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On the Existence of the Graded Exponent
for Finite Dimensional Zp-graded Algebras

Onofrio M. Di Vincenzo and Vincenzo Nardozza

Abstract. Let F be an algebraically closed field of characteristic zero, and let A be an associative unitary

F-algebra graded by a group of prime order. We prove that if A is finite dimensional then the graded

exponent of A exists and is an integer.

1 Introduction

If A is an algebra, possibly nonassociative, it is acceptable to translate its complexity
considering how many polynomial relations are satisfied by its elements: less rela-
tions mean more difficult computations with algebra elements. If the base field has
characteristic zero, the so called multi-linear relations are enough to describe the
complete situation, thanks to a typical process of multi-linearization of the polyno-
mial relations satisfied by the algebra. Within this general setting, one can attach to A

a sequence of nonnegative integers
(

cn(A)
)

n∈N
, the codimension sequence of A. This

in some sense provides a measure of how many relations hold in A. A classic result
states that if an associative algebra A does satisfy at least a nontrivial polynomial re-
lation (a PI-algebra) then there exists a constant d ∈ N such that cn(A) 6 dn for all
n ∈ N [Re1]. The existence of an exponential bound for the codimension sequence
easily fails not only for nonassociative algebras, but also for the associative ones. For
example, for the free associative algebra A = F〈x, y〉, one has cn(A) = n!.

If the codimension sequence of an algebra A is exponentially bounded, it makes
sense to ask whether the limit limn

(
n
√

cn(A)
)

exists, and to try to compute it. This
was achieved by Giambruno and Zaicev for associative PI-algebras [GZ1], [GZ2].
They proved not only that the limit does exist, but also that it is a nonnegative inte-
ger, called the exponent of A, or the PI-exponent of A, confirming a conjecture posed
by Amitsur. Similar attempts were made for other classes of algebras; what is known
is that the Lie-exponent of any finite dimensional Lie algebra does exist and is also an
integer [Za]. The same conclusions hold for certain simple Jordan algebras of small
dimension [GRZ]. These positive answers go together with the partial or negative
ones: it has been proved [Vo1], [Vo2] that if L is an infinite dimensional Lie algebra
then the Lie codimension sequence may have over-exponential growth. Even when
exponentially bounded, the limit limn

(
n
√

cL
n(A)

)
may be not an integer [MZ]. A new

scale to measure the rate of growth of the codimensions of Lie algebras is contained
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in [Pe]. Among the other results, it was shown in [BD] that the finite dimensional
condition implies an exponentially bounded codimension sequence, also for nonas-
sociative algebras. Nevertheless it was shown in [GMZ] that for any real number
α > 1 there exists a nonassociative algebra of exponent α.

In PI-theory a topic of increasing interest is the study of group graded algebras.
Apart from their own interesting features, group graded algebras may provide sig-
nificative information on quite general questions. This is the case, for instance, for
the fundamental results of Kemer on PI-algebras, in which Z2-graded algebras were
involved [Ke]. In certain circumstances, actually, this situation is equivalent to have
a group acting as a group of algebra automorphisms. A G-codimension sequence(

cG
n (A)

)
may be defined in this case, too, and with light assumptions it has exponen-

tial growth [GR], so questions about the existence of limn

(
n
√

cG
n (A)

)
make sense. In-

deed, it has been proved in [GZ3], [BGP] that this exponent does exist when G ∼
= Z2,

and G acts on a finite dimensional associative algebra A either as a group of auto-
morphisms (Z2-graded algebras) either of anti-automorphisms (algebras with an in-
volution). In the present paper, we shall prove that the exponent of an associative
finite dimensional algebra graded by a group of prime order exists, as well, and it is
an integer.

2 Basics

Throughout the rest of the paper, let F denote an algebraically closed field of char-
acteristic zero, and let the word algebra mean an associative unitary F-algebra. If G

is any finite group, we say that A is G-graded if there exist F-subspaces Ag (for each
g ∈ G) such that A =

⊕
g∈G Ag and for all g, h ∈ G it holds AgAh ⊆ Agh. Each Ag is

called a G-homogeneous component of A, and if a ∈ Ag we say that g is the degree
of a, and write |a| = g. The G-grading is trivial if Ae = A (e being the identity ele-
ment of G). If A,B are G-graded algebras, the structure-preserving homomorphisms
are the so called G-homomorphisms: an algebra homomorphism ϕ : A → B is a
G-homomorphism (or a graded homomorphism) if for all g ∈ G it is ϕ(Ag) ⊆ Bg .

It is possible to define a free object in the class of G-graded algebras, for an as-
signed group G: consider a countable set of indeterminates X := {x

g
i | 1 6 i ∈

N, g ∈ G}. We shall call i the name and g the G-degree of x
g
i . Then the map

| · | : X → G defined by
∣∣xg

i

∣∣
= g induces a G-grading on the free associative al-

gebra F〈X〉 simply setting |x1 · · · xm| := |x1| · · · |xm| for any monomial in the (not
necessarily distinct) indeterminates x1, . . . , xm ∈ X. It is customary to denote by
F〈X | G〉 this G-graded algebra, and call it the free G-graded algebra. The freeness
property is the following: for any G-graded algebra A and any map ϕ0 : X → A such
that |ϕ0(x)| = |x| for all x ∈ X there exists a unique G-homomorphism ϕ extending
ϕ0. We shall often say that such a map ϕ0 is an admissible G-substitution for A.

The set TG(A) ⊆ F〈X | G〉 of polynomials vanishing under any admissible G-
substitution is an ideal of F〈X | G〉, stable under any graded endomorphism of the
free graded algebra. We call G-identities its elements.

As usual, we say that a monomial x1 · · · xn ∈ F〈X,G〉 is G-graded multi-linear of

length n if {name (xi) | i = 1, . . . , n} = {1, . . . , n}. Explicitly, if xi = x
gi

ji
, then
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x1 · · · xn = x
g1

j1
· · · x

gn

jn
and (g1, . . . , gn) ∈ Gn, { j1, . . . , jn} = {1, . . . , n}. Let us

denote by V G
n the F-subspace spanned by all the G-graded multi-linear monomials

of length n. That is, the span of all monomials x
g1

σ(1) · · · x
gn

σ(n) for (g1, . . . , gn) ∈ Gn

and σ running through the symmetric group Sn.
Since char F = 0, a standard Vandermonde argument shows that the knowledge

of TG(A) can be reduced to the knowledge of the sets V G
n ∩ TG(A) for all n > 1.

The symmetric group Sn acts on V G
n by renaming the indeterminates, and this

turns V G
n into a left Sn-module. Since any σ ∈ Sn sends x

g
i to x

g
σ(i), σ can be ex-

tended diagonally providing a G-endomorphism ϕσ of F〈X | G〉. Therefore V G
n ∩

TG(A) is an Sn-submodule of V G
n , and we are allowed to consider the Sn-module

V G
n (A) := V G

n /
(

V G
n ∩ TG(A)

)
. The number cG

n (A) := dimF V G
n (A) is called the n-th

G-codimension of A, and its character χG
n (A) is called the n-th graded cocharacter.

The study of the Sn-structure of V G
n (A) can be reduced to the study of smaller

spaces of multi-linear polynomials. Let us denote [n] := {1, . . . , n}. We say that a
family G := {Gg ⊆ [n] | g ∈ G} is a G-partition of n if

Gg ∩ Gh = ∅ if g 6= h and
⋃

g∈G

Gg = [n];

in this case we write G ⊢G n. Every monomial m ∈ V G
n uniquely defines a G-partition

of n, namely G(m), setting

Gg(m) := { j ∈ [n] | x
g
j appears in m} for g ∈ G

and, for a G-partition G of n, we define

V G
n (G) := spanF〈m ∈ V G

n | m monomial and G(m) = G〉

Then (see [DV, Lemma 1])
V G

n =

⊕
G⊢G n

V G
n (G)

and

V G
n (A) :=

V G
n

V G
n ∩ TG(A)

∼
=Sn

⊕
G⊢Gn

V G
n (G)

V G
n (G) ∩ TG(A)

.

Note that any G-partition of n defines a subgroup of Sym(n), namely

H(G) :=
∏

g∈G

Sym(Gg).

The action of this subgroup on V G
n (G) determines a module structure on it. More-

over, if G and S are G-partitions of n such that |Gg | = |Sg | for each g ∈ G,
then H(G) and H(S) define equivalent actions. Therefore, fixing an order in G,
say G = {g1, . . . , gr}, we may denote by V G

n1,...,nr
the H(G)-module V G

n (G) where

|Ggi
| = ni , and the indeterminates are labeled in the standard way as x

g1

1 , . . . , x
g1
n1 ,

then x
g2

n1+1, . . . , x
g2
n1+n2

and so on. We shall denote by χG
n1,...,nr

the H(G)-character of

the factor module V G
n1,...,nr

/
(

V G
n1,...,nr

∩TG(A)
)

(see [DV]). Recall that the irreducible
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H(G)-modules are the tensor products M(λ1)⊗· · ·⊗M(λr), where λi ⊢ ni and M(λi)
is a chosen representative for the isomorphism class of irreducible Sni

-modules asso-
ciated to λi .

By [DV, Theorem 2], given the cocharacter χG
n1,...,nr

(A), the graded cocharacter

χn(A,G) is known as well. In particular, the degree cG
n (A) = χn(A,G)(1) and the

degrees cn1,...,nr
(A) = χn1,...,nr

(1) are related through the formula

(2.1) cG
n (A) =

∑

n1+···+nr=n

(
n

n1 · · · nr

)
cn1,...,nr

(A).

In case the number expG(A) := limn
n
√

cG
n (A) does exist, it is called the G-graded

exponent of A. The aim of this paper is to show that if G ∼
= Zp, p prime, then for any

finite dimensional G-graded algebra the G-graded exponent of A does exist and it is
possible to compute it.

3 Notation

From now on let A denote a finite dimensional G-graded algebra, where G is a cyclic
group of order p prime. There is a well understood duality between G-gradings of A

and G-actions on A; notice that a G-action, in our hypotheses, is either faithful either
trivial. This duality is a general fact for any finite abelian group. We shall recall it for
groups of prime order. So, let ζ be a primitive p-th root of the unity in F and assume
G = 〈γ〉 ∼= Zp.

• If G acts on A, then define Aγk := {a ∈ A | γ · a = ζka}. The sets (Aγk )k=0,...,p−1

define a G-grading on A, which is trivial if and only if the action is trivial.
• If a G-grading is given on A, any element of A can be uniquely written in the form

a =

∑p−1
k=0 aγk , with aγk ∈ Aγk . Then define the action

γ · a :=

p−1∑

k=0

ζkaγk .

Notice that this action is trivial if and only if the G-grading is so; otherwise, the
action is nontrivial and G can be embedded into Aut(A). Then, viewing γ ∈
Aut(A), it is an automorphism of A of order p.

In what follows we shall freely pass from one point of view to the other.

An F-subspace V ⊆ A is G-graded or homogeneous if V =

⊕
g(V ∩ Ag). That

is: if V ∋ v =

∑
g vg is the (unique) decomposition of v (viewed in A), then all the

summands vg belong to V , as well. Equivalently, V is G-homogenous if and only if V

is stable for the G-action on A. This definition applies to subalgebras of A, and to left,
right or two-sided ideals of A. The algebra A is G-simple if it has no G-homogenous
two-sided ideals apart from 0 and A. Of course, a simple algebra is G-simple.

Thinking G as a group acting on A, it is clear that J = J(A), the Jacobson radi-
cal of A, is always a G-graded ideal. As a consequence of [SVO, Corollary 2.10 and
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Remark 2.11], it has a G-graded semi-direct complement in A, which is a completely
reducible (unitary) G-graded subalgebra B. That is, A = B + J, a direct sum as
F-vector spaces, and B is a maximal semisimple G-homogeneous subalgebra (not an
ideal, however).

Let I be a summand occurring in the decomposition of B into a direct sum of
minimal two-sided ideals; then γ(I) is a minimal two-sided ideal of B too. If γ(I) = I

then I is G-homogenous, so it is a G-graded and simple algebra. If γ(I) 6= I then
γ(I) ∩ I = 0; then, since G ∼

= Zp, the orbit {γk(I) | k = 0, . . . , p − 1} has p

elements, and each of them is a minimal two-sided ideal of B, hence occurring in

the decomposition of B. Hence
⊕p−1

k=0 γk(I) is a G-simple subalgebra of B and B =

C1 ⊕ · · · ⊕Cs is a direct sum of G-simple graded subalgebras Ci of B, for some s > 1.

We are going to show the candidate number to be expG(A). Let S be the set of
all possible sequences (D1, . . . ,Dk) for k ∈ [s], D1, . . . ,Dk ∈ {C1, . . . ,Cs} pairwise
distinct, satisfying

D1 JD2 J · · · JDk 6= 0,

and let

d := max{dimF(D1 + · · · + Dk) | (D1, . . . ,Dk) ∈ S}.

We shall prove that d is actually the G-exponent of A. From now on, we assume
(C1, . . . ,Ck) ∈ S and dim(C1 +· · ·+Ck) = d. Moreover, since A is finite dimensional,
J is nilpotent. We fix l ∈ N such that Jl 6= 0 and Jl+1

= 0. Finally, we fix B :=
C1 ⊕ · · · ⊕Cs and Bk := C1 ⊕ · · · ⊕Ck. Then A = B + J and dimF Bk = d.

The notion of alternating polynomial is needed thoroughly. Recall that the sym-
metric group Sym(X) acts on X by renaming the indeterminates, and we shall de-
note by σ( f ) the image of the polynomial f ∈ F〈X〉 under the renaming action of
σ ∈ Sym(X).

Definition 3.1 Let f = f (X) be a polynomial in the indeterminates of X ⊆ X. If
Y ⊆ X and f is multi-linear on Y, we say that

• f is alternating on the set Y if for any σ ∈ Sym(Y) it is σ f = (−1)σ f ;
• f is symmetric on Y if for any σ ∈ Sym(Y) it is σ f = f .

A polynomial may be alternating or symmetric on several sets of variables. The
direct generalization is that if Yi (i 6 t) are disjoint subsets of X then f is alternating
(resp. symmetric) on the setsYi if for any σ ∈ Sym(Y1) · · · Sym(Yk) 6 Sym(

⋃
i=1k Yi)

it holds σ f = (−1)σ f (resp. σ f = f ).

The most basic property of an alternating polynomial is the following remark.

Remark 3.2 Let f = f (X) be alternating on Y ⊆ X. If dimF(A) = m < |Y|
then f ∈ T(A). In our settings (A = B + J, Jl+1

= 0, B = C1 ⊕ · · · ⊕ Cs and
d = dim(C1 ⊕ · · · ⊕Ck)), we record the following direct consequence.

Lemma 3.3 Let Yg ⊆ Xg ⊆ Xg for g ∈ G, X =

⋃
g X

g and let f = f (X) be a

multi-linear G-graded polynomial, alternating on the sets Yg (g ∈ G). If
∑

g |Yg | > d

then for any A-valued G-substitution ϕ such that ϕ(
⋃

g Y
g) ⊆ B it is ϕ( f ) = 0.
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Proof Since f is multi-linear it is enough to check the standard G-substitutions. So,
let B and J be G-homogeneous bases for B and J. If ϕ(X) ⊆ B then ϕ( f ) = 0 unless
ϕ(X) ⊆ Ci for some i, because CiC j = 0 if i 6= j. But even in this case, since

∑

g

∣∣B ∩C
g
i

∣∣
= dimF Ci 6 d <

∑

g

|Yg |

there must be g ∈ G such that
∣∣B ∩C

g
i

∣∣ < |Yg |. Since
∣∣B ∩C

g
i

∣∣
= dimF C

g
i and f

is alternating on Yg it is ϕ( f ) = 0. Therefore at least one element of X has to be
mapped in J. Then the maximality of d provides ϕ( f ) = 0 (further details can be
found in [GZ1, Lemma 3]).

Alternating and symmetric polynomials arise naturally when studying the irre-
ducible characters of the symmetric groups. In our settings, we are interested in the
character χG

n1,...,np
(A), so let (n1, . . . , np) ∈ N

p satisfy n1 + · · · + np = n. In or-
der to keep the notation as simple as possible, we denote the (weak) composition
(n1, . . . , np) of n by n. If λi ⊢ ni (i = 1, . . . , p), the sequence (λ1, . . . , λp) will be
denoted by λ. We write also λ ⊢ n. Moreover, we shall denote by Hλ the subgroup of
Sn determined by n. The irreducible Hn-module associated to λ will be denoted by

Mλ := M(λ1) ⊗ · · · ⊗ M(λp)

and χλ will denote its character. Coherently, a multi-tableau on λ is a filling of λ1

with the names {1, . . . , n1}, of λ2 with names {n1 + 1, . . . , n1 + n2} and so on. Hence
we shall denote by Tλ such a multi-tableau, that is Tλ = (Tλ1 , . . . ,Tλp ). Let eTλi

=

rTλi
cTλi

be the essential idempotent generating a minimal left module Sni -isomorphic

to M(λi), where rTλi
is the sum of the elements of row stabilizer of Tλi and cTλi

is
the signed sum of the elements of the column stabilizer of Tλi . Then the element
eTλ

= eTλ1 eTλ2 · · · eTλp is an essential idempotent associated to Tλ. Recall that χλ

occurs in the decomposition of χG
n1,...,np

(A) if and only if there exist a multi-tableau

Tλ and a polynomial f ∈ V G
n1,...,np

such that f /∈ TG(A) and eTλ
f /∈ TG(A).

When Tλ is assigned, the entries of Tλg are names of variables, all of them having
G-degree g. We shall often identify those names with the variables themselves; for
instance we shall shortly say that the variables y

g
j1
, . . . , y

g
jt

occur in the first column

of Tλg meaning the set of variables of G-degree g whose names occur in the first column

of Tλg . Also, we shall write Y
g
j to denote the set of variables occurring in the j-th

column of Tλg .

4 The Upper Bound

In this small section we shall display an upper bound for the graded codimension
sequence cG

n (A).

Remark 4.1 Let n = (n1, . . . , np), λ ⊢ n and let Uλ ⊆ Vn be an irreducible
Hn-module isomorphic to M(λ). If 0 6= f ∈ Uλ then there exists a multi-tableau
T = Tλ such that 0 6= f ′ := cTeT f ∈ Uλ is alternating in each set of variables Yi

j ,
those occurring in the j-th column of Tλi .
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Remark 4.2 As a notational fact, if λ ⊢ n is assigned, we shall denote by h
g
j (λ), or

simply by h
g
j , the length of the j-th column of λg . In particular, h

g
1 denotes the height

of the partition λg ⊢ ng .

Lemma 4.3 Let M(λ) ∼
= Wλ * TG(A). Then h

g
1 6 dimF Ag for all g ∈ G and∑

g h
g
l+1 6 d. Further,

dimF Wλ 6 nl·dimF A
∏

g∈G

h
g

l+1
>0

(h
g
l+1)ng .

Proof Let 0 6= f0 ∈ Wλ. Then there is a multi-tableau T = Tλ such that f =

cTeT f0 6= 0, hence Wλ = FHn f . Let us denote for short by Y
g
j the set of variables

occurring in the j-th column of Tλg . The polynomial f does not belong to TG(A) but
is alternating on each Y

g
j . So, in particular, it is

∣∣Yg
1

∣∣
= h

g
1 6 dimF Ag for all g ∈ G.

Now let us suppose
∑

g h
g
l+1 > d. If j 6 l + 1 it is h

g
j > h

g
l+1. Let ϕ be a standard

G-substitution and fix j 6 l + 1. The polynomial f is alternating on each Y
g
j , and

the set X j :=
⋃

g∈G Y
g
j has size > d. If ϕ(X j) ⊆ B then ϕ( f ) = 0 by Lemma 3.3,

so at least one variable among those in X j should be mapped in J, in order to get a
nonzero value ϕ( f ). But then at least l + 1 variables among those in

⋃
j6l+1 X j are

substituted by elements of J. Therefore ϕ( f ) ∈ Jl+1
= 0, which is absurd.

Finally, let δg := dimF Ag . Recall δg > h
g
1. By standard combinatorial computa-

tions if h
g
l+1 > 0 then dλg 6 nlδg (h

g
l+1)ng . Otherwise, dλg 6 nlδg . Therefore

dimF Wλ =

∏
g∈G

dλg 6
∏

g∈G

nlδg
∏

g∈G

h
g

l+1
>0

(h
g
l+1)ng

= nl·dimF A
∏

g∈G

h
g

l+1
>0

(h
g
l+1)ng .

As a corollary, let us record an upper bound for cG
n (A).

Theorem 4.4 There exist α, t such that cG
n (A) 6 αnt dn, for all n ∈ N.

Proof Let n ∈ N. By equation (2.1) it is

cG
n (A) =

∑

n

(
n

n

)
cn(A) =

∑

n

(
n

n

)∑

λ⊢n

mλ dimF Wλ

for some multiplicities mλ. Notice that if
∑

g h
g
l+1(λ) > d then mλ = 0. Now let us

choose for each weak composition n of n a maximal dimensional module Wµ with
nonzero multiplicity. All its composing partitions µg must lie in a strip of height

δg := dimF Ag , and dµg 6 nlδg or dµg 6 nlδg
(

h
g
l+1(µ)

) ng
according to the cases when

h
g
l+1(µ) = 0 or is > 0, respectively. Let G(n) := {g ∈ G | h

g
l+1(µ) > 0}. Then

dµ =

∏
g∈G

dµg 6
∏

g∈G

nlδg
∏

g∈G(n)

(
h

g
l+1(µ)

) ng
= nl dim A

∏
g∈G(n)

(
h

g
l+1(µ)

) ng
.
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Let us denote tg := h
g
l+1(µ) for g ∈ G(n); notice that tg depends on the composition n

only. Then for all λ ⊢ n the fact dλ 6 dµ yields

cG
n (A) 6 nl·dimF A

∑

n

(∑

λ⊢n

mλ

)(n

n

) ∏
g∈G(n)

t
ng
g .

Further, from the fact that the sum of multiplicities is polynomially bounded
(see [Be]), there exist constants ᾱ, b ∈ N such that

cG
n (A) 6 ᾱnl·dimF Anb

∑

n

(
n

n

) ∏
g∈G(n)

t
ng
g .

Now let us consider the summand
(

n
n

)∏
g∈G(n) t

ng
g . Let |G(n)| = r; for sufficiently

large n it is r > 1. Moreover, without loss of generality we may assume G(n) =

{γ, γ2, . . . , γr}. Write ni := nγi , u :=
∑r

i=1 ni and v :=
∑p

i=r+1 ni . Notice that
ni 6 lδγi when i > r + 1 and so v 6 l dim A. Then

(
n

n

)
=

n!

n1! · · · nr! nr+1! · · · np!
=

u!

n1! · · · nr!

v!

nr+1! · · · np!

n!

u!v!

=

(
u

n1 · · · nr

)(
v

nr+1 · · · np

)(
n

u

)
.

Since the number
(

v
nr+1···np

)
occurs in the expansion of (p − r)v, it is

(
v

nr+1 · · · np

)
6 (p − r)v

6 pl dim A.

The number
(

n
u

)
=

(
n
v

)
is a polynomial expression in n of degree v for sufficiently

large n, hence it is 6 nl dim A as well.
Finally, the number

(
u

n1···nr

)
tn1
γ · · · tnr

γr occurs in the expansion of (tγ + · · · + tγr )u;
since tγ + · · · + tγr 6 d and u 6 n, that number is 6 dn.

Therefore we get the inequality

cG
n 6 ᾱn3l dimF A+b

∑

n

dn.

Since there are
(

n+p−1
p−1

)
compositions of n in no more than p parts (see for instance

[St, Section 1.2]), we get the inequality

cG
n (A) 6 ᾱn3l dimF A+b

(
n + p − 1

p − 1

)
dn.

Finally, notice that
(

n+p−1
p−1

)
is a polynomial expression in n of degree p − 1, so it is

definitively cG
n (A) 6 αnt dn for certain numbers α, t .
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5 The Lower Bound

Now we are going to find a lower bound for the codimension sequence cG
n (A). In

order to obtain it, we shall find polynomials which are of sufficiently high degree
and are not graded polynomial identities for A. We shall make use of the following
theorem.

Theorem 5.1 ([Fo]) Let C be a central simple algebra, and let X1,X2 be disjoint sets

of variables of size dimF C. Then there exists an explicit central multi-linear polynomial

f = f (X1,X2), alternating on Xi , and a substitution ϕ such that ϕ( f ) = 1C .

Actually, if m > 1, the product f̂ of m such polynomials on disjoint sets of vari-
ables is still multi-linear, alternating on 2m sets of variables Xi of size dimF C , and the

obvious extension ϕ̂ of ϕ provides a substitution with ϕ̂( f̂ ) = 1C . So the following
corollary holds.

Corollary 5.2 Let C be a central simple F-algebra, m > 1 and let X be the disjoint

union of 2m sets of variables X j ( j = 1, . . . , 2m), each of size
∣∣X j

∣∣
= dimF C. Then

there exist a central multi-linear polynomial f = f (X), alternating on each X j , and a

substitution ϕ such that ϕ( f ) = 1C .

We are indeed mostly interested in Corollary 5.2. The first step to our aims is the
following lemma.

Lemma 5.3 Let G be a finite group, m > 1 and let C be a simple algebra graded

by G. For any g ∈ G let Y
g
1, . . . ,Y

g
2m be disjoint subsets of Xg , each of size dim Cg . Let

Y :=
⋃

j,g Y
g
j . Then there exists a central multi-linear polynomial f = f (Y) alternating

on each Y
g
j and a G-substitution ϕ such that ϕ( f ) = 1C .

Proof Let B be a G-homogeneous F-basis of C , set δ := dim C and let X1, . . . ,X2m

be 2m disjoint sets of (nongraded) variables, each of size δ. Let X be their disjoint
union. So, by Corollary 5.2, there exist f = f (X) multi-linear, alternating on each
X j , and a substitution ϕ such that ϕ( f ) = 1C . Actually, there is no harm in assuming
that ϕ(X) ⊆ B.

Notice that for any j = 1, . . . , 2m it must happen thatϕ(X j) = B, because
∣∣X j

∣∣
=

δ and f is alternating on X j . Therefore, if we decompose X j into the (disjoint) union
of the sets X j,g := {x ∈ X j | ϕ(x) ∈ B ∩ Cg}, it must happen

∣∣X j,g

∣∣
= dim Cg .

Indeed, f is alternating on each X j,g because it is so on the whole X j ; if
∣∣X j,g

∣∣ >
dim Cg this leads to ϕ( f ) = 0, a contradiction. Also, notice that

δ =

∣∣X j

∣∣
=

∑

g∈G

∣∣X j,g

∣∣ 6
∑

g∈G

dim Cg = δ

implies
∣∣X j,g

∣∣
= dim Cg for all g ∈ G and j ∈ [2m].

Now just replace in f the set of nongraded indeterminates X j,g by the set of graded

indeterminates Y
g
j , for all j and g. Notice that

∣∣X j,g

∣∣
= dim Cg =

∣∣∣Yg
j

∣∣∣, f (Y) is

alternating on each Y
g
j (actually on the whole Y j :=

⋃
g Y

g
j ), the substitution ϕ gives

rise to a natural G-substitution ϕG and ϕG( f ) = 1C .

https://doi.org/10.4153/CMB-2011-104-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-104-9


280 O. M. Di Vincenzo and V. Nardozza

The next step is when C is G-simple but not simple. While in the previous lemma
just “G finite” was needed, in the following one we must assume that G ∼

= Zp in order
to use our arguments.

Lemma 5.4 Let G ∼
= Zp, m > 1 and let C be a G-simple G-graded algebra. For each

g ∈ G let Y
g
1, . . . ,Y

g
2m be disjoint subsets of Xg , each of size

∣∣Yg
i

∣∣
= dim Cg . Let Yg

be their union and Y =

⋃
Yg . Then there exists a multi-linear polynomial f = f (Y),

alternating on any Y
g
j , and a G-substitution ϕ such that ϕ( f ) = 1.

Proof J = J(C) is a G-ideal of C and C is G-simple, hence C is semiprimitive. Since
it is finite dimensional, it is completely reducible, so it is a direct sum of minimal
two-sided ideals C = I1 ⊕ · · · ⊕ Ik. If k = 1 then C is simple, and the result follows
by the previous lemma. Notice that if the grading is trivial, then any ideal is G-
homogeneous, so C must be a simple algebra. Hence assume that C is not simple,

that is k > 1, and let the grading be nontrivial. Then G ∼
= 〈γ〉 = Ĝ 6 Aut(A) acts

on A; therefore a G-homogeneous subspace is precisely a Ĝ-invariant subspace. Let
I := I1. Then it cannot be γ(I) = I, otherwise I should be a graded ideal of C , so
I = C , a contradiction. Therefore γ(I) 6= I and γ(I) is a minimal two-sided ideal
of C , disjoint with I. Actually, it is easy to see that Ĝ acts on the set of minimal two-
sided ideals of C by permuting them. Since the stabilizer of this action has to be a

subgroup of Ĝ properly contained in Ĝ (because γ(I) 6= I), it has to be {e}. But then

L :=

p∑

i=1

γi(I) =
p⊕

i=1

γi(I)

is a two-sided ideal of C which is stable under the action of Ĝ, hence it is a nonzero
G-ideal of C , so L = C . This forces k = p.

Therefore, if C is G-simple but not simple, then C is a direct sum of p minimal
two-sided ideals, none of them G-homogeneous, constituting a full orbit under Ĝ

and all of them isomorphic as F-algebras. More precisely, C is the direct sum of p

copies of a simple algebra I, and Ĝ acts on them by cyclically permuting them.
Now, let dimF I = l and let B be a linear basis for I. Let us define, for any b ∈ B

and any g = γ j ∈ Ĝ,

bg := b + ζ j(p−1)γ(b) + ζ j(p−2)γ2(b) + · · · + ζ jγ p−1(b).

Then bg is a G-homogeneous element of G-degree g = γ j , and the set C := {bg | b ∈
B g ∈ G} is a G-homogeneous basis for C . More precisely, for a fixed g = γ j , the set
{bg | b ∈ B} is a linear basis for Cg . Hence all the graded components of C have the
same dimension l.

Then let f0 = f0(X) be the polynomial of Corollary 5.2, corresponding to an l-
dimensional central simple algebra and to the fixed m > 1, and let ϕ0 be a standard
substitution on B such that ϕ0( f0) = 1I . Since

∣∣Yg
i

∣∣
= dim Cg = dim I = |Xi |,

we may pass to the graded variables Yg (for g ∈ G) and consider f0(Yg). Hence the
polynomial

f = f (Y) :=
∏

g∈G

f0(Yg)

https://doi.org/10.4153/CMB-2011-104-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-104-9


Existence of Zp-exponent 281

(whatever order we choose for the factors) is multi-linear and alternating on each Y
g
i .

Moreover, let ϕ be the following G-substitution: if x ∈ X and ϕ0(x) = b ∈ B, then
for any y ∈ Yg set ϕ(y) := bg ∈ Cg . By a straightforward computation, it turns out
that ϕ( f ) = 1C .

Now let us go back to the assigned finite dimensional G-graded algebra. Recall
that A = B + J as a direct sum of F-vector spaces of the completely reducible G-
graded subalgebra B and the Jacobson radical J. We decomposed B into the sum of
G-simple subalgebras B = C1 ⊕ · · · ⊕Cm, but we are mostly interested in the sum of
the first k summands, namely the subalgebra Bk = C1⊕· · ·⊕Ck, having the following
properties:

• dim Bk = d, the candidate integer to be the exponent;
• C1 JC2 · · ·Ck−1 JCk 6= 0.

Each Ci has a central polynomial fi , by Lemma 5.4. The idea in what follows is to glue
these polynomials in order to get a nonvanishing polynomial for A of sufficiently high
degree.

Lemma 5.5 Let m > 1. Then there exists a multi-linear polynomial f in the disjoint

union of variables Y ∪K ∪ J and an A-valued G-substitution ϕ satisfying ϕ(Y) ⊆ Bk

such that

• Y is partitioned as Y =

⋃
g∈G Yg . Each Yg is a disjoint union Yg

=

⋃
16i62m Y

g
i of

sets Y
g
i ⊆ Xg with same size

∣∣Yg
i

∣∣
= dimF B

g
k;

• |K| = k, |J| = k − 1;
• f is alternating on each set Y

g
i ;

• ϕ( f ) 6= 0.

Proof For each fixed j ∈ [k] as in Lemma 5.4 let f j = f j(X j) be a central multi-

linear polynomial in the graded variables of X j =
⋃2m

i=1

⋃
g∈G X

g
i j , alternating on any

X
g
i j ⊆ Xg , of size

∣∣∣Xg
i j

∣∣∣ = dim C
g
j . By Lemma 5.4 there exists a G-substitution ϕ j

such that ϕ j( f j) = 1C j
. There is no loss in generality in assuming that ϕ j(X j) = B j ,

a G-homogenous linear basis for C j .

Choosing disjoint sets X j as j runs through 1, . . . , k, we may consider for any
i ∈ [2m] and any g ∈ G the sets

Y
g
i :=

k⋃
j=1

X
g
i j .

Then
∣∣Yg

i

∣∣
=

k∑

j=1

∣∣∣Xg
i j

∣∣∣ =
k∑

j=1

dim C
g
j = dim B

g
k.

Denote K = {x1, . . . , xk} and J = {x ′
1, . . . , x ′

k−1}. Since C1 J · · · JCk 6= 0 there exist
b j ∈ C j and c1, . . . , ck−1 ∈ J such that b1c1 · · · ck−1bk 6= 0. Once again, we may
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assume b j ∈ B j and let c j be G-homogeneous elements in J. Then consider the
G-substitution ϕ : Y ∪K ∪ J → A defined by

ϕ|
Y

g
j

= ϕ j , ϕ(x j) := b j , ϕ(x ′
j) := c j .

Then let g be the following multi-linear graded polynomial

g := x1 f1(X1)x ′
1x2 f2(X2)x ′

2 · · · xk−1 f (Xk−1)x ′
k−1xk fk(Xk).

Notice that ϕ(g) = b1c1 · · · ck−1bk 6= 0; yet g has not the requested alternating prop-
erties. In order to get them, let us identify for a moment the names of the involved
graded variables with the variables themselves; let Sym(Y

g
i ) be the symmetric group

on the set Y
g
i and let

S :=
∏

g∈G

2m∏
i=1

Sym(Y
g
i ).

Notice that since the Y
g
i are pairwise disjoint the direct product of these symmetric

groups is well defined; for σ ∈ S let (−1)σ denote the sign of the permutation σ.
Then consider the multi-linear polynomial

f (Y ∪K ∪ J) :=
∑

σ∈S

(−1)σσ(g).

The polynomial f is clearly alternating on any Y
g
i . Moreover, since CiCi ′ = 0 if

i 6= i ′, it is also clear that in ϕ( f ) a summand ϕ
(
σ(g)

)
is not vanishing if and only

if σ(X
g
i j) = X

g
i j for all i = 1, . . . , 2m, j = 1, . . . , k and all g ∈ G. Therefore it must

happen

σ ∈ ∏
g∈G

2m∏
i=1

k∏
j=1

Sym(X
g
i j).

In this case, it is σ(g) = (−1)σg hence

ϕ
(
σ(g)

)
= (−1)σϕ(g) = (−1)σb1ϕ1( f1)c1 · · · ck−1bkϕk( fk) = (−1)σb1c1 · · · ck−1bk

and therefore, since
∣∣∣Xg

i j

∣∣∣ = dim C
g
j for all i = 1, . . . , 2m, it is

ϕ( f ) =
( k∏

j=1

∏
g∈G

dim C
g
j !
) 2m

· b1c1 · · · ck−1bk 6= 0.

Theorem 5.6 There exist constants a, b such that cG
n (A) > anbdn.

Proof We continue to adopt the same notation used in the preceding lemmas. We
are going to show the inequality by exhibiting a multi-linear polynomial which is
not a graded polynomial identity for A of sufficiently high degree. So, take any n >

2d + 2k − 1, and let n − (2k − 1) = 2dm + t for some 0 6 t < 2d. Corresponding
to the number m > 1 let f = f (Y ∪K ∪ J) be the polynomial and ϕ the G-graded
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substitution of the previous lemma. Consider a set of new graded variables Y ′ :=
{y ′

1, . . . , y ′
t } ⊆ Xe, let

g ′ := f y ′
1 . . . y ′

t

then extend ϕ by sending y ′
j in 1Ck

for all j = 1, . . . , t . Let us denote this G-substi-
tution by the same symbol ϕ. Of course, ϕ( f ′) 6= 0, and f ′ is multi-linear, with the
same alternating sets as f , of total degree n. So f ′ ∈ V G

n \ TG(A).
Let H be the permutation group

∏
g∈G Sym(Yg), and M be the H-module gen-

erated by f ′ inside V G
n . Namely, setting δg := |Yg |, mg := |(K ∪ J) ∩ Xg | and

ng := δg + mg for e 6= g ∈ G, ne := δe + me + t and n = (ne, ng1
, . . . , ngp−1

), we
can view M ⊆ Vn. By identifying the names of the graded variables with the variables
themselves, let us consider a multi-tableau Tλ of shape λ = (λe, . . . , λgp−1

) where for

each g ∈ G it is λg =
(

(2m)δg
)

, a rectangular diagram of height δg , and each column
is filled by the variables of Yg . More precisely, following notation of the previous
lemma, if Yg

= Y
g
1 ∪ · · · ∪ Y

g
k and each set Y

g
j , for j = 1, . . . , k is the disjoint union

Y
g
j =

⋃2m
i=1 Y

g
i j , let us fill the i-th column of λg downward by the variables Y

g
i1, then

Y
g
i2, . . . ,Y

g
ik.

Let eTλ
be the essential idempotent of the multi-tableau Tλ. Then it is straight-

forward to check that ϕ(eTλ
f ′) = ϕ( f ) 6= 0, and hence eTλ

f ′ ∈ M and gener-

ates an irreducible H-module Wλ which is contained in V G
n \ TG(A), of dimension

dim Wλ =

∏
g∈G χλg (1).

Then the following inequalities hold:

cn(A) > dim Wλ =

∏
g∈G

χλg (1) > nu
∏

g∈G

δ
2mδg
g ,

for a constant u, by [Re2, Lemma 3.1]. By formula (2.1) it is

cG
n (A) =

∑

m

(
n

m

)
cm(A) >

(
n

n

)
cn(A) > nu

(
n

n

) ∏
g∈G

δ
2mδg
g .

Now recall that ne = δe + me + t and for g 6= e it is ng = δg + mg . Then for the
multinomial coefficient

(
n
n

)
it is

(
n

n

)
>

(
∑

g 2mδg)!
∏

g(2mδg)!
=

(2md)!∏
g(2mδg)!

,

therefore

cG
n (A) > nu (2md)!∏

g(2mδg)!

∏
g

n
2mδg
g

and finally, by Stirling’s formula, we get

cG
n (A) > nu (2md)!∏

g(2mδg)!
> nα (2md)2md

∏
g(2mδg)2mδg

∏
g

(2mδg)2mδg
= nαd2md

=

nα

d2k−1+t
dn.
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Corollary 5.7 The limit limn
n
√

cG
n (A) does exist and is an integer 6 dimF A.
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Dipartimento di Matematica, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italia
e-mail: nardozza@dm.uniba.it

https://doi.org/10.4153/CMB-2011-104-9 Published online by Cambridge University Press

http://dx.doi.org/10.1016/S0024-3795(02)00356-7
http://dx.doi.org/10.1006/jabr.1996.0354
http://dx.doi.org/10.1016/S0021-8693(03)00528-3
http://dx.doi.org/10.1080/00927879608825751
http://dx.doi.org/10.1016/0021-8693(87)90166-9
http://dx.doi.org/10.1016/j.aim.2007.07.008
http://dx.doi.org/10.1016/0022-4049(85)90036-2
http://dx.doi.org/10.1006/aima.1998.1766
http://dx.doi.org/10.1006/aima.1998.1790
http://dx.doi.org/10.1006/jabr.1999.8016
http://dx.doi.org/10.1090/S0002-9947-99-02419-8
http://dx.doi.org/10.1007/BF02366352
http://dx.doi.org/10.1007/BF02762615
http://dx.doi.org/10.1016/0021-8693(78)90133-3
http://dx.doi.org/10.1080/00927879908826648
https://doi.org/10.4153/CMB-2011-104-9

