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Abstract

In this paper we derive limit theorems for the conditional distribution of X1 given Sn = sn
as n → ∞, where the Xi are independent and identically distributed (i.i.d.) random
variables, Sn = X1 + · · · + Xn, and sn/n converges or sn ≡ s is constant. We obtain
convergence in total variation of PX1 | Sn/n=s to a distribution associated to that of X1
and of PnX1 | Sn=s to a gamma distribution. The case of stable distributions (to which the
method of associated distributions cannot be applied) is studied in detail.
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1. Introduction

In this paper we present some extensions, supplements, and variations of results on the
relationship between the sum Sn = X1 + · · · +Xn of n independent and identically distributed
(i.i.d.) random variables and the individual terms Xi . Formulated in the language of renewal
theory, given that the nth renewal takes place at time Sn = sn, what is the asymptotic behavior of
the conditional interarrival time distribution PX1 | Sn=sn for various types of real sequences sn?
This question has been of interest in renewal theory since it was discovered that, for a Poisson
process, the first n interarrival times, conditioned on the nth arrival taking place at time s,
have the same distribution as the spacings of an independent sample of n − 1 uniform random
variables on (0, s). In the renewal context the Xi will be nonnegative, but for most of our
derivations this property is not required.

One new feature of our results is that the mode of convergence is always convergence in
total variation. We consider different types of behavior of the sum.

Case A: let sn/n → m ∈ R. We show that in this case PX1 | Sn=sn converges to the associated
distribution with density e−ζx/�(ζ ) with respect to PX1 , where �(ζ ) is the (in general,
two-sided) Laplace–Stieltjes transform (LST) of PX1 and ζ = ζ(m) ∈ R has to be chosen
such that �′(ζ )/�(ζ ) = −m. Actually, under standard conditions, the densities converge
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uniformly on compact sets. Hence, knowledge of the behavior of the sum being distorted
results in a change of the underlying distribution of the Xi, which is achieved by means
of multiplication with a certain density (with respect to PX1 ). Our result includes the
nondistorted case m = E[X1] (note that ζ(E[X1]) = 0).

Case B: let sn = s = constant and let X1 be positive. In this case the summands must get
small for large n; clearly, E[nX1 | Sn = s] = s. We introduce n as a scaling factor
and prove that (under certain conditions) the density of PnX1 | Sn=s tends to a gamma
density as n → ∞, with scale and shape parameters depending on s and the behavior of
PX1 at 0 (of course, its mean is s).

For case A, we do not have to assume that the Xi are nonnegative. We remark that in case A
the function �′(ζ )/�(ζ ) is increasing so that m �→ ζ(m) is decreasing and we have ζ(m) < 0
if m > E[X1] and ζ(m) > 0 if m < E[X1]. Thus, the asymptotic density of PX1 | Sn=sn with
respect to PX1 , i.e. e−ζx/�(ζ ), is decreasing if m < E[X1] and increasing if m > E[X1].
Therefore, the asymptotic distribution is stochastically smaller than PX1 if m < E[X1] and
stochastically larger if m > E[X1].

The reason that the associated (also called conjugate) distribution Qζ (the probability
measure with density e−ζx/�(ζ ) with respect to PX1 ) appears is that the distribution of X1
given Sn remains the same if the distribution of every Xi is changed to Qζ . Then ζ is chosen
so as to get the ‘right’ expectation, in the same way as, for example, in the standard asymptotic
calculation of probabilities of large deviations. In fact, conditioning on Sn = sn with sn/n

having a limit different from EX1, implies that large deviations are considered.
The stable distributions do not satisfy the conditions that are required for our results.

However, we will show that they can be analyzed directly. Consider first the extreme stable
distribution Gα with index α ∈ (0, 2), i.e. having characteristic function

φα(u) =

⎧⎪⎪⎨
⎪⎪⎩

exp

{
−|u|α exp

(
− iπ

2
K(α)sgn u

)}
, α �= 1,

exp

{
−|u|

(
π

2
+ i(sgn u) log |u|

)}
, α = 1,

where K(α) = α − 1 + sgn(1 − α). Let gα(x) and g
(n)
α (x | s) be the densities of Gα and of

PX1 | Sn/n=s , respectively.

• For α ∈ (0, 1), the support of Gα is [0, ∞) and we show that

lim
n→∞ g(n)

α (x | s) = exp

{(
s

α

)α/(1−α)

−
(

s

α

)1/(α−1)

x

}
gα(x) for all s > 0, x > 0.

• For α = 1, the support of Gα is R and we show that

lim
n→∞ g

(n)
1 (x | s) = exp{e−s−1(1 + s − x)}g1(x) for all s ∈ R, x ∈ R.

• For α ∈ (1, 2), the support of Gα is R and

lim
n→∞ g(n)

α (x | s)

=

⎧⎪⎨
⎪⎩

exp

{
−

( |s|
α

)α/(1−α)

−
( |s|

α

)1/(α−1)

x

}
gα(x) for all s < 0, x ∈ R,

gα(x) for all s ≥ 0, x ∈ R.
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Conditional limit theorems for the terms of a random walk revisited 873

For the nonextreme stable distributions, we prove that the conditional densities converge
pointwise to the unconditional density.

Weak convergence of PX1 | Sn=sn to the appropriate associated distribution as in case B
was derived in [15] under more restrictive conditions (the motivation there is from statistical
mechanics). The proof in [15] was based on an unpublished result in the dissertation of Zabell
[17]. We sharpen Theorem 2 of [15] and establish convergence in total variation. In fact, we
obtain, for example, even uniform convergence of the density of PX1 | Sn=nm on compact sets
to the limiting density if X1 has a bounded density. Our result in case B is related, though not
directly comparable, to that of [4] on ‘thickened renewal processes’. In [4] the weak limits
of the distributions PnX1 | Sn≤s and PnX1 | Sn≤s<Sn+1 are studied, which are not quite the same
as PnX1 | Sn=s , for which we establish convergence in total variation. The methods are also
different (renewal-theoretic versus complex-analytic).

The vast literature on conditional limit theorems for random walks, except for [15] and
the older references from statistical physics cited therein, deals with conditions that are of
another type than Sn = s; see, e.g. [3], [6], [9], and [12]. Asymptotic results for linear
combinations of X1, . . . , Xn given Sn can be found in [7], [8], [10], and [13]. A functional
limit theorem under the condition Sn = constant is given in [14], in [18] a convergence result
for expectations conditioned on a sum is proved, and in [2] an approximation for the distribution
of (X1, . . . , Xk) given Sn for n → ∞ and k/n → 0 is developed. The asymptotics in the case
of stable distributions have not been studied before.

The editor points out that case A of the present paper is related to discussions in [11], where
the relevant results as referred to as ‘Boltzmann’s law’; see also [1, Chapter VI].

Our motivation stems from inventory theory where the Xi represent individual demands for
different storage sites and their sum is of course the pooled total demand. Then, given the total
demand, what can be said about an individual demand? In other words, given Sn/n = s, what
is the distribution of Xi? Suppose that the total demand Sn for n inventories becomes known
but not the way the demand is split among the individual storage places. Then on average every
inventory will have to satisfy the same amount on demand, namely Sn. Our results provide
information on the conditional distribution of the individual demands. For background on
pooling of stochastic demands, see [16].

The paper is organized as follows. In Sections 2 and 4 we derive the total variation limit
theorems for the conditional distribution of X1, given that Sn = sn, for certain real sequences,
announced in cases A–B. In between in Section 3 the asymptotic behavior of PX1 | Sn=ns for the
stable distributions is determined.

2. Conditional limit theorems for sn/n → m

We now study the asymptotic behavior of PX1 | Sn=sn for real sequences sn satisfying |n−1sn−
m| = O(n−1/2) for some m ∈ R and make the following assumptions.

(A1) The set {ζ ∈ R | �(ζ ) < ∞} contains a nonempty open interval U .

(A2) There is a ζ = ζ(m) ∈ U for which �′(ζ )/�(ζ ) = −m.

(A3) X1 has a density f .

(A4) For ζ = ζ(m), the characteristic function φζ of the associated distribution with Lebesgue
density e−ζxf (x)/�(ζ ), say Qζ , satisfies

∫ |φζ (t)|n0 dt < ∞ for some n0 ∈ N.
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Note that the function −�′/� : U → R is one-to-one, so if m is in its range, ζ(m) is uniquely
determined, and Qζ has expected value m.

Theorem 1. If (A1)–(A4) hold then, for every compact set K ⊂ R,

lim
n→∞ sup

x∈K

∣∣∣∣fn−1(sn − x)

fn(sn)
− e−ζx

�(ζ )

∣∣∣∣ = 0.

In particular, the Lebesgue density f (x)fn−1(sn −x)/fn(sn) of PX1 | Sn=sn converges pointwise
to that of Qζ , so the standard version of PX1 | Sn=sn converges to Qζ in total variation. If f is
bounded, the density of PX1 | Sn=sn converges uniformly on compact sets.

Proof. Clearly, fζ,n(x) = e−ζxfn(x)/�(ζ )n is the Lebesgue density of the n-fold convo-
lution of Qζ . By (A4), the local central limit theorem holds for fζ,n, i.e. the standardized
densities f̂ζ,n(x) = n1/2σfζ,n(n

1/2σx + nm) satisfy

lim
n→∞ sup

x∈R

|f̂ζ,n(x) − (2π)−1/2e−x2/2| = 0.

For any y with fn(y) �= 0, we obtain

fn−1(y − x)

fn(y)
= e−ζx

�(ζ )

fζ,n−1(y − x)

fζ,n(y)

= e−ζx

�(ζ )

(
n

n − 1

)1/2

× f̂ζ,n−1(σ
−1[(y − nm)/(n − 1)1/2 + (m − x)/(n − 1)1/2])

f̂ζ,n(σ−1n1/2[y/n − m]) .

Hence, ∣∣∣∣fn−1(y − x)

fn(y)
−

(
n

n − 1

)1/2 e−ζx

�(ζ )

∣∣∣∣
=

(
n

n − 1

)1/2 e−ζx

�(ζ )

1

f̂ζ,n(σ−1(n1/2[y/n − m]))
×

∣∣∣∣f̂ζ,n−1

(
σ−1

[
y − nm

(n − 1)1/2 + m − x

(n − 1)1/2

])
− f̂ζ,n

(
σ−1n1/2

[
y

n
− m

])∣∣∣∣.
Now let us set y = sn. Using the boundedness of n1/2[sn/n − m] and the local central
limit theorem for f̂ζ,n, it is easily checked that the difference in absolute value signs tends
to 0 uniformly on every compact set of x-values, and that f̂ζ,n(σ

−1n1/2[y/n − m]) =
f̂ζ,n(σ

−1n1/2[sn/n−m]) remains bounded away from 0, so that its reciprocal remains bounded.
This completes the proof.

Corollary 1. Assume that X1 has a density f and a finite variance, and that |φ|n0 is Lebesgue
integrable for some n0 ∈ N. Then the standard version of PX1 | Sn=sn converges to PX1 in total
variation. If f is bounded (e.g. in the case when |φ| is Lebesgue integrable), the density of
PX1 | Sn=sn converges uniformly to f on compact sets.

Remark. For well-behaved averages, i.e. sn/n → E[X1], there is another way of looking at the
limiting behavior of PX1 | Sn=sn ; only the existence of E[X1] has to be assumed. Let Kn(s, dx)
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be a stochastic kernel which is a regular conditional distribution of X1 given that Sn = s. Let
An = σ(Sn, Sn+1, Sn+2, . . .) be the σ -algebra generated by the tail (Sn, Sn+1, Sn+2, . . . ) of the
sum sequence. Then it is easily checked that Kn(Sn, dx) is also a regular conditional distribution
of X1 given An. The sequence An decreases to A∞, the tail σ -algebra of S1, S2, S3, . . . which,
by the Hewitt–Savage 0–1 law, is trivial. Therefore, the martingale convergence theorem yields
E[g(X1) | An] → E[g(X1)] almost surely for every bounded measurable function g : R → R,
and this implies that

Kn(Sn, B) → PX1(B) almost surely for every Borel set B ⊂ R.

In particular, Kn(Sn, ·) → PX1 in distribution almost surely. It follows that the set of sequences
(sn)n≥1 ∈ R

∞ for which

PX1 | Sn=sn = Kn(sn, ·) → PX1 in distribution

has probability 1 under the distribution of the full sequence (S1, S2, S3, . . .) on the underlying
space R

∞. But the set of all sequences (sn)n≥1 ∈ R
∞ satisfying sn/n → E[X1] also has

probability 1 under this distribution (by the law of strong numbers). Therefore, informally
stated, given that Sn/n takes a value in accordance with the law of large numbers, the conditional
distribution of X1 is approximately the same as the unconditional distribution of X1. Under
the conditions of Corollary 1, it can even been shown that

lim
n→∞ ‖PX1 | Sn − PX1‖ → 0 almost surely

(‖ · ‖ denoting the total variation). It follows that the set of sequences (sn)n∈N for which
sn/n → E[X1] and ‖PX1 | Sn=sn − PX1‖ → 0 has probability 1 under the distribution of (Sn)n∈N

on the sequence space R
∞.

3. The case of stable distributions

It was noted in [15] that, for the (nonintegrable) Cauchy variables, having density f (x) =
[π(1 + x2)]−1, the density of PX1 | Sn=ns converges pointwise to f for every s ∈ R. Loosely
speaking, asymptotically, the knowledge of the value of the average does not influence the
distribution of X1. In this section we determine the asymptotic behavior of PX1 | Sn=ns for an
arbitrary stable distribution for X1. For α ∈ [0, 2] and β ∈ [−1, 1], let Gα,β be the stable
distribution with characteristic function

φα,β(u) =

⎧⎪⎪⎨
⎪⎪⎩

exp

{
−|u|α exp

(
− iπ

2
βK(α)sgnu

)}
, α �= 1,

exp

{
−|u|

(
π

2
+ iβ(sgnu) log |u|

)}
, α = 1,

where K(α) = α−1+sgn(1−α). Here we use the parametrization suggested in the monograph
[19]. We denote by gα,β(x) and g

(n)
α,β(x | s) the standard densities of Gα,β and PX1 | Sn/n=s ,

respectively.

Theorem 2. For all s ∈ R,

lim
n→∞ g

(n)
α,β(x | s) = gα,β(x) if (α, β) ∈ (0, 2) × (−1, 1). (1)
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We need several properties of the densities gα,β (proofs can be found in [19]).

(i) Smoothness and support. gα,β is infinitely differentiable. For α ∈ (0, 1), the support of
Gα,1 is R+ and that of Gα,−1 is R−; for all other values of (α, β), we have gα,β(x) > 0
for all x ∈ R.

(ii) LST. Let �α,β(s) = ∫
R

e−sxgα,β(x) dx. Then �α,β(s) < ∞ in a neighborhood of s = 0 if
and only if |β| = 1 or α = 2.

(iii) Symmetry. gα,β(−x) = gα,−β(x).

(iv) Duality. For all x > 0 and α ∈ (1, 2],
gα,β(x) = x−1−αgα−1,β ′(x−α), where β ′ = 1 − (2 − α)(1 + β).

(v) Asymptotics for α = 1. For all β ∈ (−1, 1],
lim

x→∞ x2g1,β(x) = 1
2 (1 + β).

Proof of Theorem 2. Let g∗n
1,β be the n-fold convolution of gα,β with itself. To show (1), we

need to prove that, for all α ∈ (0, 2), β ∈ (−1, 1), and x, s ∈ R, we have

lim
x→∞

g
∗(n−1)
α,β (ns − x)

g∗n
α,β(ns)

= 1. (2)

By stability, it follows that

g
∗(n−1)
α,β (ns − x)

g∗n
α,β(ns)

= (n − 1)−1/αgα,β((n − 1)−1/α(ns − x))

n−1/αgα,β(n−1/αns)

=
(

n

n − 1

)1/α gα,β((n − 1)−1/α(ns − x))

gα,β(n1−(1/α)s)
. (3)

By property (i), gα,β is continuous at 0 and gα,β(0) > 0.
First let α ∈ (0, 1). Then the arguments of the numerator and denominator of the right-hand

side of (3) converge to 0, and, hence, the ratio tends to 1.
Now let α ∈ (1, 2). Then, for s = 0, the right-hand side of (3) tends to 1 as n → ∞. For

s > 0, the duality (iv) implies that, for all n for which ns > x, we have

g
∗(n−1)
α,β (ns − x)

g∗n
α,β(ns)

=
(

n

n − 1

)1/α

× ((n − 1)1/α/(ns − x))1+αgα−1,β ′([(ns − x)/(n − 1)1/α]−α)

(n1−1/αs)−(1+α)gα−1,β ′([n1−1/αs]−α)
, (4)

where β ′ = 1 − (2 − α)(1 + β). If β ′ �= 1, i.e. α �= 2 and β �= −1, the right-hand side of (4)
converges to 1. Next, symmetry property (iii) yields (2) for α ∈ (1, 2), |β| < 1, and s < 0.

Finally, let α = 1. By stability,

g∗n
1,β(x) = n−1g1,β(n−1x − β log n), x ∈ R.
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Together with asymptotic property (v), this yields (2) for β ∈ (−1, 0), and the symmetry
property gives the same conclusion for β ∈ (0, 1). For β = 0, we use the continuity of g1,0
and the relation g1,0(s) > 0 for all s to obtain

g
∗(n−1)
1,0 (ns − x)

g∗n
1,0(ns)

= n

n − 1

g1,0((n − 1)−1(ns − x))

g1,0(s)
→ 1 as n → ∞.

This completes the proof.

For the extreme stable distributions, i.e. in the case β = 1, the situation is different.

Theorem 3. (a) If α ∈ (0, 1),

lim
n→∞ g

(n)
α,1(x | s) = exp

{(
s

α

)α/(1−α)

−
(

s

α

)1/(α−1)

x

}
gα,1(x) for all s > 0, x > 0.

(b) If α = 1,

lim
n→∞ g

(n)
1,1(x | s) = exp{e−s−1(1 + s − x)}g1,1(x) for s ∈ R, x ∈ R.

(c) If α ∈ (1, 2),

lim
n→∞ g

(n)
α,1(x | s) =

⎧⎪⎨
⎪⎩

exp

{
−

( |s|
α

)α/(1−α)

−
( |s|

α

)1/(α−1)

x

}
gα,1(x) for s < 0, x ∈ R,

gα,1(x) for s ≥ 0, x ∈ R.

Proof. By Theorem 2.6.1 of [19], the LST �α,1(ζ ) of Gα,1 is finite for all ζ ≥ 0 and given
by

�α,1(ζ ) =

⎧⎪⎨
⎪⎩

e−ζα
if α ∈ (0, 1),

ζ ζ if α = 1,

eζα
if α ∈ (1, 2].

A short calculation shows that the equation �′
α,1(ζ )/�α,1(ζ ) = −s has a unique positive solution

ζ(s) for s ∈ (0, ∞) if α ∈ (0, 1), for s ∈ R if α = 1, and for s ∈ (−∞, 0) if α ∈ (1, 2). The
solution is given by

ζ(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
s

α

)1/(α−1)

if α ∈ (0, 1), s > 0,( |s|
α

)1/(α−1)

if α ∈ (1, 2), s < 0,

e−s−1 if α = 1, s ∈ R.

(5)

Now, from Theorem 1 and (4), where the ratio on the right-hand side also converges to 1 for
α �= 2, β = 1, and s > 0, we can conclude that

lim
n→∞ g

(n)
α,1(x|s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−ζ(s)x

�α,1(ζ(s))
gα,1(x) for α ∈ (0, 1), s ≥ 0, x > 0,

or α ∈ (1, 2), x ∈ R, s < 0,

or α = 1, s ∈ R, x ∈ R,

gα,1(x) for α ∈ (1, 2), x ∈ R, s ≥ 0.

(6)

The theorem follows by inserting (5) into (6).
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4. Asymptotic behavior conditional on a fixed sum

We now consider positive random variables Xi with distribution function F , LST �, and a
Lebesgue density f on (0, ∞). It is assumed that fn, the density of Sn, is continuous for all
n ≥ n0 and that � can be written in the form

�(ζ ) = Kζ−ρL(ζ ), ζ ∈ (0, ∞),

for some constants K, ρ > 0 and some function L that is slowly varying at ∞. By a well-known
Tauberian theorem (see [5, Chapter XIII.5]) this implies that

F(x) ∼ Kxρ

	(ρ + 1)
L

(
1

x

)
as x → 0. (7)

We impose a somewhat stronger condition on the density f :

• f is continuous on (0, η) for some η > 0 and A := limx→0 x1−ρf (x) exists.

Next we introduce �̃(z), the analytic continuation of � on the complex half-plane Re z > 0,
and L̃(z) = K−1zρ�̃(z), the analytic continuation of L on Re z > 0, where zρ = eρ log z is the
complex power function with log z denoting the principal branch of the complex logarithm.
Our assumption on L̃ is the following.

• There exist an a ∈ R and a δ > 0 such that the function L̃(nz)n converges to eρa/z

uniformly on every set of z-values z = x + iy with |y| < δ and x in some compact subset
of (0, ∞). Moreover, for every x > 0, the sequence of functions y �→ L̃(n(x + iy))n is
uniformly bounded on R.

This technical condition is, for example, satisfied for the entire class of distributions that have
a rational LST (which contains the phase-type distributions). To see this, note that if � is a
rational LST, it is of the form

�(ζ ) =
k∑

i=0

aiζ
i

/ k+l∑
j=0

bj ζ
j = ak

bk+l

ζ−l ζ k + ∑k−1
i=0 (ai/ak)ζ

i

ζ k + ∑k+l−1
j=0 (bj /bk+l )ζ j−l

for certain constants k ∈ Z+, l ∈ N, and a0, . . . , ak, b0, . . . , bk+l ∈ R, where ak �= 0 �= bk+l .
Hence, we can set K = ak/bk+l , ρ = l, and

L̃(z) = 1 + ∑k−1
i=0 (ai/ak)z

i−k

1 + ∑k+l−1
j=0 (bj /bk+l )zj−k−l

.

Now if Re z remains bounded away from 0, we find that

(L̃(nz))n =
(

1 + ak−1/akzn + O(n−2)

1 + bk+l−1/bk+lzn + O(n−2)

)n

→ exp

{(
ak−1

ak

− bk+l−1

bk+l

)
1

z

}
as n → ∞,

and the uniformity and boundedness requirements are clearly satisfied.

Theorem 4. Under the above conditions, the standard version of PnX1 | Sn=s converges in total
variation to the gamma distribution with density 	(ρ)−1(ρ/s)ρxρ−1e−ρx/s .
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Proof. Fix s > 0, and let n > n0. The standard version of PnX1 | Sn=s has the density

gn,s(x) = fn−1(s − x/n)

nfn(s)
f

(
x

n

)
1(0,ns](x).

We define the functions c(x) and cn(x) by

c(x) = 	(ρ)x1−ρf (x), cn(x) = 	(nρ)x1−nρfn(x).

Then we can write gn,s(x) in the form

gn,s(x) = cn−1(s − x/n)c(x/n)

cn(s)

	(nρ)n−ρ

	((n − 1)ρ)	(ρ)

×
(

1 − x

ns

)(n−1)ρ−1

s−ρxρ−1 1(0,ns](x). (8)

Clearly, we have, for every x > 0, by Stirling’s formula,

lim
n→∞

	(nρ)n−ρ

	((n − 1)ρ)	(ρ)

(
1 − x

ns

)(n−1)ρ−1

s−ρxρ−1 1(0,ns](x)

= 1

	(ρ)

(
ρ

s

)ρ

xρ−1e−ρx/s . (9)

Regarding the other factors on the right-hand side of (8) we now show that

lim
n→∞ K−ncn(x) = eax uniformly on any compact interval in (0, ∞), (10)

lim
x→0

c(x) = K. (11)

Equations (10)–(11) yield

lim
n→∞

cn−1(s − x/n)c(x/n)

cn(s)
= 1. (12)

It follows from (8), (9), and (12) that the density of PnX1 | Sn=s converges pointwise to that of
the gamma distribution with shape parameter ρ and scale parameter ρ/s. This is sufficient for
convergence in total variation.

It remains to prove (10) and (11). Observe first that the constants K , ρ, and A are connected
by the equation K = A	(ρ). To see this, note that by the conditions on f we have F(x) ∼
Axρ/ρ as x → 0, so, by (7),

Axρ

ρ
∼ Kxρ

	(ρ + 1)
L

(
1

x

)
as x → 0. (13)

By our assumption on L̃(nz), setting z = 1 we obtain L(n)n → eρa, so L(n) → 1. Relation
(13) now gives K = A	(ρ). By the definition of c(x), this implies that limx→0 c(x) =
	(ρ)A = K, i.e. (11).

The remaining proof is based on Laplace inversion, which yields, for arbitrary c > 0,

fn(y) = 1

2π i

∫ c+i∞

c−i∞
eyz�̃(z)n dz.
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Thus,

cn(x) = 	(nρ)

xnρ−1

1

2π

∫ c+i∞

c−i∞
Knexzz−nρL̃(z)n dz.

Substituting z = (naρ/s)w and setting c = anρ/s we obtain

K−ncn(x) = 	(nρ)

(nρ)nρ−1

1

2π i

∫ 1+i∞

1−i∞
enρww−nρL̃

(
nρw

x

)n

dw

= 	(nρ)

(nρ)nρ−1

enρ

2π

∫ ∞

−∞
einρt (1 + it)−nρL̃

(
nρ

x
(1 + it)

)n

dt. (14)

We fix a ε ∈ ( 1
3 , 1

2 ), and write the integral on the right-hand side of (14) as I
(1)
n + I

(2)
n , where I

(1)
n

and I
(2)
n denote the corresponding integrals over [−n−ε, n−ε] and R\[−n−ε, n−ε], respectively.

By the uniform boundedness condition on L̃(nz)n, there is a constant C such that

|I (2)
n | ≤

∫ ∞

n−ε

C|1 + it |−nρ dt

= C

∫ ∞

n−ε

|1 + t2|−nρ/2 dt

≤ C

n−ε(nρ − 1)

= O(n−1+ε) as n → ∞. (15)

For the second inequality in (15), we have used the estimate (valid for arbitrary u > 0)∫ ∞

u

|1 + t2|−nρ/2 dt ≤ (1 + u2)1/2

u

∫ ∞

u

t

(1 + t2)1/2 |1 + t2|−nρ/2 dt

= (1 + u2)1/2

u

1

nρ − 1
(1 + u2)−(nρ−1)/2

= 1

u(nρ − 1)
(1 + u2)−nρ/2+1.

From (14)–(15) and Stirling’s formula, it follows that

K−ncn(x) =
(

nρ

2π

)1/2 ∫ n−ε

−n−ε

einρt (1 + it)−nρL̃

(
nρ

x
(1 + it)

)n

dt +
(

nρ

2π

)1/2

O(n−1+ε)

=
∫

R

(2π)−1/2 1[−ρ1/2n1/2−ε,ρ1/2n1/2−ε](u)ei(nρ)1/2u

(
1 + i

u

(nρ)1/2

)−nρ

× L̃

(
nρ

x
(1 + iu(nρ)−1/2)

)n

du + o(1), (16)

where we have used ε < 1
2 and the substitution u = (nρ)1/2t for the second equality. Consider

the integrand on the right-hand side of (16). For the L̃-term, we have, according to our
assumptions,

lim
n→∞ sup

u∈[−ρ1/2n1/2−ε,ρ1/2n1/2−ε]

∣∣∣∣L̃
(

n

[
ρ

x
+ i

ρ

x
u(nρ)−1/2

])n

− eax

∣∣∣∣ = 0,
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and this convergence is uniform in s as long as s is restricted to an arbitrary compact interval
in (0, ∞). Moreover, by Taylor’s expansion,

ei(nρ)1/2u

(
1 + i

u

(nρ)1/2

)−nρ

= exp

{
i(nρ)1/2u − nρ log

(
1 + iu

(nρ)1/2

)}

= exp

{
i(nρ)1/2u − nρ

(
iu

(nρ)1/2 − 1

2

[
iu

(nρ)1/2

]2

+ O

([
u

n1/2

]3))}

= exp

{
−u2

2
+ O

(
u3

n1/2

)}
,

and the O(u3/n1/2) term tends to 0 uniformly in |u| ≤ ρ1/2n1/2−ε, which is the interval where
the expansion is needed (recall that ε > 1

3 ). It follows that limn→∞ K−ncn(x) = eax uniformly
on any compact subset of (0, ∞), so (10), and, thus, the theorem, is proved.

Examples. (a) Let the Xi be uniformly distributed on (0, 1). Then �(ζ ) = ζ−1(1 − e−ζ ),
ρ = A = K = 1, and L̃(z) = 1 − e−z. We have L̃(nz)n → 1 uniformly on Re z ≥ ε for every
ε > 0. All assumptions are satisfied, a = 1, and PnX1 | Sn=s converges in total variation to the
exponential distribution with mean s.

(b) Let l ∈ (0, 1], β > α > 0, and

f (x) = l
1

	(α)
xα−1e−x + (1 − l)

1

	(β)
xβ−1e−x,

i.e. f is a mixture of two gamma densities (or a pure gamma density if l = 1). Then, as

�(ζ ) = l(1 + ζ )−α + (1 − l)(1 + ζ )−β,

we obtain ρ = α, K = l, A = l/	(α), and

L̃(z) =
(

z

1 + z

)α[
1 + 1 − l

l

(
1

1 + z

)β−α]
, Re z > 0.

A short calculation yields

L̃(nz)n →
{

e−α/z if β − α > 1,

e[(1−l)/ l−α]/z if β − α = 1,

uniformly on Re z ≥ ε as n → ∞ for any ε > 0. Therefore, we find that, for β ≥ α + 1, all
assumptions are satisfied and PnX1 | Sn=s converges in total variation to the gamma distribution
with parameters α/s and α. It is an open problem whether this also holds in the case β − 1 <

α < β.
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