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Until recently, only collisionless models have been investigated in the kinetic 
treatment of stellar disk stability (e.g., Fridman and Polyachenko [1984]). 
This is due to the fact that the frequency of ordinary binary stellar gravita-
tional (elastic) encounters in the Galaxy is much smaller than the variation 
of the gravitational field for the process being studied. However, in the pi-
oneering paper Spitzer and Schwarzschild (1951) proposed a different kind 
of encounter: interaction of stars with gas clouds of the interstellar medium 
having a mass of rougly 10 6 MQ. In recent years this hypothesis was par-
tially confirmed by observations: it was discovered in the Galaxy a few 
thousand giant molecular clouds of mass MC > 10 5 M 0 . Other evidence of 
dynamical relaxation of the star-cloud disk in the solar neighborhood was 
found by Grivnev and Fridman (1990); the time of relaxation was estimated 
equal to r = (2 — 4) χ 10 9 years. Hence the study of coUisional star-cloud 
system is not only of academic interest - on the time span t > 10 9 years 
an actual galaxy may be a coUisional ensemble of stars and clouds. 

Here I report the results of the theoretical study of the dynamics of a 
stellar galactic disk when star-cloud collisions are taken into account (Griv 
and Peter 1994, Astrophys. J., submitted). With respect to the physical 
state of our own Galaxy, the dynamics of a system with rare encounters 
between stars and clouds is considered when the epicyclic frequency κ ~ 

1 0 " 8 encounters vc ~ 1/r ~ 10~ 9 years" 1 . In addition, the proper, but 
complicated, collision integral was replaced by an approximate model of 
Bhatnagar et al. (1954). 

The dispersion relation, which connects the oscillation frequency ω and 
the wavenumber was obtained in the form 

κ2χ2 _ j ω+e xIi(x) _ | _ 2 j ^ mx2 e xIo(x) ivcn
2x2 e xIQ(X) 
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where χ = k2c2/K2, cr is the radial-velocity dispersion, σο is the equilibrium 
surface density of the stellar disk, L is the scale of density inhomogeneity, 
ω* = ω — τηΩ, m is the azimuthal mode number (the number of spiral 
arms), and Ii(x) is the modified Bessel function. 

The dispersion relation describes the Jeans and gradient branches of 
oscillations modified by collisions. Since in general, this relation is very 
complicated, in order to deal with the most interesting oscillation types I 
consider only some limiting cases of perturbations. Thus from the above 
relation, in the case of weak collisions, ω2 >> ν2, the dispersion law for the 
Jeans branch is described by 

κ2 (. mx2 

ω * 1- 2 - ± P ^ - + 2 Ω ^ Ρ J ' ( 1 ) 

where ρ = 1 for perturbations with ω2 > 0 and ρ = i for perturbations 
with ω2 < 0, and uj is the frequency of the Jeans oscillations. From (1) one 
concludes that Jeans-stable perturbations (ω2 > 0) will decay (Im{u;*} > 0) 
in the presence of collisions, and Jeans-unstable perturbations (ω2 < 0) will 
undegro additional weak destabilization (Im{u;*} < 0) . 

Apart from the Jeans roots (1) , the dispersion relation has another root, 
which describes the gradient branch of oscillations 

Accordingly, the gradient perturbations are unstable in the presence of par-
ticle encounters in the Jeans-stable disk. In principle, this dissipative insta-
bility, as well as the kinetic one, can be considered as generating mechanisms 
for unstable short-scale spiral density waves. 
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