
1
Key Points

This chapter introduces mathematical concepts needed in the

remainder. Readers with background in statistics or machine

learning may find that they can skim through it. In fact, we

recommend that readers skip this chapter on their first, high-

level pass through this text, as the first conceptual arguments

for Probabilistic Numerics will arrive in Chapter II. However,

the mathematical arguments made in later chapters require the

following key concepts, which must be developed here first:

§ 2 Probabilities provide the formal framework for reasoning

and inference in the presence of uncertainty.

§ 3 The notion of computation as probabilistic inference is

not restricted to one kind of probability distribution; but

Gaussian distributions play a central role in inference on

continuous-valued variables due to their convenient alge-

braic properties.

§ 4 Regression – inference on a function from observations of its

values at a finite number of points is an internal operation of

all numerical methods and arguably a low-level numerical

algorithm in itself. But regression is also a central task in

machine learning. We develop the canonical mathematical

tools for probabilistic regression:

§ 4.1 Gaussian uncertainty over the weights of a set of basis

functions allows inference on both linear and nonlinear

functions within a finite-dimensional space of hypotheses.

The choice of basis functions for this task is essentially

unlimited and has wide-ranging effects on the inference

process.
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20 I Mathematical Background

§ 4.2 Gaussian processes extend the notion of a Gaussian dis-

tribution to infinite-dimensional objects, such as functions.

§ 4.3 In the Gaussian case, the probabilistic view is very

closely related to other frameworks of inference and ap-

proximation, in particular to least-squares estimation. This

connection will be used in later chapters of this texts to

connect classic and probabilistic numerical methods. In

fact, readers with a background in interpolation/scattered

data approximation may interpret this section as covering

a first example of building a probabilistic interpretation

for these numerical tasks. In contrast, from the perspec-

tive of machine learning and statistics, regression is not a

computational task, but a principal form of learning. This

difference in viewpoints thus highlights the fundamental

similarity of computation and learning once again.

§ 4.4 Gaussian process models allow inference on derivatives
of functions from observations of the function, and vice

versa. This will be relevant in all domains of numerical

computation, in particular in integration, optimisation,

and the solution of differential equations.

§ 5 Gauss–Markov processes are a class of Gaussian process mod-

els on univariate domains whose “finite memory” allows

inference at cost linear in the number of observations. The

inference process is packaged into algorithms known as fil-
ters and smoothers. The dynamics of the associated stochastic

process are captured by linear stochastic differential equations.

§ 6 Conjugate priors for the hyperparameters of Gaussian models

allow inference on the prior mean and covariance at low

computational cost.
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