red dotted line, left-hand axis) and Uy,a (blue dash-dotted line, right-hand
axis) by IEnKF-HOS-C, in comparison with the reference velocity Ub (black solid line), for four different
initial guesses of the current velocity: (a) U0 = (0.1958,−0.4944)m s−1; (b) U0 = (0.3958,−0.2944)m s−1;
(c) U0 = (0.3958,−0.4944)m s−1; and (d) U0 = (0.1958,−0.2944)m s−1.
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Figure 20. Time series of ρ(ηm,j, η
sim) from IEnKF-HOS-C (with U0 = (0.1958,−0.4944), red dotted

line; U0 = (0.3958,−0.2944), blue dash-dotted line; U0 = (0.3958,−0.4944), magenta dashed line; U0 =
(0.1958,−0.2944), cyan line with circles) and EnKF-HOS (black solid line) methods.
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Figure 21. Time series of D from IEnKF-HOS-C (with U0 = (0.1958,−0.4944), red dotted line;
U0 = (0.3958,−0.2944), blue dash-dotted line; U0 = (0.3958,−0.4944):, magenta dashed line; U0 =
(0.1958,−0.2944), cyan line with circles) and EnKF-HOS (black solid line) methods.

state-of-the-art EnKF-HOS method, in terms of the wave forecast accuracy. In addition, the
feasibility of inferring current velocity with this method is extensively demonstrated, by
testing it for various forms of current fields, which are characterized by distinct temporal
and spatial variations. The developed IEnKF-HOS-C method is intrinsically extensible
and can be easily modified to account for other physical or empirical parameters. Finally,
if implemented on a graphics processing unit, this method can be conveniently carried out
in offshore environments, which may bring in favourable effects in marine operations.
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