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Abstract. We prove that any topological conjugacy between subshifts is decomposed
into the product of ‘bipartite codes’, and obtain a natural generalization of Williams’
theorem to sofic systems: two sofic systems are topologically conjugate iff the
‘representation matrices’ of the right [left] Krieger covers for them are ‘strong shift
equivalent’ within right [left] Krieger covers; a similar result with respect to Fischer
covers holds for transitive sofic systems.

1. Introduction

We call a 1-block factor map of a topological Markov chain onto a sofic system a
cover for the sofic system or a sofic cover (cf. [2]). It is well known that each sofic
system can be defined as the image of a sofic cover. Canonical right and left resolving
covers have been introduced by R. Fischer [3] for each transitive (i.e. one-sided
topologically transitive) sofic system, and recently other canonical right and left
resolving covers have been introduced by W. Krieger [9] for any sofic system. We
call the former right and left Fischer covers and the latter right and left Krieger
covers. In [9], Krieger has proved that for any topological conjugacy ¢:A->Q
between sofic systems, if 8:3 - A and 7:T' > ( are the right [left] Krieger covers,
then there exists a topological conjugacy n:3->T such that 77 = ¢6. He has also
proved a similar result with respect to Fischer covers for transitive sofic systems.
Fischer covers have been also studied in [2], [8], and [11]. In [2], a direct proof
for Krieger’s result with respect to Fischer covers has been given. In this paper, we
are concerned with the above canonical covers and elucidate further topological
conjugacy for sofic systems.

First we introduce ‘bipartite codes’ and prove that any topological conjugacy
between subshifts is decomposed into the product of bipartite codes. Using this
result and using ‘bipartite lambda graphs’, we can prove results which include the
above Krieger's results, and at the same time give a natural generalization of
Williams’ theorem [13] to sofic systems: we introduce ‘representation matrices’ and
‘strong shift equivalence’ for them and proye that two sofic systems are topologically
conjugate iff the representation matrices of the right [left] Krieger covers for them
are strong shift equivalent within right [left] Krieger covers; a similar result is also
proved for transitive sofic systems with respect to Fischer covers. In § 5, we give a
practical method based on automata theory to construct the Krieger covers for a
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given sofic system. In the final section, a remark is added on topological conjugacy
for sofic covers defined in [2].

2. Bipartite codes
Let A be an alphabet (i.e. a finite set of symbols). The shift map o: AZ~> A? is
defined by
o((@i)icz) =(@ir1)icz, (ai)ieZEAZ-

Give A the discrete topology and AZ=[["_ A the product topology. Let = be a
closed o-invariant subset of A% and let £:3 > = be the restriction of o. Then the
dynamical system (2, 2) is called a subshift over A. For simplicity, 2 will be used
to denote either the subshift (2, 2) or its underlying space =. We say that a word
we AA* appears on a point a =(a;);cz€X if w=a,a;4; - -+ a; for some i, j, i<},
where A* is the free monoid generated by A. L(Z) will denote the set of all words
that appear on some point of 3 and A(Z) will denote the alphabet over which X is
defined. We assume that A(Z) equals the set of all symbols that appear on some
point of 2. It is well known that L(X) uniquely determines X.

Let 2 be a subshift and n be a positive integer. Then

s = {(a;- -+ ai+n—l)iell(ai)ieze 3}
gives a subshift "), which is called the higher block system of order n of = [1].

Remark 2.1. For any subshift £ and n=1, (") js equal to X" up 10 recoding
of symbols (ie. 21" is obtained from (Z")?! by recoding the symbols in
A((EHED).

Let X and Q be subshifts and m and n non-negative integers. A factor map (i.e. an
onto homomorphism) #:Z->Q is of (m,n) type if there exists a mapping
k: A(Z)™ "' A L(Z)-> A(Q) such that

m((@i)icz) = (Bi)icz, (@i)icz€2,
where
Bi= k(@i mQi_ms1 " Qivp)
for all ie Z. The well-known theorem of Curtis, Hedlund and Lyndon [7] asserts
that any factor map is of (m, n) type for some m, n=0.

Let A, C and D be alphabets. A one-to-one mapping f: A—> CD is called a
bipartite expression of A.

Let 3 and Q) be subshifts. Let f: A(2) > CD be a bipartite expression of A(Z). A
mapping ¢:Z >} is called a bipartite code induced by f if there exists a bipartite
expression f : A(Q) > DC such that either of the following (i) or (ii) is the case:

(i) If a=(a;)icz€2, ¢(a)=(Bi)icz and f(e;)=cd; with ¢;e C and d;e D for
ieZ, then f(ﬁ,.) =dic;y, forall ieZ.

(i) With the same assumption as in (i), f(8;) = d._,c; for all i€ Z.

Particularly, the mapping ¢:3 - Q such that with the same assumption as in (i),
Bi=dic;,, for all ieZ, will be called the standard bipartite code induced by f. A
mapping ¢: 2 -} is called a bipartite code if ¢ is a bipartite code induced by some
bipartite expression of A(X).

https://doi.org/10.1017/50143385700003448 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003448

Topological conjugacy for sofic systems 267

It is clear that a bipartite code is a topological conjugacy and if ¢ is a bipartite
code, then so is ¢ .
Remark 2.2 For a subshift = with A(Z) = A, the bipartite expression f: A A{1}
defined by f(a)=al ac A, induces the shift map £ on =.
Remark 2.3. Let = be a subshift and 3™ the higher block system of order 2 of =.
The natural conjugacy p from X to 3% i.e. the conjugacy p: 2> X! defined by

p((ai)icz) = ((aiis1))icz> ((@:)icz€2),

is a bipartite code induced by the bipartite expression f: A > AA defined by f(a) = aa
(ac A).

THEOREM 2.4. Any topological conjugacy between subshifts is decomposed into the
product of bipartite codes.

To prove the theorem, first we prove:

LEMMA 2.5. Let ¢: A Q) be a conjugacy of (0,0) type between subshifts and let it be
given by h: A(A) > A(Q). Let ¢~ be of (p, q) type with p, q=0. Let f be the bipartite
expression of A(A) defined by
fla)y=h(a)a, aecA(b),

[f(a)=ah(a), acA(A)]
Let y; be the standard bipartite code induced by f. Let I’ = y;;(A). Let Q" be the higher
block system of order 2 of Q1 and let p be the natural conjugacy from Q to Q'3. Then
there exists a conjugacy ®:T'-> Q! of (0,0) type such that ®" is of (p,q—1) type
[(p—1, q) type] and the diagram

A—Y 1

¢l lq,

0—-—
p

commutes.
Proof. Since ¢ is given by h, we have
o ((@i)icz) = (h(i))icz, (a;)icz€ A,

Since ¢ ' is of (p, q) type, there exists a mapping k: A(Q)?* 9~ L(Q) > A(A) such
that

k(h(a,)- - - h(ap+q+l)) = Qp4q
for a,- - a,.4+1€ L(A) with a;€ A(A). Since ¢, is the standard bipartite code
induced by f, T is given by
F={(aih(ai+l))iell(ai)ieze A}
We define a mapping H: A(T') > A(Q™)) by
H(a,h(a,)) = h(a;)h(a,),
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where a,a,€ L(A) with a,, a,€ A(A). Let ®:T'-> Q! be the factor map defined by

D((v:)iez) = (H(¥:))icz» (¥i)iczel.

It is clear that @y, = pd and ® is a conjugacy.

Considering k, we can define a mapping K: A(Q™)?* ~ L(QH) > A(T) by

K((h(a)h(ax))(h(ax)h(as)) - - - (h(@psg)h(psg+1))) = @prih(apsr),
where a; - - @y, 44, € L(A) with a;€ A(A). Since
K(H(c;) * -+ H(Cpuq)) = o

for ¢, -+ - ¢,uq € L(T') with ¢;e A(T), @' is given by K and is of (p, g—1) type.

Thus we have proved the first version of the lemma; the proof of the second
version is similar. O

Let 7: A-> () be any conjugacy between subshifts. Let o be of (m, n) type with
m,n=0.Let A, i=0,... m+n, be such that A” = A and A" is the higher block
system of order 2 of AUV for i=1,..., m+n Let £7:A"V 5 A® be the natural
conjugacy for i=1, ..., m+ n. Then there exists a conjugacy ¢: A" > of (0, 0)
type such that

m=GEmTEmTD g DR, (2.1)
where A is the shift map on A.

Put A=A"""*", Let ¢ be given by h: A(A)> A(Q). Let ¢! be of (p, q) type with
p,q=0.Let Q1 i=0,..., p+gq, be such that Q¥ =0 and Q" is the higher block
system of order 2 of QY "V fori=1,...,p+q. Let p®?:Q% V> Q" be the natural
conjugacy for i=1,..., p+q. Then using the first version of lemma 2.5 q times and
then using the second version of it p times, we obtain the subshifts A;,i=0,...,p+gq,
with A, = A, and bipartite codes ¢;: A;_, > A;,i=1,..., p+ g, conjugacies ¢;: A, » Q¥
of (0,0) type, i=1,..., p+gq, such that the diagram

W [23 Yot Ypeq > A

1
A—— 4, — 8, - B, e, Ay cor Apigen pta
¢1 l &, l &, 1¢q l@,ﬂ l¢p+q—1 j Fpeq (2‘2)
1 2 +1 -1 + '
Q——pm—> Qm T Q@ ... oW W QL ... e W Qlp+a)

commutes and ¢; ' is of (p, g —1i) type fori=1,..., g and of (p+q—i,0) type for
i=q+1,...,p+gq.
By (2.1) and (2.2) we have
=) (P PT) by glprg T EV(R)T

Since both of ¢,., and ¢, are of (0, 0) type, ¢+, is given by a one-to-one mapping
of A(A,.,) onto A(QP*?), Therefore @p+qWp+q is a bipartite code. Thus, by remarks
2.2 and 2.3 and the fact that the inverse of a bipartite code is also a bipartite code,
theorem 2.4 is proved. a

3. Strong shift equivalence of canonical sofic covers

A (directed) graph G consists of a finite set U of vertices, called the vertex-set of
G, a finite set R of (directed) arcs, called the arc-set of G, and two mappings
ic:R-> U and t5: R~ U. (If G is understood, we will often use i and ¢ instead of
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ic and t;.) For each arc re R, i(r) and t(r) are called the initial vertex of r and
the terminal vertex of r, respectively. We also say that r goes from u to v for u, ve U,
if u=i(r) and v=1t(r). It is convenient to regard each arc as a symbol and the
arc-set R as an alphabet. Hence, A(G) will denote R and L(G) will denote the set
ofallwords r, - - - r, k=1, r;€ R such that t(r,_,) = i(r;)) fori=1,..., k. If xe R*n
L(G) for k=1, then x is called a path of length k in G. We extend iz and t; to
mappings of L(G) into U as follows: if x=r,---r.e L(G) with r,e R, then
ic(x)=lig(r,) and t5(x) =ts(r,). For each x € L(G), we call i(x) the initial vertex
of x and t(x) the terminal vertex of x, and say that x goes from u to v for u,ve U
if i(x)=u and t(x)= 1.

A graph G is said to be non-degenerate if both of i; and t; are onto, and irreducible
if for any vertices u and v, there exists x € L{G) such that x goes from u to v.

A subshift 2 is called a topological Markov chain if there exists a non-degenerate
graph G such that L(2) = L(G), and a sofic system if it is the image of a factor map
from some topological Markov chain [12]. It is well known that a subshift is a sofic
system iff it is the image of a factor map of (0, 0) type from some topological Markov
chain. A factor map of (0, 0) type from a topological Markov chain to a sofic system,
is called a cover for the sofic system or a sofic cover (cf. [2]).

Each sofic cover ¢:2 > () is naturally represented by a non-degenerate graph G
with L(G) = L(Z) such that each arc r of G is labelled h(r) where h is the mapping
of A(Z) onto A()) that gives ¢. Such a labelled graph will generally be called a
lambda graph. A similar notion is well known in automata theory as the transition
diagram of a (non-deterministic) finite automaton (see e.g. [6]). Formally, a lambda
graph (A-graph) ¥ over an alphabet A is given by ¥ =(G, A) where G is a graph
and A is a mapping of A(G) onto A. We naturally extend A to a mapping of L(G)
into AA*, that is, for each x=r, - - - r, € L(G) with r; € A(G), we define A(x) to be
A(r) - -+ A(r.), which will be called the word generated by the path x. Moreover,
let A(%) denote A and define

L(9) ={r(x)|xe L(G)},

which will be called the language generated by 4. For each vertex u of ¢ (i.e. of
G), we define

L.(%) ={r(x)[x€ L(G), i(x) = u}.

We say that ¥ is non-degenerate or irreducible according to whether G is non-
degenerate or irreducible, respectively. 4 is said to be right [left] resolving if for
any distinct two arcs r and s of 9 with i(r)=i(s) [t(r)=1t(s)], A(r) and A(s) are
different. For a right resolving A-graph ¥, two vertices # and v of ¥ are said to be
equivalent if L,(9)= L,(¥%). We say that a right resolving A-graph 9 is reduced if
it has no distinct equivalent vertices.

Two A-graphs %, =(G,, A,) and %,=(G,, A,) are said to be isomorphic if there
exists a pair of bijections g: U,» U, and h: A(G,)-> A(G,) such that gig = ig,h,
glc, = tg,h and A, = A,h, where U, is the vertex-set of G; for i =1, 2. The pair (g, h)
is called an isomorphism of 4, onto %,. In what follows, isomorphic A-graphs will
be identified.
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For a A-graph ¥=(G, A), a A-graph ¥ =(G’, A') is called a sub-A-graph of ¢ if
A(G’) = A(G), the vertex-set of G’ is i(A(G")) U t(A(G")), ic = ic| A(G), tg =
tc|A(G’) and A'=A|A(G").

Let A be an alphabet. We call a sequence

* Y-t
with y_;€ A, i =0, a left infinite sequence over A. For a = (;);cz € A%, let a_ denote
the left infinite sequence - - - @_,a,. For a left infinite sequence y=" - y_,y, over
A and x € AA*, yx denotes the left infinite sequence § =" - - _,8, such that if x is
Of length i thCn 51_,'82..,' s 80= X and 6—j—i = 7—1 fOr all jZO.
Let A be a subshift. Let
A_={a_|aeA}.
We define an equivalence relation E, on A_ as follows: for vy, 6 A_, yE, 8 if
{xe AA*|yxe A_} ={xec AA*|dxe A }.

It is clear that if yE,8, then yxE,8x for all xe AA* such that yxe A_. The
equivalence class containing y € A_ will be denoted by E,[v]. If A is a sofic system,
then

{EAlY] | yeA_}

is finite [9]. For a sofic system A, we define a A-graph ¥, as follows: the vertex-set
of ¥, is {Ex[ ]| y€ A_} and for each vertex E,[y], ye A_, and a € A, a unique arc
labelled a goes from E,[y] to E,[ya] if yae A_. The A-graph ¥, will be called
the Krieger A-graph for A. Clearly ¥, generates L(A) and it is non-degenerate, right
resolving and reduced. The sofic cover represented by %, is called the right Krieger
cover for A, which is the same as the ‘future cover’ for A introduced by Krieger [9].

The left Krieger cover for A, which is the same as the ‘past cover’ for A in [9], is
defined to be the cover represented by the A-graph (¥ ,:)" obtained from %, by
reversing the direction of the arcs, where A’ denotes the sofic system obtained from
A by reversing the direction of time.

A A-graph ¥ is called a Krieger A-graph if ¢ is equal to #, for the sofic system
A such that L(A) = L(9).

An irreducible A-graph % is called a Fischer A-graph, if ¥ is right-resolving and
reduced. If a subshift A has the property that for any x, y € L(A) there exists z€ L(A)
with xzye L(A), then A is said to be transitive. As is well known, a subshift A is
transitive iff it is one-sided topologically transitive, i.e. there exists a point a € A
such that {A"a|n =0} is dense, where A is the shift map on A. For any transitive
sofic system A, there exists a unique Fischer A-graph & such that L(%) = L(A) and
this equals the right resolving A-graph with the smallest number of vertices that
generates L(A) [3]. This Fischer A-graph will be called the Fischer A-graph for A
and is denoted by %,. %, is the unique ‘ergodic component’ of ¥, [9]. (An ergodic
component of a A-graph ¥ means a maximal irreducible sub-A-graph % of % such
that no path in ¢ goes from a vertex in @ to the outside of ¢) The sofic cover
represented by %, is called the right Fischer cover for A. The left Fischer cover for
A is defined to be the cover represented by (F,:)".
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The following two theorems have been proved by Krieger [9] (the second theorem
has been recovered with a direct proof in [2]).

THeOREM 3.1 [Krieger]. Let ¢: A > Q be a topological conjugacy between sofic systems.
Let 6: 2> A and :T > Q) be the right [left] Krieger covers for A and Q, respectively.
Then there exists a topological conjugacy n:2 - T such that the diagram

[ o

A——Q
®
commutes.

THueOREM 3.2 [Krieger]. Let ¢: A~ () be a topological conjugacy between transitive
sofic systems. Let 6:3—> A and 7:T > Q be the right [left] Fischer covers for A and
O, respectively. Then there exists a topological conjugacy n: 3 —T' such that the diagram
(3.1) commutes.

Krieger has also proved the uniqueness of the 7 in theorems 3.1 and 3.2, in [10]
and [9].

The following two theorems include the above Krieger’s theorems in conjunction
with theorem 2.4.

THEOREM 3.3. Let ¢: A—>Q be a topological conjugacy between sofic systems. Let
& =14, - - - ¥, be a decomposition of ¢ into the product of bipartite codes y;: A;_, > A,
i=1,...,n with Ag=A and A,=Q. Let 6;:2,> A, be the right [left] Krieger cover
for A, fori=0,..., n. Then there exist bipartite codes n;: 2%, > 3%, i=1,..., n, such
that the diagram

2 - 3 = 2 0 2y s 2,
ool oll ezl 10'-—1 len (32)
Ag > Ay Ay o AL i—— A,
1 [2) Wn

commutes.

THEOREM 3.4. Let ¢: A > Q) be a topological conjugacy between transitive sofic systems.
Let ¢ =4, --, be a decomposition of ¢ into the product of bipartite codes
YA A, i=1,...,n with Ag=A and A,=Q. Let 6;:%,-> A, be the right [left]
Fischer cover for A; for i=0,...,n. Then there exist bipartite codes n;:3%;_, > Z;,
i=1,..., n, such that the diagram (3.2) commutes.

To state a generalization of Williams’ theorem [13] to sofic systems, we need to
introduce the notion of representation matrices.

For an alphabet A, a representation matrix over A is defined to be a rectangular
matrix having formal sums of the form

Y k(a)a

acA
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as its entries, where k(a) is a non-negative integral coefficient of a. For alphabets
C and D, a representation matrix over CD is similarly defined. For example,

a b+c O
0 2b a
a b c

is a representation matrix over {q, b, ¢}, and
( aa ab+ ba)
2ba 0
is a representation matrix over CD with C ={aq, b} and D ={q, b}.
Each A-graph over an alphabet A is described by a square representation matrix

over A. In fact, for a A-graph ¥ =(G, A) over A with vertex-set U, a representation
matrix M (%) over A indexed by U x U is defined by M (%) =(m,,) where
my, =Y A(r), uvel,

where the summation is taken over all arcs r € A(G) suchthat ig(r) =u and t5(r) = .
M (%) is called the representation matrix of 4. Clearly we have the unique A-graph
% over A with M (%)= M for each square representation matrix M over A. For a
sofic cover 6, M(%9) is called the representation matrix of 6, when ¥ is the A-graph
representing 6.

If M is an m X n representation matrix over an alphabet C and N is an nxm
representation matrix over an alphabet D, then the (formal) product MN is an
m X m representation matrix over CD. For example,

a b 2 0 0 aa ba bb
0 a o a b =10 aa ab]|
b 0 ba 0 O

Two representation matrices M and N are said to be equal mod bijection of words
if there exists a bijection of the set of all words that appear in some non-zero entry
of M onto the set of all words that appear in some non-zero entry of N and if M
and N are the same if we identify every pair of words connected by that bijection
(note that a symbol is a word of length 1). We write M = N to mean that M and
N are equal mod bijection of words. For example,

a b+c\ (aa ab+ba)
(Zb 0 )_(Zba o /)
because the mapping h:{a, b, ¢} > {aa, ab, ba} defined by h(a)=aa, h(b) = ba and
h(c)=ab is a bijection. Also we have

(aa ab+ba>~(ac ad+dd>~<b d+e)
2ba 0 " \2ad 0 “\2¢e o0 /)

Two square representation matrices M and N are said to be strong shift equivalent

(in I steps) if there exist alphabets C; and D;, i=1, ..., I, and rectangular representa-
tion matrices P, over C; and Q; over D, i=1,..., 1 such that
M=PQ,, QP =PQ;, ‘-, Q_P,=PQ, QP=N.
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In particular, if M, N, and QP, i=1,...,1—1, are equal to the representation
matrices of right [left] Krieger covers mod bijection of words in the above, we say
that M and N are strong shift equivalent within right [left] Krieger covers. Strong
shift equivalence within right [left] Fischer covers is similarly defined.

The following theorems are natural generalizations of Williams’ theorem [13]
characterizing topological conjugacy for topological Markov chains. We note that
for a topological Markov chain, its defining non-negative integral matrix (see [13)])
represents both the right and left Krieger cover for it.

THEOREM 3.5. Two sofic systems are topologically conjugate iff the representation
matrices of the right [left] Krieger covers for them are strong shift equivalent within
right [left] Krieger covers.

THEOREM 3.6. Two transitive sofic systems are topologically conjugate iff the representa-
tion matrices of the right [left] Fischer covers for them are strong shift equivalent
within right [left] Fischer covers.

As will be seen in the proofs of the above theorems, the ‘if” parts of the statements
of them can be strengthened greatly (see also § 6).
Proofs of theorems 3.3-3.6 will be given in the next section.

4. Bipartite A-graphs

A A-graph ¥ =(G, A) is said to be bipartite if G is bipartite, that is, the vertex-set
of G can be partitioned into two sets U, and U, such that there exists no arc whose
initial and terminal vertices belong to the same set. The sets U, and U, are called
the bipartite vertex-sets of the bipartite graph G or the bipartite A-graph 4. (The
bipartite vertex-sets are not always unique for a bipartite graph, but when we mention
a bipartite graph or a bipartite A-graph, we assume that the bipartite vertex-sets are
specified.)

Let 8 =(G, A) be a bipartite A-graph with bipartite vertex-sets U, and U,. For
i=1,2, let W, be the set of all paths w of length 2 with ig(w), tg(w)e U,. Let
A;=A(W)) for i=1,2. We define two A-graphs 4, =(G,, A,) over A, and %, =
(G,, A,) over A, as follows: for i=1, 2, G; has vertex-set U; and arc-set W;; for
each we W, ig(w)=ig(w), tg(w)=1t5(w) and A;(w)=A(w). We call 4, and %,
the induced pair of A-graphs of 3. Let

R={r€A(G)lic(f)€ Ui, tg(r)e Uy},
S={re A(G)|ig(r)e U,, tg(r)e U},
and let
C=A(R) and D=A(S).

wnr-(5 1)

where P is a representation matrix over C indexed by U, X U, and Q is that over

Remark 4.1. We can write

https://doi.org/10.1017/50143385700003448 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003448

274 M. Nasu

D indexed by U, x U,. Clearly
M%) 0 )

M(W:( 0 M(%)

and hence M(%,)= PQ and M(%,)= QP.

Remark 4.2. Let B be non-degenerate. Let 6,: Z; - {); be the sofic cover represented
by ¥ (X, is the topological Markov chain such that L(Z;)= L(G;) and Q; is the
sofic system such that L({);) = L(%;)) fori=1,2. Let f: A(G,)> RS and g: A,» CD
be the embeddings. Let 7:X, > 2%, and ¢:(, > Q, be the standard bipartite codes
induced by f and g, respectively. Then the diagram

S, —3,

=0

commutes.

Remark 4.3. Both of ¥, and %, are non-degenerate [irreducible] iff & is non-
degenerate [irreducible].

Remark 4.4. If B is right-resolving, then so are %, and %,. If & is right-resolving
and reduced, then so are %, and %,.

A subshift A is said to be bipartite if A(A) is partitioned into two sets C and D
such that for each («&;);cz€ A and i€Z, ; and a;., do not belong to the same set.
The partition C U D = A(A) is called the bipartite partition for the bipartite subshift
A. (We also assume that the bipartite partition is specified when we mention a
bipartite subshift.) For a bipartite subshift A with bipartite partition C u D = A(A),
the two subshifts given by

Ay ={(az_1a3))ic2z I (@:)icz€ A, ape D}
and

Ay ={(ai_1@2)icz , (a;)icz€ A, 29€ C}
are called the induced pair of subshifts of A.

A bipartite topological Markov chain and its induced pair of subshifts were used
in [4, p. 99] to prove Williams® theorem.

THEOREM 4.5. Let A be a bipartite sofic system. Let A, and A, be the induced pair
of subshifts of A. Then X, is a bipartite A-graph, and X, and X, are the bipartite
pair of A-graphs of %, .

Proof. Let CuD=A(A) be the bipartite partition for A. Let AS=
{-++a_jape A_|age C} and let AP be defined similarly. Then ¥, is a bipartite
A-graph whose bipartite vertex-sets are {E,(8)|6< A”} and {E,(8)|8€ AS}. For
eachd="---a_,ayin AZ, let p(8) denote the element - - - (_sa_,)(@_,a0) in (A;)-.
It is clear that for 8,8'e A, 8E,&' iff p(8)E, p(8'). Hence the correspondence
between E,[8] and E, [p(8)] is 1-1. Let 8,8'€ AZ and let cd € L(A) with ce C
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and d € D. There exists a path of length 2 generating cd and going from E,[8] to
EA[8'] in %, iff there exists an arc labelled ¢d going from E, [p(8)]to E, [ p(8')]
in ¥, , because 8cdE,8' iff p(8)(cd)E,, p(8'). Therefore X, is one of the bipartite
pair of A-graphs of ¥ ,.

Similarly, J¥,, is the other one of the bipartite pair of A-graphs of ¥,. O

COROLLARY 4.6. Let ¢: A > () be a bipartite code between sofic systems. Let 6:3> A
and w:T'> Q be the right Krieger covers for A and ), respectively. Then the following
statements are valid.

(1) There exists a bipartite Krieger A-graph B such that ¥, and ¥, are the bipartite
pair of A-graphs of B, up to recoding of symbols.

(2) There exists a bipartite code n:Z - T such that the diagram

2—1’—>I‘

1 l,,

A——Q
¢
commutes.
(3) M(X,) and M(¥,) are strong shift equivalent in 1 step.

Proof. Let f: A(A) > CD be a bipartite expression inducing ¢. We may assume that
CnD=. Let fi:A(A)-> C and f,: A(A)~> D be such that

fla)=fi(a)f(a), acA(A).

For each a =(a;);cz€ A, let g(a) be the element of (Cu D)? defined by g(a)=
(8:)icz, 82i-1=fi{a;) and 8,; =f(a;), i€ Z. Let A be the subshift given by

A={g(a)|aecA}u{og(a)|acA}

where o is the shift map on (C U D)% Then A is a bipartite sofic system, and A
and () are the induced pair of subshifts of A, up to recoding of symbols. Hence, by
theorem 4.5, %, and ¥, are the induced pair of A-graphs of ¥, up to recoding of
symbols. Thus (1) is proved, (2) follows from (1) and remark 4.2, and (3) follows
from (1) and remark 4.1. O

THEOREM 4.7. Let A be a bipartite transitive sofic system. Let A, and A, be the
induced pair of subshifts of A. Then &, is a bipartite A-graph, and %, and %,, are
the bipartite pair of A-graphs of F,.

Proof. Let C u D= A(A) be the bipartite partition for A. Since A is-a bipartite
subshift, it is observed that %, is a bipartite A-graph with bipartite vertex-sets U
and V, where U is the set of terminal vertices of the arcs labelled a symbol in D
and V is the set of terminal vertices of the arcs labelled a symbol in C. Let %, and
%, be the induced pair of A-graphs of &, having vertex-sets U and V, respectively.
Then, since L(%,)= L(A), it follows that L(%,)= L(A,) and L(%,)= L(A,). Since
%, is a Fischer A-graph (i.e. irreducible, right-resolving and reduced), so is each
of 4, and %, (remarks 4.3 and 4.4). Thus 4,= %, and %,=%,,. O
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By a proof similar to that of corollary 4.6, we also have:

COROLLARY 4.8. Let ¢: A > Q be a bipartite code between transitive sofic systems. Let
0:3 > A and w:1"> () be the right Fischer covers for A and (), respectively. Then the
following statements are valid.

(1) There exists a bipartite Fischer A-graph B such that ¥, and ¥, are the bipartite
pair of A-graphs of B, up to recoding of symbols.

(2) There exists a bipartite code n:3—>T" such that the diagram

2—1]—91‘

ojl\—_)(l;

commutes.
(3) M(%,) and M(%,) are strong shift equivalent in 1 step.

Proofs of theorems 3.3-3.6. Theorems 3.3 and 3.4 follow from corollaries 4.6 and 4.8.

The ‘only if” parts of theorems 3.5 and 3.6 follow from theorem 2.4 and corollaries
4.6 and 4.8.

Let 0:3 - A and #:T' > () be any two sofic covers. If the representation matrices
of @ and = are strong shift equivalent in 1 step, then there exists a bipartite A-graph
whose induced pair of A-graphs are the A-graph representing 6 and that representing
7, up to recoding of symbols (see remark 4.1), so that there exist bipartite codes
1 :2~>T and ¢,: A~ Q such that 77, = ¢,6, by remark 4.2. Therefore if the rep-
resentation matrices of 8 and = are strong shift equivalent, then there exist topologi-
cal conjugacies n:3->T and ¢: A~ Q such that 75 = ¢6. Hence, we have proved
more than the ‘if” parts of theorems 3.5 and 3.6 (see § 6). O

Remark. There is a simple procedure which, given M(¥,) [M(%#,)], where A is
any sofic system [transitive sofic system], and any bipartite expression f of A(A),
calculates directly from them the representation matrix of the bipartite Krieger
[Fischer] A-graph whose induced pair of A-graphs are %, [%,] (up to recoding
of symbols) and #,x) [Fs)), and hence M(H,)) [M(F4a))], where ¢ is the
standard bipartite code induced by f.

5. Automata and canonical sofic covers

In this section, we give a method based on finite automata theory to construct
Krieger covers for a given sofic system. A similar method to construct Fischer covers
for a given transitive sofic system, was presented in [11].

A right resolving A-graph is called an automaton if one of its vertices is specified
as the starting vertex. For an automaton & with starting vertex u,, L, (s¢) is called
the language accepted by A. & is said to be minimal if & is reduced and for each
vertex u # u,, there exists a path going from u, to u in &. It is well known in finite
automata theory and will also become clear in the following exposition that & is
minimal iff it is an automaton with the least number of vertices that accepts L, ().
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Two automata &, and &, are said to be isomorphic if there exists an isomorphism
(g, h) of A, onto oA, (of A-graphs) such that g maps the starting vertex of <, to
that of «,. (g is called an isomorphism of automata.) In what follows, isomorphic
automata will be identified.

Finite automata theory also shows that for any sofic system A, there exists a
unique minimal automaton that accepts L(A). We give a direct proof for its existence
and uniqueness for completeness and also give a standard method in finite automata
theory to construct it from any given A-graph ¥ with L(%) = L(A) (i.e. from any
given cover for A).

(1) First we give a minimal automaton &, accepting L(A), for any sofic system
A. Put A= A(A) and put L= L(A). Let L= L {e}, where ¢ is the unit element of
the monoid A*. Let

L.={yelL|xyeL}

for each xe L. As will be proved below, {L.|x¢€ I:} is finite. The vertex-set of <,
is {L|xe I:} and the starting vertex of &/, is L, = L. For each vertex L,, x€ L and
ac A, a unique arc labelled a goes from L, to L,, if xaec L. It is easy to see that
oA, is minimal and accepts L(A).

(2) (Subset-construction). We show that {L,|x € f} is finite and at the same time,
give a standard method (subset-construction) to construct an automaton accepting
L(A) from any A-graph ¢ such that L(%) = L(A) (i.e. a cover for A). Let U be the
vertex set of 4. For any V< U and x € A*, define S(V, x) to be the set of all terminal
vertices of the paths going from some vertex in V and generating x. (We define
S(V, &)= V.) We can define an automaton % as follows. The vertex-set of &5 is
{S(U, x)|x € A*, S(U, x)# }. The starting vertex of «§ is U. For each vertex
S(U, x)# O, xe A*, and ae A(Y) = A, a unique arc labelled a goes from S(U, x)
to S(S(U, x), a) = S(U, xa) if S(U, xa) # . Since x € Lif S(U, x) # &, A accepts
L=L(9%9). Clearly, we have

LS( U,x)(d;;) =L,

for each x e L. Since {S(U, x)|x € L} is finite, so is {L,|x € L}.

(3) (Uniqueness). Let & be any automaton accepting L(A) such that for each
vertex v of & which is not the starting vertex, there exists a path going from the
starting vertex to v. Let u, be the starting vertex of &/. For each xe I:, let s(ugy, x)
denote the terminal vertex of the path going from u, and generating x (we define
5(uo, €)= ugp). Then Ly, ()= L, for all xe L. Therefore if o is minimal, the
mapping of the vertex-set of of into {L,|x € f} that maps s(u,, x) to L,, is one-to-one
and onto and hence an isomorphism (of automata) of & onto .

(4) (Minimization). To obtain &/, from &, let {C;} be the equivalence classes of
the equivalence relation of vertices of &. Let o' be the automaton defined as follows:
the vertex set of &’ is {C;} and the starting vertex of &' is the class C, that contains
uy; for equivalence classes C; and C; and a € A, a unique arc labelled a goes from
C; to C; if there exists an arc labelled a going from a vertex in C; to that in C; in
A. Clearly sf' is equal to &, . This process is called the minimization of &. We note
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that a finite procedure to obtain the equivalence classes {C;} is well known in finite
automata theory.

Let & be an automaton over an alphabet A with starting vertex u,. For each
vertex u of &, let L, (+f) denote the set of words generated by the paths going from
ug to u. A vertex v of o is called a K-vertex of o if L, () contains infinitely many
terminal subwords of some left infinite sequence over A. (For a left infinite sequence
Y= Y_1Y0, Y-iY—i+1° ' * Yo is a terminal subword of y for each i=0.)

PROPOSITION 5.1. Let A be a sofic system. Then ¥, is equal to the maximal sub-A-graph
of A, whose vertex-set consists of all the K-vertices of o, .

Proof. Let y="---y_,v,€ A_. For each i=0, let s; be the terminal vertex of the
path in &/, going from the starting vertex u, of &, and generating y_;y_i11° " * Y.
Since the number of vertices of &, is finite, there exists a vertex s(y) such that
s; = s(y) for infinitely many i =0. Since

L (A\) > L, () for all ieN,
it follows that if s; = s(y) for some j=0, then
L, (Aa) = Ly,y(H,) for all i =}, (5.1)

which implies that s; = s(y) for all i =, because &, is reduced. Thus s(y) is unique
for y. Clearly s(vy) is a K-vertex of &,. Moreover, by (5.1) we have

L (y) ={xe AA*|yxec A_}. (5.2)

If vis a K-vertex of &, , then there exists a left infinite sequence & such that L;, (£,)
contains infinitely many terminal subwords of 8. Clearly 6 € A_ and v =s(4).
Thus a vertex v of «(A) is a K-vertex iff v =s(y) for some ye A_. By (5.2)
and the reducedness of s/, we see that the correspondence between E,[y] and
s(7y), where ye A_, is 1-1. It is easily seen that this correspondence gives an iso-
morphism between ¥, and the maximal sub-A-graph of &, whose vertex-set is

{s(v)|veA}. O
If A is a transitive sofic system, %, is obtained as the unique ergodic component
of o, [11].

Example. Let A be a transitive sofic system over A={a, b, ¢, d, e} such that

a b ¢

M(#,)=id a 0

e 0 a

By subset construction, we have
a d+e b ¢
0 a b ¢
M(d,)=M(¥K,)= .

(=M= 5 ¢
0 e 0 a
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Let Q be a transitive sofic system over B={a, b, ..

., j} such that

279

QR Co oo o o O

-ﬂg . Let

td

1/0 0 0 b 0
2/0 0 0 0 b
M(%3)=3{c d a 0 0]
4\e f g a O
s\h i j 0 a
By subset construction we obtain &, such that M () is given as
(1,2,3,4,5)/0 b a c+e+h d+f+i g+j 0
4, 5) 0 a o e+h f+i g+j 0
(3,4,5) 0 0 a cte+h d+f+i g+j O
1 0 00 0 0 0 b
2 0 00 0 0 0 0
3 0 00 c d a 0
4 0 00 e f g a
5 0 00 h i j 0
It is easy to see that
a ctet+h d+f+i g+j 0 0
0 ‘0 0 0 b 0
0 0 0 0 0 b
M{(Ha) = 0 c d a 0 0
0 e f g a0
0 h i j 0 a
Note that ¥, is not the maximal non-degenerate sub-A-graph of
a c+d 0
a d c 0 00 0 o0 b
0 dc aoO0 0 0 o0
P=lo 000 a0/ ™ 90 4 o
0 00 0 0 a 0 c a
0 d 0

Then we can see that M(¥,)=PQ and M(¥,)=QP.

This example shows that an analogue of Krieger’s theorems does not hold for the
sofic covers which are represented by the maximal non-degenerate sub-A-graphs of

minimal automata.

6. Concluding remarks

0
0
b
0
0
a

In [2], topological conjugacy for sofic covers has been defined: two sofic covers
6:3- A and 7: T > Q are topologically conjugate if there exist topological conjugacies
n:2-T and ¢: A - such that the diagram (3.1) commutes. As was proved in § 4,
if the representation matrices of two sofic covers are strong shift equivalent, then
the sofic covers are topologically conjugate. The question of whether the converse
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is valid or not, naturally arises. The answer is affirmative: one can prove that if two
sofic covers are topologically conjugate, then their representation matrices are strong
shift equivalent. Thus Williams’ theorem holds for sofic covers.

Recently, for the above claimed result, Toshihiro Hamachi has given a proof
(based on the proof of theorem 2.4) which is simpler than my original one and can
prove more. Hence a thorough treatment of the above subject is contained in [5].

I am indebtied to the referee for his constructive criticism and useful suggestions
which led to several great improvements in the organization and presentation of
the paper. I should like to thank Mike Boyle for his valuable comments.
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