$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) \quad(n>2),
$$

as required.
The observation above remains true if "determinant" is replaced by "permanent", where

$$
\operatorname{per} A=\sum a_{11} a_{2 j} \ldots a_{n l} .
$$

In this case the number of terms is the value of $\operatorname{per} A$ when $a_{I I}=0$ and $a_{i k}=1(i \neq k)$ for all $i, k=1, \ldots, n$. Thus

$$
d_{n}=\operatorname{per}\left(J_{n}-I_{n}\right),
$$

where each entry in J_{n} is 1, and I_{n} is the unit matrix of order n. However, determinants are simpler to manipulate than permanents although the latter appear in combinatorial mathematics [2].

References

1. M. T. L. Bizley, A note on derangements, Mathl. Gaz. LI, 118-120 (No. 376, May 1967).
2. J. Riordan, An introduction to combinatorial analysis. Wiley (1958).

F. GERRISH AND A. J. B. WARD

Department of Mathematics, The Polytechnic, Kingston-upon-Thames

Correspondence

The yángmă and the rhombic dodecahedron

Dear Sir,
Having made the yángmă by the method in Mr. Brunton's letter in the February 1973 issue (p. 66) of the Mathematical Gazette, I hinged three together to form the cube. I inadvertently turned them around so that the three squares came together to make a figure which would fit over the corner of a cube. It was then apparent that a cube of side 2-unit lengths, where one unit length is the side of the cube made up of three yángmă, could be covered with twenty-four yángmă to give the rhombic dodecahedron ([1], p. 120). It thus gives a neat proof of the volume of the rhombic dodecahedron.
The faces of the rhombic dodecahedron would have edges of length $\sqrt{ } 3$, i.e. the longest edge of the yangma. Consequently the volume would be 8 (the central cube) $+\frac{24}{3}$ (the yángmă) cubic units, i.e. 16 cubic units. If the edge of the dodecahedron is unity the volume is $16 /(3 \sqrt{ } 3)$ cubic units.
It wasn't until I had done this that I realised four yángmă form the pyramid on the left-hand side of Fig. 148 on p. 122 in Cundy and Rollett's book [1].

Yours sincerely,
9 Ely Road, St. Albans, Herts. AL1 5NA
J. A. SHARP

Reference

1. H. M. Cundy and A. P. Rollett, Mathematical models (2nd edition). Oxford University Press (1961).
