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Abstract

In this paper, we characterise the quasi-strong endomorphisms of the join of split graphs. We give
conditions under which the quasi-strong endomorphisms of the join of split graphs form a monoid.
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1. Introduction and preliminaries

Endomorphism monoids of graphs are generalisations of automorphism groups of
graphs. In recent years much attention has been paid to endomorphism monoids
of graphs and many interesting results concerning graphs and their endomorphism
monoids have been obtained (see [4, 9–11, 13] and references therein). The aim of
this research is to develop further relations between graph theory and algebraic theory
of semigroups and to apply the theory of semigroups to graph theory. Hou, Luo and
Cheng [5] explored the endomorphism monoid of Pn, the complement of a path Pn

with n vertices. It was shown that End(Pn) is an orthodox monoid. The endomorphism
spectrum and the endomorphism type of Pn were given. The endomorphism monoids
and endomorphism regularity of split graphs have been considered by several authors
(see [2, 6, 14]).

Let X be a graph. Denote by End(X), hEnd(X), lEnd(X), qEnd(X), sEnd(X)
and Aut(X) the sets of all endomorphisms, half-strong endomorphisms, locally
strong endomorphisms, quasi-strong endomorphisms, strong endomorphisms and
automorphisms of X, respectively. It is well known that End(X) and sEnd(X) form
monoids with respect to composition of mappings and Aut(X) forms a group. However,
hEnd(X), lEnd(X) and qEnd(X) do not form monoids in general (see [1]). So Böttcher
and Knauer in [1] posed a question: under what conditions do the sets hEnd(X),
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lEnd(X) and qEnd(X) form monoids for a graph X? It seems difficult to obtain a
general answer to this question. So the strategy for answering the question is to find
various kinds of conditions for various kinds of graphs. In [15], Luo et al. give an
answer to this question in the range of split graphs. In [7], Hou et al. explored the half-
strong endomorphisms of a join of split graphs and the conditions under which the
half-strong endomorphisms of a join of split graphs form a monoid were given. In this
paper, we characterise the quasi-strong endomorphisms of a join of split graphs. We
give conditions under which the quasi-strong endomorphisms of a join of split graphs
form a monoid.

The graphs considered in this paper are finite undirected graphs without loops and
multiple edges. Let X be a graph. The vertex set of X is denoted by V(X) and
the edge set of X is denoted by E(X) (or simply E). If two vertices x1 and x2 are
adjacent in the graph X, the edge connecting x1 and x2 is denoted by {x1, x2} and we
write {x1, x2} ∈ E(X). For a vertex v of X, denote by NX(v) (or simply N(v)) the set
{x ∈ V(X)|{x, v} ∈ E(X)}. A subgraph H is called an induced subgraph of X if for any
a, b ∈ H, {a, b} ∈ E(H) if and only if {a, b} ∈ E(X).

Let X be a graph. A subset K ⊆ V(X) is said to be complete if {a, b} ∈ E(X) for any
two vertices a, b ∈ K. A subset S ⊆ V(X) is said to be independent if {a, b} < E(X) for
any two vertices a, b ∈ S . A clique of a graph X is the maximal complete subgraph
of X. The clique number of X, denoted by ω(X), is the maximal order among the
cliques of X. Let X and Y be two graphs. The join of X and Y , denoted by X + Y ,
is a graph with V(X + Y) = V(X) ∪ V(Y) and E(X + Y) = E(X) ∪ E(Y) ∪ {{a, b}|a ∈
V(X), b ∈ V(Y)}. A graph X is called a split graph if its vertex set V(X) can be
partitioned into disjoint (nonempty) sets S and K, such that S is an independent set
and K is a complete set. In the following, we suppose that K is a maximal complete
set of X. It is easy to see that for any y ∈ S , 0 ≤ dX(y) ≤ n − 1, where n = |K|.

Let X and Y be two graphs. A mapping f from V(X) to V(Y) is called a
homomorphism (from X to Y) if {a, b} ∈ E(X) implies that { f (a), f (b)} ∈ E(Y). A
homomorphism f from X to itself is called an endomorphism of X. Denote by End(X)
the set of all endomorphisms of X. It is known that End(X) forms a monoid with
respect to the composition of mappings and is called the endomorphism monoid (or
simply monoid) of X. A homomorphism f is called a half-strong homomorphism
if { f (a), f (b)} ∈ E(Y) implies that there exist x1, x2 ∈ V(X) with f (x1) = f (a) and
f (x2) = f (b) such that {x1, x2} ∈ E(X). A homomorphism f is called a quasi-strong
homomorphism if { f (a), f (b)} ∈ E(Y) implies that there exists a preimage x1 ∈ V(X)
of f (a) which is adjacent to every preimage of f (b) and analogously for preimage
of f (b).

Let f be an endomorphism of a graph X. A subgraph of X is called the endomorphic
image of X under f , denoted by I f , if V(I f ) = f (V(X)) and { f (a), f (b)} ∈ E(I f ) if
and only if there exist c ∈ f −1( f (a)) and d ∈ f −1( f (b)) such that {c, d} ∈ E(X). By
ρ f we denote the equivalence relation on V(X) induced by f , that is, for a, b ∈ V(X),
(a, b) ∈ ρ f if and only if f (a) = f (b). Denote by [a]ρ f the equivalence class containing
a ∈ V(X) with respect to ρ f .
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The reader is referred to [3, 8, 9, 12] for all the notation and terminology not defined
here.

2. Main results

Let X be a split graph with V(X) = K1 ∪ S 1, where S 1 is an independent set and
K1 is a maximal complete set. Let Y be another split graph with V(Y) = K2 ∪ S 2,
where S 2 is an independent set and K2 is a maximal complete set. Denote n = |K1| and
m = |K2|. Then the vertex set V(X + Y) of X + Y can be partitioned into three parts
K, S 1 and S 2, that is, V(X + Y) = K ∪ S 1 ∪ S 2, where K = K1 ∪ K2 is a complete set,
and S 1 and S 2 are independent sets. Obviously the subgraph of X + Y induced by K
is a complete graph and the subgraph of X + Y induced by S = S 1 ∪ S 2 is a complete
bipartite graph. Hence in the graph X + Y , N(xi) = NX(xi) ∪ V(Y) for xi ∈ S 1 and
N(yi) = NY (yi) ∪ V(X) for yi ∈ S 2. It is easy to see that X + Y is a split graph adding to
the edge set {{xi, y j} | xi ∈ S 1, y j ∈ S 2}.

In this section, we will explore the quasi-strong endomorphisms of a join of split
graphs. We give conditions under which the quasi-strong endomorphisms of a join of
split graphs form a monoid. The following theorem is our main result.

Theorem 2.1. Let X + Y be a join of split graphs. Then qEnd(X + Y) forms a monoid
if and only if X + Y is qs-monoidal.

To prove our main result, we need the following characterisations of the quasi-
strong endomorphisms of these graphs.

Lemma 2.2. Let f be an endomorphism of a graph G. If f is quasi-strong, then
the subgraph of G induced by f −1(a) ∪ f −1(b) has no isolated vertex for any a, b ∈
V(G) ∩ I f with {a, b} ∈ E.

Proof. Let f ∈ qEnd(G) and a, b ∈ V(G) ∩ I f be such that {a, b} ∈ E. Then there exists
x1 ∈ f −1(a) such that {x1, y1} ∈ E for any y1 ∈ f −1(b). Similarly, there exists y2 ∈ f −1(b)
such that {x2, y2} ∈ E for any x2 ∈ f −1(a). Therefore the subgraph of G induced by
f −1(a) ∪ f −1(b) has no isolated vertex. �

Lemma 2.3. Let X + Y be a join of split graphs. If f ∈ qEnd(X + Y) and f (x) = f (y)
for some x ∈ K and y ∈ S , then N(y) ∩ K = K \ {x}.

Proof. Let x ∈ K and y ∈ S such that f (x) = f (y). If {x, y} ∈ E, then f (x) is a loop
in X + Y , which is a contradiction. Therefore {x, y} < E. If N(y) ∩ K , K \ {x}, then
|N(y) ∩ K| < n + m − 1. Thus there exists x1 ∈ K\((N(y) ∩ K) ∪ {x}). Since x , x1 and
x, x1 ∈ K, {x, x1} ∈ E. Thus { f (x), f (x1)} ∈ E. We will show that [x]ρ f ∪ [x1]ρ f contains
an isolated vertex, which is a contradiction.

If [x1]ρ f = {x1}, then y is an isolated vertex of the subgraph of X + Y induced by
[x]ρ f ∪ [x1]ρ f . If |[x1]ρ f | , 1, without loss of generality, we suppose that [x1]ρ f =

{x1, y11, . . . , y1s} for some y11, . . . , y1s ∈ S . Since {x1, y} < E and {x1, y1k} < E for any
1 ≤ k ≤ s, y and y1k lie in the same S i (i = 1, 2). Thus {y, y1k} < E. Hence y is an
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isolated vertex of the subgraph of X + Y induced by [x]ρ f ∪ [x1]ρ f . By Lemma 2.2,
f < qEnd(X + Y), which is a contradiction. Therefore N(y) ∩ K = K \ {x}. �

Lemma 2.4. Let X + Y be a join of split graphs. If f ∈ qEnd(X + Y) and f (y1) = f (y2)
for some y1, y2 ∈ S , then N(y1) = N(y2).

Proof. If there exists x ∈ K ∩ [y1]ρ f , then N(y1) ∩ K = N(y2) ∩ K = K \ {x}. Hence
N(y1) = N(y2). If [y1]ρ f ⊆ S , suppose that N(y1) , N(y2). Without loss of generality,
let x1 ∈ (N(y2) ∩ K) \ (N(y1) ∩ K). Then { f (x1), f (y1)} = { f (x1), f (y2)} ∈ E. Let
y ∈ [x1]ρ f ∩ S . Then {x1, y} < E. Note that {x1, y1} < E. Then y and y1 lie in the same
S i (i = 1, 2). Hence {y, y1} < E for any y ∈ [x1]ρ f ∩ S . Thus y1 is an isolated vertex of
the subgraph of X + Y induced by [y1]ρ f ∪ [x1]ρ f . By Lemma 2.2, f < qEnd(X + Y),
which is a contradiction. Therefore N(y1) = N(y2). �

Lemma 2.5. Let X + Y be a join of split graphs and f ∈ End(X + Y). Then f ∈
qEnd(X + Y) if and only if for any a, b ∈ V(X + Y) with { f (a), f (b)} ∈ E, one of the
following conditions holds:

(1) [a]ρ f = {x1, y11, . . . , y1s} and [b]ρ f = {x2, y21, . . . , y2t} for some x1, x2 ∈ K with x1 ,
x2, s, t ≥ 0 (where s = 0 means [a]ρ f = {x1} and t = 0 means [b]ρ f = {x2}), y1i ∈ S
with N(y1i) ∩ K = K \ {x1} for i = 1, . . . , s and y2 j ∈ S with N(y2 j) ∩ K = K \ {x2}

for j = 1, . . . , t.
(2) [a]ρ f = {x} and [b]ρ f = {y31, . . . , y3r} for some r ≥ 1, x ∈ Ki with i ∈ {1, 2}, y3 j ∈ S i

with x ∈ N(y3 j) for j = 1, . . . , r and N(y3u) = N(y3v) for u, v = 1, . . . , r.
(3) [a]ρ f = {y41, . . . , y4p} and [b]ρ f = {y51, . . . , y5q} for some p, q ≥ 1, y4i ∈ S with

N(y4i) = N(y4 j) for i, j = 1, . . . , p, y5k ∈ S with N(y5k) = N(y5l) for k, l = 1, . . . , q
and {y4u, y5v} ∈ E for any u = 1, . . . , p and v = 1, . . . , q.

(4) [a]ρ f = {x3, y61, . . . , y6d} and [b]ρ f = {y71, . . . , y7e} for some d ≥ 0 (where d = 0
means [a]ρ f = {x3}), e ≥ 1, x3 ∈ Ki with i ∈ {1, 2}, y6t ∈ S i with N(y6t) ∩ K =

K \ {x3} for t = 1, . . . , d, y7u ∈ S j with N(y7u) = N(y7v) for u, v = 1, . . . , e (where
j ∈ {1, 2} and i , j).

Proof. Necessity. Let f ∈ qEnd(X + Y) and { f (a), f (b)} ∈ E for some a, b ∈ V(X + Y).
There are three cases:

Case 1. If [a]ρ f ∩ K , ∅ and [b]ρ f ∩ K , ∅, then there exist x1 ∈ [a]ρ f ∩ K and
x2 ∈ [b]ρ f ∩ K. Without loss of generality, we may assume that [a]ρ f = {x1, y11, . . . , y1s}

and [b]ρ f = {x2, y21, . . . , y2t} for some x1, x2 ∈ K, s ≥ 0 (s = 0 means [a]ρ f = {x1}) and
t ≥ 0 (t = 0 means [a]ρ f = {x2}). By Lemma 2.3, N(y1i) ∩ K = K \ {x1} for i = 1, . . . , s
and N(y2 j) ∩ K = K \ {x2} for j = 1, . . . , t. So (1) holds.

Case 2. If [a]ρ f ⊆ S and [b]ρ f ⊆ S , then we can assume that [a]ρ f = {y41, . . . , y4p}

and [b]ρ f = {y51, . . . , y5q} for some p, q ≥ 1. By Lemma 2.4, N(y4i) = N(y4 j) for i, j =

1, . . . , p and N(y5k) = N(y5l) for k, l = 1, . . . , q. Since f is quasi-strong, {y4u, y5v} ∈ E
for any u = 1, . . . , p and v = 1, . . . , q. So (3) holds.
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Case 3. Assume that [a]ρ f ∩ K , ∅ and [b]ρ f ⊆ S , or [b]ρ f ∩ K , ∅ and [a]ρ f ⊆ S .
Without loss of generality, we may suppose that [a]ρ f ∩ K , ∅ and [b]ρ f ⊆ S . Then
there exists x3 ∈ [a]ρ f ∩ Ki for some i ∈ {1, 2}. Let [a]ρ f = {x3, y61, . . . , y6d} and
[b]ρ f = {y71, . . . , y7e} for some d ≥ 0 (where d = 0 means [a]ρ f = {x3}) and e ≥ 1. By
Lemma 2.3 N(y6t) ∩ K = K \ {x3} for t = 1, . . . , d and by Lemma 2.4 N(y7u) = N(y7v)
for u, v = 1, . . . , e.

(i) If y7u ∈ S j for u = 1, . . . , e (where j ∈ {1, 2} and j , i), then (4) holds.
(ii) If y7u ∈ S i for u = 1, . . . , e, then d = 0. Otherwise, there exists y6d ∈ [a]ρ f such

that {y6d, y7u} < E for any u = 1, . . . , e. Thus y6d is an isolated vertex of the subgraph
of X + Y induced by [a]ρ f ∪ [b]ρ f . This is a contradiction. Hence (2) holds.

Sufficiency. Let f ∈ End(X + Y). For any a, b ∈ V(X + Y) with { f (a), f (b)} ∈ E, if
f satisfies condition (1), then x1 , x2, x1 is adjacent to every vertex of [b]ρ f and x2 is
adjacent to every vertex of [a]ρ f . If f satisfies condition (2) or (3), then every vertex of
[b]ρ f is adjacent to every vertex of [a]ρ f and every vertex of [a]ρ f is adjacent to every
vertex of [b]ρ f . If f satisfies condition (4), then x is adjacent to every vertex of [b]ρ f

and every vertex of [b]ρ f is adjacent to x. Hence f is quasi-strong. �

Let f ∈ qEnd(X + Y) and { f (a), f (b)} ∈ E for some a, b ∈ V(X + Y). In view of
Lemma 2.5, (1) if there exists x ∈ K ∩ [a]ρ f , then x is adjacent to every vertex of [b]ρ f ;
(2) if [a]ρ f ⊆ S , then every vertex of [a]ρ f is adjacent to every vertex of [b]ρ f .

Now we find conditions for a join of split graphs under which qEnd(X + Y) forms
a monoid.

Lemma 2.6. Let X + Y be a join of split graphs and i, j ∈ {1, 2} with i , j. Suppose that
X + Y satisfies the following conditions:

(1) there exists x0 ∈ Ki such that |N(y) ∩ K| = n + m − 1 for any y ∈ N(x0) ∩ S i;
(2) there exists y1, y2 ∈ S i such that N(y1) ∩ K = K \ {x1}, N(y2) ∩ K = K \ {x2} for

some x1, x2 ∈ Ki and x1 , x2;
(3) there exists y3 ∈ S i such that N(y3) ∩ K = K \ {x0, x3} for some x3 ∈ Ki and

x0 , x3;
(4) there exists a mapping h from K \ {x0} to a clique of X + Y not containing x2

such that h(x3) = x1 and there exists a mapping k from S 0 = {y ∈ S i | |N(y) ∩ K|
≤ n + m − 2} to S i with k(y3) = y1 such that either h(N(y) ∩ K) = N(k(y)) ∩ K or
h(N(y) ∩ K) = (N(k(y)) ∩ K) \ {x2} for any y ∈ S 0.

Then qEnd(X + Y) does not form a monoid.

Proof. Let X + Y be a join of split graphs satisfying conditions (1)–(4) and let

g(z) =



h(z) z ∈ K \ {x0},
y2 z = x0,
y1 z = y3,
h(x) z ∈ S with N(z) ∩ K = K \ {x} for some x ∈ K,
k(z) z ∈ S 0,
z otherwise.
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Then it is easy to check that g ∈ qEnd(X + Y). Let f be an endomorphism of X + Y
such that f (y1) = x1, f (y2) = x2 and f (z) = z if z , y1, y2. Then f ∈ qEnd(X + Y). Now
f g(y3) = f g(x3) = x1 and |N(y3) ∩ K| = n + m − 2. By Lemma 2.3, f g is not quasi-
strong. Therefore, qEnd(X + Y) does not form a monoid. �

For i, j ∈ {1, 2} and i , j, denote S 01 = {y ∈ S i | |N(y) ∩ K| ≤ n + m − 2}, S 02 = {y ∈
S j | |N(y) ∩ K| ≤ n + m − 2} and S ′0 = S 01 ∪ S 02.

Lemma 2.7. Let X + Y be a join of split graphs and i, j ∈ {1, 2} with i , j. Suppose that
X + Y satisfies the following conditions:

(1) there exists x0 ∈ Ki such that |N(y) ∩ K| = n + m − 1 for any y ∈ N(x0) ∩ S i;
(2) there exists y1, y2 ∈ S j such that N(y1) ∩ K = K \ {x1}, N(y2) ∩ K = K \ {x2} for

some x1, x2 ∈ K j and x1 , x2;
(3) there exists y3 ∈ Si such that N(y3) ∩ K = K \ {x0, x3} for some x3 ∈ Ki and

x0 , x3;
(4) there exists a bijection h from K \ {x0} to K \ {x2} such that h(x3) = x1 and there

exists a mapping k from S ′0 to S with k(y3) = y1 such that k(y) ∈ S j with either
h(N(y)) = N(k(y)) or h(N(y)) = N(k(y)) \ {x2} for any y ∈ S 01 and k(y) ∈ S i with
h(N(y)) = N(k(y)) \ {x2} for any y ∈ S 02.

Then qEnd(X + Y) does not form a monoid.

Proof. Let X + Y be a join of split graphs satisfying conditions (1)–(4) and let

g(z) =


h(z) z ∈ K \ {x0},
y2 z = x0,
y1 z = y3,
h(x) z ∈ S with N(z) ∩ K = K \ {x} for some x ∈ K,
k(z) otherwise.

Then it is easy to check that g ∈ qEnd(X + Y). Let f be an endomorphism of X + Y
such that f (y1) = x1, f (y2) = x2 and f (z) = z if z , y1, y2. Then f ∈ qEnd(X + Y) . Now
f g(y3) = x1 and ( f g)−1(x1) * S . Since |N(y3) ∩ K| , n + m − 1, by Lemma 2.3, f g is
not quasi-strong. Therefore, qEnd(X + Y) does not form a monoid. �

A join of split graphs X + Y is said to be qs-dismonoidal if X + Y satisfies the
conditions stated in Lemma 2.6 or 2.7. Otherwise, X + Y is called qs-monoidal. The
following example shows that there exists a join of split graphs which is qs-monoidal.

Example 2.8. Let X be a split graph with K1 = {x1, x2, x3, x4} and S 1 = {y1, y2, y3, y4}

such that N(y1) = K1 \ {x1}, N(y2) = K1 \ {x2}, N(y3) = {x1, x2} and N(y4) = {x4}. Let Y
be another split graph with K2 = {r1, r2, r3} and S 2 = {z1, z2, z3} such that N(z1) = {r1},
N(z2) = {r2} and N(z3) = {r3}. Then X + Y satisfies conditions (1)–(3) stated in
Lemma 2.6, x3 is the only vertex in K such that | N(y) ∩ K |= 6 for any y ∈ N(x3) ∩ S ,
and y3 is the only vertex in S of degree 5. Let h be a bijection from K \ {x3} to K \ {x2}

such that h(x4) = x1. Note that h(N(y4)) = {x1} and there is no vertex y ∈ S 1 such that
either N(y) = {x1} or N(y) = {x1, x2}. Then there is no mapping k from {y3, y4} to S
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Graph X

y1 y2

y4

y3 z1

z2 z3

r1

r2 r3
x2

x3

x1

x4

Graph Y

Figure 1. Graphs in Example 1.

with k(y4) = y1 such that either h(N(y)) = N(k(y)) or h(N(y)) = N(k(y)) \ {x2} for any
y ∈ {y3, y4}. Hence X + Y does not satisfy condition (4) stated in Lemma 2.6. Since
there is no x ∈ K2 such that |N(y) ∩ K| = n + m − 1 for any y ∈ N(x) ∩ S 2, X + Y does
not satisfy the conditions stated in Lemma 2.7. Therefore X + Y is qs-monoidal.

Lemma 2.9. If X + Y is qs-monoidal, then qEnd(X + Y) forms a monoid.

Proof. Let X + Y be a qs-monoidal join of split graphs and f , g ∈ qEnd(X + Y). We
only need to show that f g ∈ qEnd(X + Y). Let {( f g)(a), ( f g)(b)} ∈ E(X + Y) for some
a, b ∈ V(X + Y). We first show that there exists g(c) ∈ [g(a)]ρ f ∩ Ig such that g(c) is
adjacent to every vertex of [g(b)]ρ f ∩ Ig and there exists g(d) ∈ [g(b)]ρ f ∩ Ig such that
g(d) is adjacent to every vertex of [g(a)]ρ f ∩ Ig. Since f is quasi-strong, by Lemma 2.5
there are four cases.

Case 1. [g(a)]ρ f = {x1, y11, . . . , y1s} and [g(b)]ρ f = {x2, y21, . . . , y2t} for some x1, x2 ∈ K
and s, t ≥ 0, y1i, y2 j ∈ S , i = 1, . . . , s, j = 1, . . . , t such that N(y1i) ∩ K = K \ {x1} and
N(y2 j) ∩ K = K \ {x2}. If x1 and x2 lie in the different Ki, then the subgraph of X + Y
induced by ([g(a)]ρ f ∩ Ig) ∪ ([g(b)]ρ f ∩ Ig) is isomorphic to a complete bipartite graph.
The result holds. In the following, we suppose that x1 and x2 lie in the same Ki.
Without loss of generality, we can suppose that Ki = K1. Since any endomorphism f
maps a clique to a clique of the same size, Ig contains a clique of size n + m. Note that
any clique of X + Y can miss at most one vertex of K1. Then {x1, x2} ∩ Ig , ∅.

(i) If x1 ∈ Ig and x2 ∈ Ig, then x1 is adjacent to every vertex of [g(b)]ρ f and x2 is
adjacent to every vertex of [g(a)]ρ f .

(ii) If x1 ∈ Ig and x2 < Ig, then g(K) , K and there exists x0 ∈ K such that g(x0) =

y2 ∈ S 1 with N(y2) ∩ K = K \ {x2}. Since K is a clique of size n + m in X + Y , g(K) is
also a clique of size n + m in X + Y . Note that any clique of size n + m in X + Y can
miss at most one vertex of K1. It follows from x2 < g(K) that x1 ∈ g(K). Hence there
exists x3 ∈ K such that x1 = g(x3).

If [g(a)]ρ f ∩ Ig , {x1}, then {y11, . . . , y1s} ∩ Ig , ∅. Since {x1, y2} = {g(x3), g(x0)} ∈
E(X + Y), we have y2 < {y11, . . . , y1s} and so x2 ∈ N(y1i) for any i = 1, . . . , s. Since
x2 < Ig, g−1(z) ⊆ S for any z ∈ {y11, . . . , y1s} ∩ Ig. Let y1 ∈ {y11, . . . , y1s} ∩ Ig and y1 =

g(y3) for some y3 ∈ S . Since {g(x3), g(y3)} = {x1, y1} < E(X + Y) and {g(y3), g(x0)} =

{y1, g(x0)} < E(X + Y), we have x0, x3 < N(y3).
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If x0 ∈ K1, then y3 ∈ S 1 and so x3 ∈ K1. Now {g(x0), g(y)} ∈ E(X + Y) implies
that g(y) ∈ K or g(y) ∈ S 2 for any y ∈ N(x0) ∩ S 1. If g(y) ∈ S 2, then {g(y), g(y3)} =

{g(y), y1} ∈ E. Note that {y, y3} < E, in contradiction to g being quasi-strong. Hence
g(y) ∈ K for any y ∈ N(x0) ∩ S 1. By Lemma 2.3 we have |N(y) ∩ K| = n + m − 1
for any y ∈ N(x0) ∩ S 1. Note that N(g(y3)) ∩ K = N(y1) ∩ K = K \ {x1}. Hence y3

is adjacent to all vertices in K \ {x0, x3} since g is quasi-strong and so N(y3) ∩ K =

K \ {x0, x3}. Since g is quasi-strong, for any y ∈ S with |N(y) ∩ K| ≤ n + m − 2, by
Lemma 2.3 we have [y]ρg ⊆ S and g(y) ∈ S . Hence Ag

g(y) = N(y) by Lemma 2.4.
Note that g is half-strong. Then g(N(y)) = g(Ag

g(y)) = N(g(y)) ∩ Ig. It follows that
g(N(y)) = N(g(y)) or g(N(y)) = N(g(y)) \ {x2}. Consequently, X + Y satisfies the
conditions of Lemma 2.6 and so X + Y is qs-dismonoidal. This is a contradiction.
Thus we must have [g(a)]ρ f ∩ Ig = {x1}. Therefore the subgraph of X induced by
([g(a)]ρ f ∩ Ig) ∪ ([g(b)]ρ f ∩ Ig) = {x1} ∪ ({y21, . . . , y2t} ∩ Ig) is a complete bipartite
graph.

If x0 ∈ K2, then y3 ∈ S 2 and so x3 ∈ K2. Now {g(x0), g(y)} = {y2, g(y)} ∈ E(X + Y)
implies that g(y) ∈ K or g(y) ∈ S 2 for any y ∈ N(x0) ∩ S 2. If g(y) ∈ S 2, then
{g(y), g(y3)} = {g(y), y1} ∈ E. Note that {y, y3} < E, in contradiction to g being
quasi-strong. Hence g(y) ∈ K for any y ∈ N(x0) ∩ S 2. By Lemma 2.3 we have
|N(y) ∩ K| = n + m − 1 for any y ∈ N(x0) ∩ S 2. Note that N(g(y3)) = N(y1) = K \ {x1}.
Hence y3 is adjacent to all vertices in K \ {x0, x3} since g is quasi-strong and so
N(y3) ∩ K = K \ {x0, x3}. Since g is quasi-strong, for any y ∈ S with |N(y) ∩ K| ≤
n + m − 2, by Lemma 2.3 we have [y]ρg ⊆ S and g(y) ∈ S . Hence Ag

g(y) = N(y) by
Lemma 2.4. Note that g is half-strong. Then g(N(y)) = g(Ag

g(y)) = N(g(y)) ∩ Ig. Denote
S 01 = {y ∈ S 2 | |N(y) ∩ K| ≤ n + m − 2}, S 02 = {y ∈ S 1 | |N(y) ∩ K| ≤ n + m − 2} and
S ′0 = S 01 ∪ S 02. Since g is quasi-strong, g(y) ∈ S 1 with either g(N(y)) = N(g(y)) or
g(N(y)) = N(g(y)) \ {x2} for any y ∈ S 01 and g(y) ∈ S 2 with g(N(y)) = N(g(y)) \ {x2}

for any y ∈ S 02. Consequently, X + Y satisfies the conditions of Lemma 2.7 and so
X + Y is qs-dismonoidal. This is a contradiction. Thus we must have [g(a)]ρ f ∩ Ig =

{x1}. Therefore the subgraph of X induced by ([g(a)]ρ f ∩ Ig) ∪ ([g(b)]ρ f ∩ Ig) =

{x1} ∪ ({y21, . . . , y2t} ∩ Ig) is a complete bipartite graph.

Case 2. [g(a)]ρ f = {x} and [g(b)]ρ f = {y31, . . . , y3r} for some x ∈ Ki with i ∈ {1, 2},
y3 j ∈ S i with j = 1, . . . , r and x ∈ N(y3 j), N(y3u) = N(y3v) for u, v = 1, . . . , r. Then
x = g(a) ∈ Ig. Hence x is adjacent to every vertex of [g(b)]ρ f ∩ Ig.

Case 3. [g(a)]ρ f = {y41, . . . , y4p} and [g(b)]ρ f = {y51, . . . , y5q} for some p,q ≥ 1, y4i ∈ S
with N(y4i) = N(y4 j) for i, j = 1, . . . , p, y5k ∈ S with N(y5k) = N(y5l) for k, l = 1, . . . , q
and {y4u, y5v} ∈ E for any u = 1, . . . , p and v = 1, . . . , q. Clearly, g(a) is adjacent to
every vertex of [g(b)]ρ f and g(b) is adjacent to every vertex of [g(a)]ρ f .

Case 4. [g(a)]ρ f = {x3, y61, . . . , y6d} and [g(b)]ρ f = {y71, . . . , y7e} for some d, e ≥ 1,
x3 ∈ Ki with i ∈ {1, 2}, y6t ∈ S i with N(y6t) ∩ K = K \ {x3} for t = 1, . . . , d, y7u ∈ S j

with N(y7u) = N(y7v) for u, v = 1, . . . , e (where i , j). Then g(a) is adjacent to every
vertex of [g(b)]ρ f and g(b) is adjacent to every vertex of [g(a)]ρ f .
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So far we have proved that if {( f g)(a), ( f g)(b)} ∈ E(X + Y) for some a,b ∈ V(X + Y),
then there exist g(c) ∈ [g(a)]ρ f ∩ Ig such that g(c) is adjacent to every vertex of
[g(b)]ρ f ∩ Ig, and g(d) ∈ [g(b)]ρ f ∩ Ig such that g(d) is adjacent to every vertex of
[g(a)]ρ f ∩ Ig. Let v ∈ [g(b)]ρ f ∩ Ig. Then {g(c), v} ∈ E(X + Y). In view of Lemma 2.5,
if there exists x ∈ K ∩ g−1(g(c)), then x is adjacent to every vertex of g−1(v). Hence
x ∈ [a]ρ f g is adjacent to every vertex of [b]ρ f g . If g−1(g(c)) ⊆ S , then every vertex
of g−1(g(c)) is adjacent to every vertex of g−1(v). Take any vertex s ∈ g−1(g(c)).
Then s ∈ [a]ρ f g and s is adjacent to every vertex of [b]ρ f g . Dually, there exists
a vertex t ∈ [b]ρ f g such that t is adjacent to every vertex of [a]ρ f g . Consequently,
f g ∈ qEnd(X + Y). �

With these preparations, the proof of our main result is straightforward.

Proof of Theorem 2.1. Necessity follows directly from Lemmas 2.6 and 2.7.
Sufficiency follows directly from Lemma 2.9. �

In [7], Hou et al. investigated the half-strong endomorphisms of the join of split
graphs and gave the conditions under which the half-strong endomorphisms of the
join of split graphs form a monoid.

Lemma 2.10 [7]. Let X + Y be a join of split graphs. Then hEnd(X + Y) forms a monoid
if and only if

(A) N(yi) 1 N(y j) for any yi, y j ∈ S ,
(B) there are no y, y1, . . . , yt ∈ S (t ≥ 2) such that |N(yi) ∩ K| < |N(y) ∩ K| and |N(y) ∩

K| = |
⋃t

i=1 N(yi) ∩ K| and
(C) for any r1 ∈ K with N(y1) ∩ K = K \ {r1} for some y1 ∈ S , there are no

y, y2, . . . , yt ∈ S (t ≥ 2) such that r1 ∈ N(y) and |N(y) ∩ K| − 1 = |
⋃t

i=2 N(yi) ∩ K|.

For a join of split graphs X + Y , we have the following corollary.

Corollary 2.11. Let X + Y be a join of split graph. If hEnd(X + Y) forms a monoid,
then X + Y is qs-monoidal and so qEnd(X + Y) forms a monoid.

Proof. If hEnd(X + Y) forms a monoid, then by Lemma 2.10, X + Y satisfies
conditions (A), (B) and (C). Suppose that X + Y is qs-dismonoidal. Then X + Y
satisfies the conditions of Lemma 2.6 or Lemma 2.7. If x1 or x2 ∈ {x0, x3}, then N(y3)
is strictly contained in N(y1) or N(y2). This contradicts (A). If x1, x2 < {x0, x3}, then
|N(y2) ∩ K| − 1 = |N(y3) ∩ K|. This contradicts (C). We have proved that if hEnd(X +

Y) forms a monoid, then X + Y is qs-monoidal. Now the fact that qEnd(X + Y) forms
a monoid follows from Theorem 2.1. �

Let S be a semigroup. An element a of S is called regular if there exists x ∈ S such
that axa = a. A semigroup S is called regular if all its elements are regular. A graph X
is said to be End-regular if its endomorphism monoid End(X) is a regular semigroup.
Recall that for any graph X, every regular endomorphism of X must be half-strong.
Hence if X is End-regular, then hEnd(X) forms a monoid. Thus we have the following
corollary.
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Corollary 2.12. Let X + Y be a join of split graphs. If X + Y is End-regular, then
X + Y is qs-monoidal and so qEnd(X + Y) forms a monoid.

Acknowledgement
The authors wish to express their gratitude to the referees for their helpful

suggestions and comments.

References
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