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1. Introduction. In this paper, we shall show that if © is a nilpotent [5] 
group and if M, a positive integer, is a uniform bound on the number of con
jugates that any element of © may have, then there exist "large'' integers n for 
which x —> xn is a central endomorphism of ©. If © is not necessarily nilpotent, if 
the above condition on the conjugates is retained, and if we can find a member 
of the lower central series [1], every element of which lies in some member of 
the ascending central series, then we shall show that every non-unity element 
of the "high" derivatives has finite order. 

2. Commutator relations. In a group ©, let (x, y) = xyxrlyrl. In general, 
commutator notation is to be that of [5]. Let [x, y} be that subgroup of © 
which has generators x and y. By St = %(x, y) we mean1 the smallest normal 
subgroup of {x, y] which contains both ((#, y),x) and ((x, y),y). If (x, y) 
commutes with both x and y, then 

(x,y)n= (x\y) = (* , / ) , 

for every positive integer w, as an induction will show. Similarly 

(xy)n = xnyn(y,x)e ( » = J » ( n - 1 ) ) . 

In {x, y}/%, (x, y)X commutes with xX and y%. Hence the above commutator 
formulae can be modified to (xy y)n = (xn, y) = (x, yn) mod %(x, y) and to 
(xy)n = ^lyn(y1 x)e mod £(x, y) for every x, y 6 ©. 

3. The uniform bound. In this section, we assume that © is a non-trivial 
group and that M is a positive integer such that the number of conjugates for 
any element x Ç © cannot exceed M. We shall call such a group a u.b. group, 
or say that the group is u.b.; M will be called the u.b. of ®. Let £a) be the 
centre of ©. Suppose that S(i) 1S defined. Then £(i+l) is to be that subgroup of © 
for which S^i+1)/S(i) 1S the centre of ®/<3

(<)» and we have described the ascen
ding central series [1] of ®. We say that a group is a torsion group if every non-
unity element thereof has finite order. If every element of a group ® has infinite 
order, we say that the group is torsion-free. 

The group © is said to have uniform torsion and is called u.t. if there exists a 
positive integer a such that xa = 1 for all x Ç ©; a might be called the exponent 
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xThe proof of the principal result has been simplified as suggested by the referee, whereby 
properties of the ®/SE are used. 
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of ®. If ® is u.b. with bound M then ®/3 ( 1 ) is u.t. with exponent a dividing Ml 
For, il g, h € ®, the set 

{ * ~ W (* = 0 , 1 , 2 , . . . , M ) 

cannot have M + 1 distinct elements. Equating a suitable pair of these, we 
find an integer ni, 1 < m < M, such that &mg = g&w. Now m | Ml = M SO that 
h^g = gh". The result is well known. For later use, we recall the fact that, for 
any group ® and positive integer i, 

(®, 3(<+l)) C Su)-

Suppose that ®/<3(1) is u.t. with exponent a and that 9£ is any normal sub
group of ®. For x e ®, y € iV, £(x, y) C (®, (®, 9i)) so that 

(*,?)• ^ (*',?) ^ i mod(®, (®,9i)), 

by the first of the commutator relations above. Let © be the set of all 5 Ç (®, 91) 
for which sa € (®, (®, 9?)). Then the members of © form a set of generators 
for (®, 5ft), and © contains the inverse of each of its elements. Now let s and t 
be elements of ©. Then 

(5, 0 € ((®, 31), (©, 91)) C (®, (®, 91))-

By the second of the commutator relations, (st)a = 1 mod (®, (®, 91)), and 
© = (®, 9i)- We have the proof of the first part of the following 

LEMMA. (®, 91)/(®, (®, 91)) is u.t. wiJft exponent dividing a whenever ®/3 ( 1 ) 

w u.t. with exponent a and 9Î is a normal subgroup of ®; (®, ,3(i+1)) ^ u-t- w^ 
exponent a(i), wftere a(i)|a* and where a(i)\a(i + 1). 

That a(i)\a(i + 1) is obvious. To show that a(z)|a\ we note that the result 
holds if i = 0; and if it holds for i = k — 1, take 91 above to be 3 ( fc+1)- Then 
(®, 5») C 3(k\ and 

(®,3u+1))/[(®,3w)n(®,3a+1))] 
is u.t. with exponent dividing a. Hence (®, 3{k+1)) is u.t. with exponent a(k) 
where a(k)\a . a(k — 1). The induction assumption includes a(k — l)|a(*;~1), so 
that a(]fe)|a*. 

THEOREM. / / ®/<3(1) is u.t. and # y(i) = a . a(i — 1) (where a(i — 1) is 
/fee exponent of (®, «3(<)))> ^ w ^ mapping x —> x7(i) on ® induces an endomor-
phism of £<*> into £<l\ 

Proof. If x, y € 3(<)» (xy)a = tf'y'z, where 

»eC8 (° f3
( 0 )n3 ( 1 )c(®,3 ( 0 )n3 ( 1 ) -

Hence (xy)*(i) - **<*> y^(i). For, z € C3(i), 3 ( i )) by the second of the com
mutator relations, using the fact that ï ( x , y) C C3(<), £>{i))\ and z 6 3 ( 1 ) , since 
wa Ç 3 ( 1 ) f° r every w Ç ®. Since (®, 3 ( i )) is u-t. with exponent a(i — 1), 
7(i) has the indicated property. 
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4. The consequences of the theorem. 

COROLLARY 1. Let ®/3 ( 1 ) be u.t., and let ® be nilpotent of class c. Then the 
mapping x —» xy(c) is a central endomorphism of ®. 

Proof. Take i = c in the theorem. 

COROLLARY 2. If ®/3 ( 1 ) is u.t. and if any member of the ascending central 
series is torsion-free, then the ascending central series collapses and contains only 
the centre. 

Proof. If 3<n> is torsion-free and if g Ç 3<n+1), » ^ 1, then 

gxg-'x"1 6 ( ® , 3 ( w + 1 ) ) C 3 ( n ) 

for every x Ç ®, and the u.t. property of (@, 3(n+1)) shows that gxg~l x~l = 1, 
the unity of ©. Then gx = xg for every x G ®, and 3 ( n + 1 ) C 3 ( 1 )-

COROLLARY 3. 4̂ non-Abelian nilpotent group © z^A torsion-free centre cannot 
be u.b. 

For a given group © let 3 = 3(®) he the set sum of the £(i) (i = 1, 2, 3, . . .). 
3 is a normal subgroup of © ; and &* = S if © is nilpotent. The converse of the 
latter statement need not hold. If © = £ we call © weakly nilpotent. From the 
principal theorem, if ®/<3(1) is u.t., then (©, £) is a torsion subgroup of ®. 
Similarly, we have the following results: 

LEMMA. If ®/£(1) is u.t.2 and if ® is vjeakly nilpotent, then (®, ®) is a torsion 
subgroup of ®. 

LEMMA. If ®/3 ( 1 ) is u.t. and if 3 D *®> # member of the lower central series 
of ®, then (a) the *+*®, & > 0, are torsion subgroups; and (b) for "large" j , the 
®(J), members of the derived series are torsion subgroups. 

Proof. (See [5] and [1] for definitions.) (a) 3 D *® implies 

(®, 3 ) D (®, *@) = i+1® D <+*® (* > 2). 

(b) It is known [1] that @(i) C *® (* = 2> - 1). Choose j ^ log2(* + 2) for 
the desired result. 

It is well known [3] that the integers n for rhich x —» xn is a central endomor
phism form an ideal. It would be of interest to extend the work of Levi and van 
der Waerden and of Bruck [2], concerning central endomorphisms of the form 
x —> x3, to the general central power endomorphism. But the methods, as in [2], 
seem to depend on the fact that 3 is "small." 

2For a related result when ® is u.b. see [4], 
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