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AN INEQUALITY FOR PROBABILITY DENSITY FUNCTIONS
ARISING FROM A DISTINGUISHABILITY PROBLEM
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Abstract

An integral inequality is established involving a probability density function on the real
line and its first two derivatives. This generalizes an earlier result of Sato and Watari. If /
denotes the probability density function concerned, the inequality we prove is that

(7a\\ff\r(x)r
' x-\p-\) U u(w- x

under the conditions fi > a > 1 and 1 /(/3 + 1) < y < 1.

1. Introduction

In this article we establish a general integral inequality involving a probability density
and its first two derivatives (in the distributional sense). Integrals of the sort involved
can arise in probabilistic extremal problems via the calculus of variations and optimal
control theory and our result has an interest for such applications.

The genesis of the present ideas lies in a striking distinguishability problem whose
roots go back half a century to a paper of Kakutani [2]. Suppose X = (X,)~ is a
sequence of independent and identically distributed random variables and a = (a,)™
an associated numerical sequence, a, representing the error in centering X(. When are
the sample paths X and X + a distinguishable?

A key concept to unlock this question is that of finite information. We say that
X has finite information if the common distribution of the Xt has an almost surely
positive and (locally) absolutely continuous density function / satisfying

/ . ( / ) = / [f'(x)]2/f(x)dx<oo, (1.1)
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where / ' is the derivative of / in the distributional sense. For X with finite inform-
ation we can distinguish if and only if £ af = oo. These results were established
by Shepp [6], who made use of the machinery of the Hilbert space L2 of square-
integrable functions and of some work of Kakutani on the equivalence of infinite
product measures. This introduces the stronger concept of total indistinguishability,
which signifies in physical terms that for every observed sequence, there is doubt as to
whether it came from X or from X + a. A necessary and sufficient condition for total
indistinguishability is that the infinite product measures fix and fix+a induced by X
and X + a be mutually absolutely continuous or equivalent, denoted by /z* ~ Hx+a-

Subsequently there was exploration of the more general question where a is re-
placed by an identically and independently distributed sequence Y = (I7,)?0 of sym-
metric random variables. Kitada and Sato [3] have given sufficient conditions for
distinguishability under the requirement

I2(f) = ["[fix)]2/f(x) dx < oo. (1.2)
./-oo

They proved also that (1.2) implies (1.1) if / is monotone for large |x|.
More recently Sato and Watari [5] established that

showing that (1.2) implies (1.1) quite generally. They derive as an application that
if (1.2) holds and the distributions of Y are symmetric with Y e £4 almost surely,
then X + Y and X induce mutually absolutely continuous probability measures and
so are totally indistinguishable. Here ta (fora > 1) denotes the space of all random
sequences such that Y1T=\ ̂ k < °° a s - The condition Y e £4 a.s. had arisen in
early work by Rozanov [4] and Fernique [ 1 ] as a necessary and sufficient condition
for equivalence of the measures on sequence space in the case when X, Y are centred
Gaussian.

In the present paper we provide a generalization of (1.3). To be specific, suppose
that / is an a.s. positive density function and write

_ f+°° [f'(x)2y° [+

7"~' - L [/(*)]*"••>-dx' Ja-0 ~ L
In Section 2 we establish the following result.

THEOREM 1. If f is such that Ja p < oo for some fi > a > 1, then

\f"(X)\°

UM]^
 dx-

for 1 / ( 0 + 1 ) <y<\.
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This includes the inequalities of Sato and Watari [5] as the special cases a = 2,
P = 3, y = 1 and y = 1/2.

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Let [a, b], (—oo < a < b < +oo) be a closed interval and h a nonneg-
ative continuously differentiable function on [a, b]. Suppose the derivative h' is an
absolutely continuous non-vanishing function on (a, b), h'{a+) = h'(b—) = 0, and
fa \h"(x)\a /[h(x)]p~adx < oo for the second derivative h" when P > a > 0. Then

£ (x)2)a
W(x)2)
[h(x)Y

[h'(x)2]a-lh"(x)

[h(x)Y - l
dx, (2.1)

"Of*H'
for 1/08 + 1) < Y < 1.

PROOF OF LEMMA 1. For r] > 0 we define hn(x) = h{x) + r\ as in [5]. For every
P — 1 > s > 0, since h'(a+) = h'{b—) = 0, we can choose a closed interval [a', b']
contained in (a, b) such that

dx.

Further we have

cb' rL'/..\2ia

f.
J a'

- i
dx =

W(x)2]

+ 2a

dx

a

'(x)2]a[h'(x)2]a

dx,

that is,

I T dx =
Ja' [hn(x)]P P —

x

(2.3)

X
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From (2.3) and Holder's inequality we have

- 1 f"' [h'(x)2]°-{h"(x)

353

L X X

2a-

/J - 1 -
i_ [ ["' ( w(x)2r-> y/ (o-"
-e [L \[hn(x)r-l>f>/°)

dx

1 — 1 la

2 a - ( [
P-l-e\J, [hn(x)]t>

l - l / o r

X

From the last inequality we have

'
/•"' |ft"(jr)|'

y, [A,(JC)]"-

/•*

2a - 1

2a -

< oo.

On taking e —» 0 together with a' \ a and b' f b we have

' W , 2a-l "
d

X

L J
( }

Relations (2.1) and (2.2) for y = 1 follow from (2.4) and (2.5) on letting r) \ 0.
If l/(/3 + 1) < y < 1, (2.2) follows from Holder's inequality and (2.2) for y = 1,

that is,

dx

[»[h'(
j
dx
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PROOF OF THEOREM 1. As in [5], the continuity of / ' implies that R \ {x\f'(x) = 0}
is the union of at most a countable number of mutually disjoint open intervals (an, bn)
such that / satisfies the hypotheses of Lemma 1 on each closed interval [an, bn]. By
applying (2.2) and Holder's inequality we have

f
J—c

=
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