GROUPS WITH A CERTAIN CONDITION ON CONJUGATES

FRANKLIN HAIMO

1. Introduction. In this paper, we shall show that if © is a nilpotent [5] group and if M, a positive integer, is a uniform bound on the number of conjugates that any element of \mathbb{G} may have, then there exist "large" integers n for which $x \rightarrow x^{n}$ is a central endomorphism of \mathbb{F}. If \mathbb{C} is not necessarily nilpotent, if the above condition on the conjugates is retained, and if we can find a member of the lower central series [1], every element of which lies in some member of the ascending central series, then we shall show that every non-unity element of the "high" derivatives has finite order.
2. Commutator relations. In a group ©f, let $(x, y)=x y x^{-1} y^{-1}$. In general, commutator notation is to be that of [5]. Let $\{x, y\}$ be that subgroup of \mathbb{H} which has generators x and y. By $\mathfrak{I}=\mathfrak{I}(x, y)$ we mean ${ }^{1}$ the smallest normal subgroup of $\{x, y\}$ which contains both $((x, y), x)$ and $((x, y), y)$. If (x, y) commutes with both x and y, then

$$
(x, y)^{n}=\left(x^{n}, y\right)=\left(x, y^{n}\right)
$$

for every positive integer n, as an induction will show. Similarly

$$
(x y)^{n}=x^{n} y^{n}(y, x)^{\theta} \quad\left(\theta=\frac{1}{2} n(n-1)\right)
$$

In $\{x, y\} / \mathfrak{I},(x, y) \mathfrak{T}$ commutes with $x \mathfrak{T}$ and $y \mathfrak{T}$. Hence the above commutator formulae can be modified to $(x, y)^{n} \equiv\left(x^{n}, y\right) \equiv\left(x, y^{n}\right) \bmod \mathfrak{T}(x, y)$ and to $(x y)^{n} \equiv x^{n} y^{n}(y, x)^{\theta} \bmod \mathfrak{I}(x, y)$ for every $x, y \in \mathbb{H}$.
3. The uniform bound. In this section, we assume that \mathbb{H} is a non-trivial group and that M is a positive integer such that the number of conjugates for any element $x \in \mathscr{H}$ cannot exceed M. We shall call such a group a u.b. group, or say that the group is u.b.; M will be called the u.b. of \mathfrak{G}. Let $\mathfrak{B}^{(1)}$ be the centre of (G). Suppose that $\mathbb{B}^{(i)}$ is defined. Then $\mathbb{B}^{(i+1)}$ is to be that subgroup of (B) for which $\mathfrak{Z}^{(i+1)} / \mathfrak{Z}^{(i)}$ is the centre of $\mathfrak{S} / \mathfrak{Z}^{(i)}$, and we have described the ascending central series [1] of \mathbb{G}. We say that a group is a torsion group if every nonunity element thereof has finite order. If every element of a group © has infinite order, we say that the group is torsion-free.

The group \mathbb{H}^{5} is said to have uniform torsion and is called u.t. if there exists a positive integer a such that $x^{a}=1$ for all $x \in \mathscr{G} ;$ a might be called the exponent

Received April 3, 1951 ; in revised form October 11, 1951. Presented to the American Mathematical Society, November 25, 1950.
${ }^{1}$ The proof of the principal result has been simplified as suggested by the referee, whereby properties of the $\mathbb{S} / \mathfrak{T}$ are used.
of \mathbb{B}. If \mathbb{B} is u.b. with bound M then $\mathbb{B} / \mathfrak{Z}^{(1)}$ is u.t. with exponent a dividing M ! For, if $g, h \in \mathbb{G}$, the set

$$
\left\{h^{-i} g h^{i}\right\} \quad(i=0,1,2, \ldots, M)
$$

cannot have $M+1$ distinct elements. Equating a suitable pair of these, we find an integer $m, 1 \leqslant m \leqslant M$, such that $h^{m} g=g h^{m}$. Now $m \mid M!=\mu$ so that $h^{\mu} g=g h^{\mu}$. The result is well known. For later use, we recall the fact that, for any group $\mathfrak{B l}$ and positive integer i,

$$
\left(\mathfrak{F}, \mathfrak{B}^{(i+1)}\right) \subset \mathfrak{B}^{(i)} .
$$

Suppose that $\left(\mathbb{J} / \mathbb{B}^{(1)}\right.$ is u.t. with exponent a and that \mathfrak{N} is any normal subgroup of \mathfrak{G}. For $x \in \mathfrak{B}, y \in N, \mathfrak{I}(x, y) \subset(\mathfrak{F},(\mathfrak{J}, \mathfrak{N}))$ so that

$$
(x, y)^{a} \equiv\left(x^{a}, y\right) \equiv 1 \quad \bmod (\mathfrak{G},(\mathfrak{G}, \mathfrak{N}))
$$

by the first of the commutator relations above. Let \mathfrak{S} be the set of all $s \in(\mathbb{O}, \mathfrak{N})$ for which $s^{a} \in(\mathfrak{G},(\mathbb{O}, \mathfrak{N})$). Then the members of \mathfrak{S} form a set of generators for ($(\mathscr{S}, \mathfrak{R})$, and \mathfrak{S} contains the inverse of each of its elements. Now let s and t be elements of \mathfrak{S}. Then

$$
(s, t) \in((\mathfrak{J}, \mathfrak{N}),(\mathfrak{(}, \mathfrak{N})) \subset(\mathfrak{(},(\mathfrak{(}), \mathfrak{N})) .
$$

By the second of the commutator relations, $(s t)^{a} \equiv 1 \bmod (\mathfrak{G},(\mathfrak{S}, \mathfrak{N}))$, and $\mathfrak{S}=(\mathbb{G}, \mathfrak{R})$. We have the proof of the first part of the following

Lemma. ($(\mathfrak{H}, \mathfrak{R}) /\left(\mathfrak{G},(\mathfrak{G}, \mathfrak{N})\right.$) is u.t. with exponent dividing a whenever $\left(\mathfrak{H} / \mathfrak{B}^{(1)}\right.$ is u.t. with exponent a and \mathfrak{N} is a normal subgroup of $\left(\mathfrak{F} ;\left(\mathbb{G}, \mathfrak{Z}^{(i+1)}\right)\right.$ is u.t. with exponent $\boldsymbol{a}(i)$, where $a(i) \mid a^{i}$ and where $a(i) \mid a(i+1)$.

That $a(i) \mid a(i+1)$ is obvious. To show that $a(i) \mid a^{i}$, we note that the result holds if $i=0$; and if it holds for $i=k-1$, take \mathfrak{N} above to be $\mathcal{S}^{(k+1)}$. Then $(\mathfrak{F}, \mathfrak{R}) \subset \mathfrak{B}^{(k)}$, and

$$
\left(\mathfrak{G}, \mathfrak{S}^{(k+1)}\right) /\left[\left(\mathfrak{G}, \mathfrak{S}^{(k)}\right) \cap\left(\mathfrak{G}, \mathfrak{S}^{(k+1)}\right)\right]
$$

is u.t. with exponent dividing a. Hence ($\left(\mathfrak{J}, 马^{(k+1)}\right.$) is u.t. with exponent $a(k)$ where $a(k) \mid a \cdot a(k-1)$. The induction assumption includes $a(k-1) \mid a^{(k-1)}$, so that $\boldsymbol{a}(k) \mid \boldsymbol{a}^{k}$.

Theorem. If $\left(5 / \mathscr{S}^{(1)}\right.$ is u.t. and if $\gamma(i)=a \cdot a(i-1)$ (where $a(i-1)$ is the exponent of $\left(\mathbb{G}, \mathfrak{Z}^{(i)}\right)$), then the mapping $x \rightarrow x^{\gamma^{(t)}}$ on $(\mathbb{B}$ induces an endomorphism of $\mathfrak{B}^{(i)}$ into $\mathfrak{B}^{(1)}$.

Proof. If $x, y \in \mathbb{B}^{(i)},(x y)^{a}=x^{a} y^{a} z$, where

$$
z \in\left(\mathfrak{S}^{(i)}, \mathfrak{S}^{(i)}\right) \cap \mathfrak{S}^{(1)} \subset\left(\mathfrak{G}, \mathfrak{S}^{(i)}\right) \cap \mathfrak{S}^{(1)}
$$

Hence $(x y)^{\gamma^{(i)}}=x^{\gamma(i)} y^{\gamma^{(i)}}$. For, $z \in\left(B^{(i)}, B^{(i)}\right)$ by the second of the commutator relations, using the fact that $\mathfrak{T}(x, y) \subset\left(\mathfrak{B}^{(i)}, \mathfrak{B}^{(i)}\right)$; and $z \in \mathfrak{B}^{(1)}$, since $w^{a} \in \mathfrak{B}^{(1)}$ for every $w \in \mathbb{G}$. Since ($\left(\mathfrak{F}, \mathfrak{S}^{(i)}\right)$ is u.t. with exponent $a(i-1)$, $\gamma(i)$ has the indicated property.

4. The consequences of the theorem.

Corollary 1. Let $\left(3 / \mathfrak{Z}^{(1)}\right.$ be u.t., and let (5) be nilpotent of class c. Then the mapping $x \rightarrow x^{\gamma(c)}$ is a central endomorphism of $\mathbb{G H}$.

Proof. Take $i=c$ in the theorem.
Corollary 2. If $\left(\mathbb{S} / \mathfrak{S}^{(1)}\right.$ is u.t. and if any member of the ascending central series is torsion-free, then the ascending central series collapses and contains only the centre.

Proof. If $\mathfrak{X}^{(n)}$ is torsion-free and if $g \in \mathfrak{S}^{(n+1)}, n \geqslant 1$, then

$$
g x g^{-1} x^{-1} \in\left(\mathfrak{S}, \mathbb{Z}^{(n+1)}\right) \subset \mathscr{Z}^{(n)}
$$

for every $x \in \mathbb{G}$, and the u.t. property of ($\left(\mathbb{G}, \mathbb{B}^{(n+1)}\right.$) shows that $\mathrm{gxg}^{-1} x^{-1}=1$, the unity of \mathbb{F}. Then $g x=x g$ for every $x \in \mathbb{G}$, and $\mathfrak{B}^{(n+1)} \subset \mathfrak{B}^{(1)}$.

Corollary 3. A non-Abelian nilpotent group © with torsion-free centre cannot be u.b.

For a given group \mathfrak{B} let $\mathfrak{Z}=\mathfrak{Z}(\mathbb{B})$ be the set sum of the $\mathfrak{B}^{(i)}(i=1,2,3, \ldots)$. 3 is a normal subgroup of \mathbb{B}; and $\mathbb{C}=3$ if \mathbb{B} is nilpotent. The converse of the latter statement need not hold. If $\mathfrak{F})=\mathfrak{3}$ we call \mathfrak{G} weakly nilpotent. From the principal theorem, if $\left(5 / B^{(1)}\right.$ is u.t., then $(\mathbb{G}, \mathfrak{B})$ is a torsion subgroup of (\mathbb{G}). Similarly, we have the following results:

Lemma. If $\left(\mathbb{S} / \mathscr{B}^{(1)}\right.$ is u.t. ${ }^{2}$ and if © is zeakly nilpotent, then ((\mathbb{F}), (5) is a torsion subgroup of $(\mathbb{B}$.

Lemma. If $\left(\mathbb{B} / \mathbb{Z}^{(1)}\right.$ is u.t. and if $\mathbb{B} \supset^{\text {i }}(\mathbb{F}$, a member of the lower central series of (G), then (a) the ${ }^{i+k}(\mathrm{~J}), k>0$, are torsion subgroups; and (b) for "large" j, the (f5 ${ }^{(j)}$, members of the derived series are torsion subgroups.

Proof. (See [5] and [1] for definitions.) (a) $3 \supset^{1}(5)$ implies

$$
(\oiint, 3) \supset(\oiint), \mathbb{B}^{i}(\oiint)={ }^{i+1}(\mathscr{F}) \supset^{i+k}(\mathbb{H}) \quad(k \geqslant 2) .
$$

(b) It is known [1] that ${ }^{(51(j)} \subset{ }^{k(1)}\left(k=2^{j}-1\right)$. Choose $j \geqslant \log _{2}(i+2)$ for the desired result.

It is well known [3] that the integers n for \cdots hirh $x \rightarrow x^{n}$ is a central endomorphism form an ideal. It would be of interest to extend the work of Levi and van der Waerden and of Bruck [2], concerning central endomorphisms of the form $x \rightarrow x^{3}$, to the general central power endomorphism. But the methods, as in [2], seem to depend on the fact that 3 is "small."

[^0]
References

1. R. Baer, The higher commutator subgroups of a group, Bull. Amer. Math. Soc., vol. 50 (1944), 143-160.
2. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc., vol. 60 (1946), 245-354.
3. F. W. Levi, Notes on group theory VII, J. Indian Math. Soc. (N.S.), vol. 9 (1945), 37-42 (as available in Math. Rev., vol. 8 (1947), 13).
4. B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3), vol. 1 (1951), 178-187.
5. H. Zassenhaus, Lehrbuch der Gruppentheorie (Leipzig and Berlin, 1937).

Washington University in Saint Louis

[^0]: ${ }^{2}$ For a related result when (S) is u.b. see [4].

