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Complemented Subspaces of Banach Spaces

1.1 Banach and Quasi-Banach Spaces

A quasinorm on a real or complex vector space X is a map ‖ · ‖ : X −→ R+ that
satisfies

• ‖x‖ = 0 =⇒ x = 0,
• ‖λx‖ = |λ|‖x‖,
• ‖x + y‖ ≤ ∆(‖x‖ + ‖y‖),

for all x, y ∈ X, all scalars λ and some constant ∆ ≥ 1, called the modulus
of concavity of the quasinorm. If ∆ = 1, then ‖ · ‖ is a norm. A quasinorm
induces a linear topology on the underlying space: the coarsest linear topology
for which the unit ball BX = {x ∈ X : ‖x‖ ≤ 1} is a neighbourhood of the origin.
A quasinormed space is a vector space equipped with a quasinorm; when the
space is moreover complete, it is called a quasi-Banach space. If the quasinorm
is a norm then it will be called a normed space and, if it is complete, a
Banach space. An operator is a linear continuous map. Topologies induced by
quasinorms are so uncomplicated that a linear map u : X −→ Y acting between
quasinormed spaces is continuous if and only if it is bounded, in the sense that

‖u‖ = sup
‖x‖≤1
‖u(x)‖ < ∞. (1.1)

The space of all operators from X to Y is denoted by L(X,Y) and is a quasi-
normed space endowed with the quasinorm (1.1). It is complete (or p-normed,
see later) when Y is. The space L(X,K) is the dual space of X, usually denoted
by X∗, and is always a Banach space. We say that X has separating dual if, for
every non-zero x ∈ X, there is x∗ ∈ X∗ such that 〈x∗, x〉 , 0. The space is said
to have trivial dual if X∗ = 0.

Why do we bother the reader with quasinorms instead of using just plain
norms? Because one must face right from the start the awful truth: it is not
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10 Complemented Subspaces of Banach Spaces

possible to make a serious study of twisted sums of Banach spaces without
considering quasinorms. That is simply the way things are. It will be explained
at length through the book, but a motivating example can be given now: if
everything one knows about a space Z is that it contains a Banach subspace Y
such that Z/Y is a Banach space, it may simply happen that Z is not locally
convex, but, even if it is, there is no way to specify a particular norm on Z,
while it could be feasible to describe a quasinorm on it. Moreover, the necessity
to distinguish quasinorms from the far more popular norms is because ∆ > 1
and has, in practice, side effects: the unit ball is no longer convex, and thus
the Hahn–Banach theorem ceases to work, up to the point that a quasi-Banach
space might have trivial dual or that a quasinorm is not necessarily continuous
with respect to its own topology. In spite of these facts, there is no need to
panic: the open mapping, closed graph and Banach–Steinhaus theorems work
perfectly well on quasi-Banach spaces. Moreover, a simple remedy to correct
the possible discontinuity of the quasinorm is to work with p-norms, 0 < p ≤
1, which are quasinorms satisfying the additional inequality

• ‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Obviously p-norms are q-norms for 0 < q < p. A p-norm satisfies the inequal-
ity

∣∣∣‖x‖p −‖y‖p∣∣∣ ≤ ‖x− y‖p, and this makes it continuous. Even better than that,
quasinorms can be judiciously replaced by p-norms:

1.1.1 Aoki–Rolewicz Theorem Each quasinorm is equivalent to some
p-norm.

Indeed, if ‖ · ‖ has modulus of concavity ∆ and 21/p −1 = ∆ then

‖x‖(p) = inf
{( ∑

1≤i≤n

‖xi‖
p
)1/p

: x =
∑

1≤i≤n

xi

}
(1.2)

defines a p-norm on X such that ‖ · ‖(p) ≤ ‖ · ‖ ≤ 2∆‖ · ‖(p). This is somehow
optimal since an elementary computation reveals that the modulus of concavity
of a p-norm is at most 21/p −1. There is moreover an effective way to detect
when a quasinorm is equivalent to a p-norm for a pre-established p:

Lemma 1.1.2 Let 0 < p ≤ 1. A quasinormed space X is isomorphic to a
p-normed space if and only if there is a constant C such that, for finitely many
xi ∈ X, one has ∥∥∥∥∑

i

xi

∥∥∥∥ ≤ C

∑
i

‖xi‖
p

1/p

. (1.3)
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1.1 Banach and Quasi-Banach Spaces 11

Proof It is clear that X is isomorphic to a p-normed space precisely when
there is a p-norm | · | on X such that | · | ≤ ‖ · ‖ ≤ C| · |. If this holds, then given
finitely many x1, . . . , xn ∈ X, one has∥∥∥∥ ∑

1≤i≤n

xi

∥∥∥∥ ≤ C
∣∣∣∣ ∑

1≤i≤n

xi

∣∣∣∣ ≤ C

 ∑
1≤i≤n

|xi|
p

1/p

≤ C

 ∑
1≤i≤n

‖xi‖
p

1/p

.

As for the converse, if (1.3) holds then the functional (1.2) is a p-norm
satisfying ‖ · ‖(p) ≤ ‖ · ‖ ≤ C‖ · ‖(p). �

A p-norm defines an invariant metric by the formula d(x, y) = ‖x − y‖p,
and thus the Aoki–Rolewicz theorem implies that quasinormed spaces are
metrisable. The absolute summability criterion for completeness of a p-norm is:

1.1.3 Let X be a p-normed space. Then X is complete if and only if every
sequence (xn) such that

∑
n≥1 ‖xn‖

p < ∞ is summable in X.

The Completion

The Aoki–Rolewicz theorem places quasinormed spaces among metric linear
spaces; thus quasinormed spaces can be completed. Quasinorms, however, can
be rather nasty functions for which there can be no natural extension to the
completion. Thus, perhaps the simplest way to construct a completion κ : X −→
X̂ of a quasinormed space X is to first put an equivalent p-norm to then use
the induced metric to construct a completion via equivalent classes of Cauchy
sequences. The operations and the p-norm extend by uniform continuity. If
for some reason we want to keep the original quasinorm on X, we can do so.
Completions, like many other universal constructions in this book, come with
a universal property: every operator u from X into a complete space Y factors
through the inclusion κ : X −→ X̂ as u = ûκ with ‖̂u‖ = ‖u‖ in the form

X κ //

u $$

X̂

ûzz
Y

(1.4)

The p-Banach Envelope

The proof of Lemma 1.1.2 suggests the following construction. Given a
quasinormed space X and p ∈ (0, 1], the formula (1.2) defines a positively
homogeneous and p-subadditive function such that ‖ · ‖(p) ≤ ‖ · ‖. If N(p) =

{x ∈ X : ‖x‖(p) = 0}, then ‖ · ‖(p) becomes a genuine p-norm on X/N(p). The
completion of X/N(p) with the natural extension of ‖ · ‖(p) is a p-Banach space
called the p-Banach envelope of X and is denoted X(p). The universal property
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12 Complemented Subspaces of Banach Spaces

that corresponds to p-Banach envelopes is that every operator u : X −→ Y from
X into a p-Banach space Y factors as (the unlabeled arrow is the obvious map)

X //

u $$

X(p)

ũyy
Y

and ‖ũ‖ = ‖u‖. The 1-Banach envelope is called the Banach envelope. It should
be clear that the dual of a quasinormed space and that of its Banach envelope
coincide so that X(1) = 0 if and only if X has trivial dual. A good account of
Banach envelopes is [289].

Some Fundamental Examples

Given a σ-finite measure space (S , µ), we write L0(µ) for the space of real or
complex measurable functions on S modulo almost everywhere equality. The
space L0(µ) comes with the topology of convergence in measure on sets of
finite measure, for which a typical neighbourhood of zero is

{ f ∈ L0(µ) : µ{s ∈ A : | f (s)| > ε} < ε},

where µ(A) < ∞ and ε > 0. This space, mostly used as an ambient space, is
not locally bounded (unless S consists of a finite number of atoms) nor locally
convex (unless µ is purely atomic); see 1.8.2.

1.1.4 By a (quasinormed) function space, we will mean a linear subspace
X ⊂ L0(µ) equipped with a quasinorm ‖ · ‖ such that

• if A has finite measure, then the characteristic function 1A belongs to X,
• if g ∈ X and f ∈ L0(µ) is such that | f | ≤ g, then f ∈ X and ‖ f ‖ ≤ ‖g‖,
• the inclusion of X into L0(µ) is continuous.

If X is complete, we call it a quasi-Banach function space.

The simplest such spaces are the Lebesgue spaces Lp(µ) of p-integrable
functions quasinormed, when 0 < p < ∞, with

‖ f ‖p =

(∫
S
| f |pdµ

)1/p

and the space L∞(µ) of essentially bounded measurable functions endowed
with the essential supremum norm. These are Banach spaces for p ≥ 1
and quasi-Banach (actually p-Banach) spaces when 0 < p < 1. When µ is a
Lebesgue measure on [0, 1], we omit it, and we just write Lp. The Hardy classes
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1.2 Complemented Subspaces 13

Hp, closely related to the spaces Lp, are thoroughly studied in Duren’s classic
[163]. The space Hp is the space of analytic functions f : D −→ C such that
‖ f ‖p = sup0<r<1 M( f , r) < ∞, where

M( f , r) =

(
1

2π

∫ 2π

0
| f (reit)|pdt

)1/p

.

If f ∈ Hp, then the limit f ∗(eit) = limr→1 f (reit) exists for almost all t ∈ (0, 2π]
and M( f , r) is increasing on r ∈ (0, 1). The mapping f 7−→ f ∗ defines an
isometry between Hp and the closed subspace of Lp(T) spanned by the
exponentials eint for n = 0, 1, 2, . . .

The sequence spaces `p and the Schatten classes S p have separating dual
for all p, and the same is true for Hp since an obvious application of Cauchy’s
integral formula shows that for every z ∈ D and every f ∈ Hp, we have

| f (z)| ≤ 21/p(1 − |z|)−p‖ f ‖p. (1.5)

When a quasi-Banach space X has non-trivial dual, as is the case if X is a
normed space, then L(X,Y) , 0 for all quasinormed spaces (or topological
vector spaces) Y . This is no longer true when X is a quasi-Banach space:

1.1.5 If 0 < p < 1, then L(Lp,Y) = 0 for all q-normed spaces Y with q > p.

The proof can be made easy: let Y be a q-normed space, 0 < p < q ≤ 1, and
let u : Lp −→ Y be an operator. If f is a norm 1 element of Lp then, by the inter-
mediate value theorem, there is a ∈ (0, 1) such that∫ a

0
| f |p =

∫ 1

a
| f |p =

1
2
.

Set g = 1[0,a) f , h = 1[a,1] f . Then ‖g‖ = ‖h‖ = 2−1/p and f = g + h, so

‖u f ‖ = ‖ug + uh‖ ≤
(
‖ug‖q + ‖uh‖q

)1/q
≤ ‖u‖

(
2−q/p + 2−q/p) = 21−q/p‖u‖.

As f is arbitrary, this implies that ‖u‖ ≤ 21−q/p‖u‖, which is possible only if
‖u‖ = 0. The same argument works replacing Lp by any vector valued Lp(X),
no matter the quasi-Banach space X one considers.

1.2 Complemented Subspaces

A projection P on a quasinormed space X is an idempotent of L(X), i.e.,
an operator P : X −→ X such that P2 = P. A closed subspace Y ⊂ X is
complemented if there exists a projection on X whose range is Y , usually called
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14 Complemented Subspaces of Banach Spaces

a projection onto Y . It is clear that a projection of X onto Y is just an extension
of the identity 1Y to X.

Lemma 1.2.1 A closed subspace Y of a quasi-Banach space X is comple-
mented if and only if there exists a closed subspace V of X such that Y ∩V = 0
and Y + V = X.

Proof If a projection P as above exists then ker P is closed, and letting
V = ker P, we have X = Y ⊕ V . Conversely, if such a V exists, every x ∈ X can
be decomposed as x = y + v with y ∈ Y and v ∈ V in a unique way, and we can
define a mapping P : X −→ X taking y = P(x). This map is linear and idempo-
tent and satisfies P[X] = Y . It is continuous since it has a closed graph. �

The subspace V in the lemma is sometimes called a complement of Y , which
explains the terminology. It is clear that all complements of a given subspace
are isomorphic as they are isomorphic to the quotient space X/Y . A quantified
version of the notion of complemented subspace can be defined by means
of the quasinorm of the projection: we say that Y is λ-complemented in X
if there is a projection of X onto Y whose quasinorm is at most λ. The relative
projection constant of Y in X is defined as λ(Y, X) = inf{‖P‖ : P is a projection
of X onto Y}. While the finite-dimensional subspaces of a Banach space are
all complemented, by the Hahn–Banach theorem, that is not always the case
for quasi-Banach spaces, and indeed 1.1.5 shows that no finite-dimensional
subspace of Lp can be complemented when 0 < p < 1.

Pełczyński’s Decomposition Method and Minimality

Pełczyński’s decomposition method appears in [376] to prove that all infinite-
dimensional complemented subspaces of `p for p ∈ [1,∞) or c0 are isomorphic
to the whole space. We could not resist giving its proof.

Proposition 1.2.2 Let X and Y be quasi-Banach spaces, each of them
isomorphic to a complemented subspace of the other. Assume that either both
X and Y are isomorphic to their squares or that Y is isomorphic to `p(Y) for
some 0 < p < ∞ or to c0(Y). Then, X ' Y.

Proof The first case is as follows: let V be a complement of X in Y . Then

Y ' X × V ' X × X × V ' Y × X

and, for the same reason, X ' X × Y . The second case is similar. We will give
the proof for `p; the case of c0 is analogous. First note that Y ' `p(Y) ' Y2.
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1.2 Complemented Subspaces 15

Thus, as before, X ' Y × X. Let V be a complement of X in Y such that
Y ' X × V . Then,

X ' Y × X ' `p(Y) × X ' `p(X × V) × X ' `p(X) × `p(V) ' `p(Y) ' Y. �

An example of Gowers [195] shows that the two hypotheses X ' X2 and
Y ' Y2 cannot be simultaneously dropped. Now, a gliding hump argument
shows that if X is one of the spaces c0 or `p for 0 < p < ∞, then every infinite-
dimensional closed subspace of X contains a further subspace spanned by
a basic sequence equivalent to a sequence of blocks of the canonical basis,
and thus is isomorphic to the whole space. If, moreover, 1 ≤ p < ∞, that
subspace can be taken as complemented. This shows that a complemented
subspace of `p with 1 ≤ p < ∞ or c0 is either finite-dimensional or isomorphic
to the whole space. The result is also true for p = ∞, but for quite different
reasons (see the discussion after 1.6.3). It is also true for 0 < p < 1 because
each complemented subspace (but not any subspace, see later) of `p contains a
further complemented copy of `p; cf. [443; 444]. The non-separable versions
(see the later proposition) also hold: the case p = 1 was obtained in [304]
(see also [411, Corollary, p. 29] and [175]), the case c0(I) in [199], the case
0 < p < 1 in [372] (notice that here the non-separable version holds, while the
separable version does not: see the comment after Corollary 2.7.4) and the case
1 < p < ∞ in [406].

Proposition 1.2.3 Each complemented subspace of either `p(I), 0 < p < ∞
or c0(I) is isomorphic to some `p(J) or c0(J). Each complemented subspace of
`∞ is either finite-dimensional or isomorphic to `∞.

There exist complemented subspaces of `∞(I) that are not isomorphic to any
`∞(J) [413]; see also [22].

Definition 1.2.4 A quasi-Banach space X is said to be minimal (resp.
complementably minimal) if each of its closed infinite-dimensional subspaces
contains a copy of X (resp. a copy of X complemented in X). We say that X is
prime if all its infinite-dimensional complemented subspaces are isomorphic
to X and primary if X = A ⊕ B implies that either A ' X or B ' X.

Proposition 1.2.5 If X is a minimal Banach space then there is C ≥ 1 such
that every closed infinite-dimensional subspace of X contains a subspace that
is C-isomorphic to X.

Proof Throughout this proof, subspace means closed infinite-dimensional
subspace. If no such C exists, fix f ∈ RN and obtain a decreasing sequence
Y1 ⊃ Y2 ⊃ · · · such that X does not f (n)-embed into Yn. Pick (yn)n≥1 a basic
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16 Complemented Subspaces of Banach Spaces

sequence in X with yn ∈ Yn, and let En = [yn, yn+1, . . . ]. There is a subspace
Z ⊂ E1 and a C > 1 such that Z is C-isomorphic to X and for which we may
assume dim E1/Z = ∞. Set Hn = Z ∩ En, and choose Hn ⊂ Fn ⊂ En such
that k = dim En/Fn = dim Z/Hn ≤ n. Thus, for some k-dimensional A ⊂ En

and B ⊂ Z, we have that En is (at most) (1 +
√

n)-isomorphic to A ⊕1 Fn

and [Hn + B] is (at most) (1 +
√

n)-isomorphic to B ⊕1 Hn. Since A and B are
(at most) n-isomorphic, it follows that A⊕1 Hn is at most n(1+

√
n)2-isomorphic

to Z, hence Cn(1+
√

n)2-isomorphic to X. And since [Hn + B] ⊂ En, it turns out
that X does actually Cn(1 +

√
n)2-embed in En, in flagrant contradiction of the

assumption that X does not f (n)-embed into Yn for, say f (n) = n2(1+
√

n)2. �

Thus, `p spaces, 0 < p < ∞, and c0 are prime. It is an open problem whether
Lp spaces are prime for 0 < p < 1: Kalton proved in [250] that they are primary
and that there exists, up to isomorphisms, at most one complemented subspace
of Lp other than Lp itself [253]; see also [256, Section 3]. The list of minimal or
complementably minimal spaces is not long. All `p spaces, 0 < p < ∞, and c0

are minimal, and complementably minimal when 1 ≤ p < ∞ or c0. The spaces
`p for p ∈ (0, 1) are not complementably minimal [397]. Schlumprecht’s
arbitrarily distortable space [426; 13] and its dual [87] are complementably
minimal, as are its superreflexive variations [87] and their duals. Tsirelson’s
space T, or its dual, are not complementably minimal [88, pp. 54–59], but its
p-convexified version Tp, 1 < p < ∞, is complementably minimal [88]. It is
obvious that every minimal space must be separable. A bit less clear is that
minimal spaces must be subspaces of spaces with unconditional basis: by the
Gowers dichotomy [196], a Banach space X contains either a subspace with
unconditional basis or an H.I. subspace, in which case it cannot be isomorphic
to any proper subspace. Since a space with unconditional basis contains either
c0, `1 or a reflexive subspace [334, Theorem 1.c.12 (a)], a minimal space must
be either reflexive or a subspace of c0 or `1. Thus, a complementably minimal
space must be c0, `1 or reflexive.

1.3 Uncomplemented Subspaces

It is a basic fact in functional analysis that each closed subspace of a Hilbert
space has a complement, namely the orthogonal complement. A classical
result by Lindenstrauss and Tzafriri [333] provides the converse: a Banach
space all of whose subspaces are complemented is isomorphic to a Hilbert
space. Thus, each non-Hilbert infinite-dimensional Banach space contains
uncomplemented subspaces. The introduction of the nicely written paper
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1.3 Uncomplemented Subspaces 17

[396] contains an historical account of the first discovered uncomplemented
subspaces. The minimality of the spaces `p allows us to more or less easily
locate some uncomplemented subspaces of `p: all subspaces not isomorphic
to `p itself. For instance, if Q : `p −→ X is a quotient map onto an infinite-
dimensional space X not isomorphic to `p then ker Q is uncomplemented
in `p, since any complement of ker Q should be isomorphic to X and also
complemented, which is impossible. Still, further insight into properties of `p

spaces is needed to obtain such quotients. But it can be done. Worse yet,
uncomplemented subspaces of `p exist and can even be isomorphic to `p:

Proposition 1.3.1 For each p ∈ (0,∞) different from 2, the space `p contains
an uncomplemented subspace isomorphic to `p.

This result is local in nature, in the sense that it depends upon proving that
for every 0 < p < ∞, p , 2, there is a sequence of subspaces En ⊂ `

n
p such that

• `p(N, En) is isomorphic to `p,
• λ(En, `

n
p) −→ ∞ as n −→ ∞.

The uncomplemented copy of `p inside `p is thus `p(N, En) inside `p(N, `n
p).

Let us tell the story as p decreases. The case 2 < p < ∞ is solved by
Rosenthal in [417] finding subspaces En that are badly complemented but
still uniformly isomorphic to the `p space of the corresponding dimension.
Bennett, Dor, Goodman, Johnson and Newman [37] solved the case 1 < p < 2
locating badly complemented subspaces of `n

p uniformly isomorphic to the cor-
responding Euclidean space. Then `p(N, En) ' `p(N, `k

2) ' `p, by Pełczyński’s
decomposition method (see later). In fact, Rosenthal had previously settled the
case 1 < p < 4

3 in [409] using harmonic ideas of Rudin. The case p = 1,
by far the most difficult and least understood of all, resisted until Bourgain’s
paper [48]; see also Section 2.2. Curiously enough, the result is almost trivial
for 0 < p < 1, since in this case one can take En of dimension 1! Indeed,
let En be the line spanned by sn =

∑n
i=1 ei in `n

p. Any projection of `n
p onto

En has the form P(x) = f (x)sn, where f is a linear functional on `n
p such

that f (sn) = 1. Clearly, ‖P‖ = ‖ f ‖‖sn‖, and the minimum is attained when
f (x) = n−1 ∑n

i=1 x(i), which gives ‖P‖ = n1/p−1. A more sophisticated argument
of Stiles [443, Theorem 2.3] produces a subspace X of `p isometric to `p

without infinite-dimensional subspaces complemented in `p. The case of c0

stands apart: every copy of c0 inside c0 is complemented by Sobczyk’s theorem
(Section 1.7), and quotients of c0 contain c0 complemented [334]:

Proposition 1.3.2 Every quotient of c0 is isomorphic to a subspace of c0.

If (Fn)n is a sequence of finite-dimensional Banach spaces increasingly
badly complemented in `n

∞ then c0(N, Fn) cannot be isomorphic to c0. Deciding
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18 Complemented Subspaces of Banach Spaces

the converse is an open question: if c0(N, Fn) ' c0, must the Fn be uniformly
isomorphic to `dim Fn

∞ ?
The space c0 is not complemented in its bidual `∞. Phillips proved it in [386]

for c and Sobczyck in [439] for c0 itself:

Proposition 1.3.3 c0 is not complemented in `∞.

Proof A weak*-null sequence of extensions of the coordinate functionals
must have weak null restrictions to c0. The Schur property of `1 makes them
norm null, and that is impossible. �

Indecomposable and H.I. Spaces

While the only complemented subspaces in a prime space are copies of
the space itself, there is a much more extreme way of having very few
complemented subspaces: not having complemented subspaces at all.

Definition 1.3.4 A Banach space X is said to be indecomposable if, whenever
X = A ⊕ B, either A or B is finite-dimensional. A Banach space is said to be
hereditarily indecomposable (H.I.) if every subspace is indecomposable.

H.I. Banach spaces exist [197], can be uniformly convex [169] or L∞-spaces
[17] and solve Banach’s unconditional basis problem: does every Banach
space contain an unconditional basic sequence? No: H.I. spaces do not.
Actually, the Gowers dichotomy theorem [196] states that every Banach
space contains either an H.I. subspace or an unconditional basic sequence.
Thus, H.I. spaces are deeply entwined with the structure of general Banach
spaces and can no longer be regarded as an anecdotal pathology. An H.I.
space cannot be isomorphic to any proper subspace: actually, every operator
from an H.I. space to any of its proper subspaces must be strictly singular
[197, §4 theorem and corollary]. Indecomposable spaces isomorphic to their
hyperplanes (which also exist [198]) must be prime: indeed, their infinite-
dimensional complemented subspaces are finite-codimensional, and a space
isomorphic to its hyperplanes is also isomorphic to its finite-codimensional
subspaces. Indecomposable spaces can be C(K)-spaces [297], large [299]
and also arbitrarily large [301], while H.I. spaces must be subspaces of `∞
[396], hence they have at most the dimension of the continuum. Abandon
Banach spaces and you will find stranger things: rigid spaces (whose only
endomorphisms are the scalar multiples of the identity; see [404; 449] for
surprising news), spaces without basic sequences (see Section 9.4.4) and so on.
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1.4 Local Properties and Techniques 19

1.4 Local Properties and Techniques

The so-called local theory studies the structure of (quasi-) Banach spaces
by means of their finite-dimensional subspaces. Very often the asymptotic
behaviour of quantitative information is the key. Of paramount importance
is the:

1.4.1 Principle of Local Reflexivity Let X be a Banach space, F a finite-
dimensional subspace of X∗∗, G a finite-dimensional subspace of X∗ and ε > 0.
Then there is an operator T : F → X such that

• ‖T‖‖T−1‖ ≤ 1 + ε,
• T x = x for every x ∈ F ∩ X,
• 〈x∗∗, x∗〉 = 〈x∗,T x∗∗〉 for every x∗ ∈ G and every x∗∗ ∈ F.

The reader is referred to [227, § 9, p. 53] or [5, § 12.2] for proofs that have
been refined over the years.

The Lp-Spaces and Related Classes

Definition 1.4.2 Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞. An infinite-dimensional
Banach space X is said to be an Lp,λ-space if every finite-dimensional
subspace of X is contained in another finite-dimensional subspace of X whose
Banach–Mazur distance to the corresponding `n

p is at most λ. A space X is said
to be an Lp-space if it is an Lp,λ-space for some λ ≥ 1.

Lp-spaces can be considered the local version of Lp(µ)-spaces and L∞-
spaces the local version of C(K)-spaces. An infinite-dimensional Banach space
is an L∞,1+-space if and only if its dual is isometric to L1(µ) for some
measure µ. The latter are usually called Lindenstrauss spaces and include,
among other interesting classes – see Note 8.8.1 – all C(K) spaces. If the reader
tries to define Lp-space for 0 < p < 1 in the most standard form, there will be
a traumatic moment when they discover that it is not even known whether Lp

satisfies the definition. There is, however, a satisfactory notion of Lp-space,
due to Kalton, that works fine for 0 < p < 1, but it has to wait until Chapter 5.

Type and Cotype

Our basic source for the study of type and cotype of Banach spaces is the
masterpiece of Diestel, Jarchow and Tonge [153, Chapter 11]. In what follows
we will work in the wider context of quasi-Banach spaces.
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20 Complemented Subspaces of Banach Spaces

Definition 1.4.3 A quasi-Banach space X is said to have type p for 0 < p ≤ 2
if there is a constant T such that for every finite sequence (xi)1≤i≤n of points of
X we have

∫ 1

0

∥∥∥∥ ∑
1≤i≤n

ri(t)xi

∥∥∥∥p
dt

1/p

≤ T

 ∑
1≤i≤n

‖xi‖
p

1/p

, (1.6)

where (ri)i≥1 is the Rademacher sequence.

If 0 < p ≤ 1, this is just the randomised version of (1.3), which was used
to characterise the p-normability of X. We are not really interested in type
p < 1 because a quasi-Banach space has type 0 < p < 1 if and only if it has
an equivalent p-norm [252, Theorem 4.2]. Incidentally, the Lp quasinorm on
the left-hand side of (1.6) can be replaced by any other Lq quasinorm with
q ∈ (0,∞). This fact is due to Kahane when X is a Banach space [153, 11.1]
and to Kalton in general [252, Theorem 2.1].

Proposition 1.4.4 A quasi-Banach space having type p > 1 is locally convex.

The proof is based on the behaviour of the following sequences, defined for
any quasi-Banach space X:

an(X) = sup
‖xi‖≤1

∥∥∥∥ ∑
1≤i≤n

xi

∥∥∥∥, bn(X) = sup
‖xi‖≤1

inf
εi=±1

∥∥∥∥ ∑
1≤i≤n

εixi

∥∥∥∥. (1.7)

It is clear that both (an)n and (bn)n are increasing and submultiplicative, that
is, anm ≤ anam and bnm ≤ bnbm for all n,m ∈ N. The proof follows by simply
assembling the three parts of the next result:

Lemma 1.4.5

• If X has type p > 1, then n−1bn −→ 0.
• If n−1bn −→ 0, then (n−1an)n is bounded.
• If (n−1an)n is bounded, then X is locally convex.

Proof The first part is obvious, since for (xi)1≤i≤n in X and p ∈ (0,∞), one
has

inf
εi±1

∥∥∥∥ ∑
1≤i≤n

εixi

∥∥∥∥ ≤ ∫ 1

0

∥∥∥∥ ∑
1≤i≤n

ri(t)xi

∥∥∥∥p
dt

1/p

,

and so, if X has type p then bn(X) ≤ Tn1/p. Let us check the third point. With
no loss of generality, we may assume that X is r-normed for some 0 < r ≤ 1.
Now, if n−1an ≤ R, then the ball of radius R contains the set of means{ x1 + · · · + xn

n
: ‖xi‖ ≤ 1, n ∈ N

}
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whose closure is exactly the closed convex hull of BX . The same argument
shows that X is locally convex if and only if (n−1an)n has a bounded subse-
quence. The second point accounts for the lion’s share of the proof. We keep
assuming that X is r-normed. Pick 2n points (xi)1≤i≤2n from BX and εi = ±1
such that ‖

∑
1≤i≤2n εixi‖ ≤ b2n. Rearranging, we may assume that εi = 1 for

i ≤ k ≤ n and εi = −1 for k < i ≤ 2n, that is, ‖x1+· · ·+xk−xk+1−· · ·−x2n‖ ≤ b2n.

Writing
∑

1≤i≤2n xi = 2
∑

1≤i≤k xi −
∑

1≤i≤2n εixi and using the r-subadditivity of
the quasinorm, we obtain∥∥∥∥ 2n∑

i=1

xi

∥∥∥∥r
= 2r

∥∥∥∥ k∑
i=1

xi

∥∥∥∥r
+ br

2n ≤ 2rar
n + br

2n =⇒ ar
2n ≤ 2rar

n + br
2n.

As (bn) is increasing and submultiplicative and n−1bn −→ 0, there is some
s > 1 such that n−sbn is bounded, say, by C, and dividing by (2n)r, we get(a2n

2n

)r
≤

(an

n

)r
+

(
C2sns

2n

)r

=

(an

n

)r
+ Cr(2n)r(s−1).

If, for n ≥ 0, we put αn = 2−na2n , then the preceding inequality becomes
αr

n+1 − α
r
n ≤ Cr2r(s−1)(n+2), and since

∑
n 2r(s−1)(n+2) < ∞, we obtain that (αr

n) is
bounded, which is enough. �

Banach spaces for which n−1bn −→ 0 are traditionally called B-convex and
Banach spaces having type p > 1 are traditionally called spaces having non-
trivial type. A very deep result [153, 13.10 Theorem plus 13.16 Theorem]
states:

1.4.6 Let X be an infinite-dimensional Banach space. The following are
equivalent:

(i) X is B-convex,
(ii) X does not contain `n

1 uniformly,
(iii) X has non-trivial type.

We have established that quasi-Banach spaces satisfying (iii) are Banach
spaces satisfying (i). A still deeper result by Pisier shows that for each infinite-
dimensional B-convex Banach space, there is a constant C so that, for every
n, there are operators I : `n

2 −→ X and P : X −→ `n
2 such that PI is the

identity on `n
2 and ‖I‖‖P‖ ≤ C [153, 19.3 Theorem]; in particular, X contains

`n
2 uniformly complemented. All this produces the following dichotomy [153,

13.3 and 19.3]:

1.4.7 A Banach space either contains `n
1 uniformly or contains `n

2 uniformly
complemented.

https://doi.org/10.1017/9781108778312.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.003


22 Complemented Subspaces of Banach Spaces

Definition 1.4.8 A (quasi-) Banach space X is said to have cotype q , where
2 ≤ q < ∞, if there is a constant C such that ∑

1≤i≤n

‖xi‖
q

1/q

≤ C

∫ 1

0

∥∥∥∥ ∑
1≤i≤n

ri(t)xi

∥∥∥∥q
dt

1/q

(1.8)

for every x1, . . . , xn ∈ X, where (ri)i≥1 is the Rademacher sequence.

The spaces Lp have type min(p, 2) and cotype max(2, p) for 0 < p < ∞. It
is relatively easy to prove that the dual of a type p space has cotype p∗, where
p∗ is given by 1 = 1/p + 1/p∗ [153, 11.10 Proposition]. The converse is true
for B-convex spaces [153, 13.17 Proposition] and false in general (consider
the case of `1, which has cotype 2). Kwapien’s theorem [153, 12.19 and 12.20]
establishes:

1.4.9 Kwapien’s theorem A (quasi-) Banach space having type 2 and cotype
2 is isomorphic to a Hilbert space.

The Maurey–Pisier Great Theorem (well, one of them) states:

1.4.10 Maurey–Pisier theorem Every Banach space X contains almost
isometric copies of `n

p(X) and `n
q(X), where p(X) = sup{p : X has type p} and

q(X) = inf{q : X has cotype q}.

See [362, § 13] for a reasonably accessible proof. Spaces with p(X) = 2 =

q(X) have been called near Hilbert and will be encountered later. Kwapień’s
result is contained in Maurey’s extension theorem [153, 12.22]: every operator
from a subspace of a type 2 space to a cotype 2 space can be extended to an
operator on the whole space that still factorises through a Hilbert space. The
following definition should then come as no surprise:

1.4.11 Maurey extension property A Banach space X is said to have the
Maurey extension property (MEP) if every Hilbert valued operator defined on
a subspace of X can be extended to X.

Type 2 spaces have MEP, and thus Hilbert subspaces of type 2 spaces are
complemented.

Ultraproducts

The Banach space ultraproduct construction originates in model theory and has
been, and continues to be, the main channel of communication between logic
and Banach space theory. Even emancipated from model theory, ultraproducts
of Banach spaces have a surprisingly large number of applications, ranging
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from the local theory to the Lipschitz and uniform classification of Banach
spaces. For a detailed study of this construction at the elementary level needed
here, we refer the reader to Heinrich’s survey paper [211] or Sims’ notes [434].
A more complete exposition with the necessary model-theoretic background
is [212]. Ultraproducts of quasi-Banach spaces have never had a comparable
prestige; nevertheless, they are even more useful, for the same reasons as in the
case of Banach spaces and because they provide an operative substitute for the
bidual (which may well be trivial now). The ultraproduct construction is based
on the notion of convergence along an ultrafilter, which we pause to explain.

Let I be a set and F a filter on I (a family of subsets that does not contain
the empty set, is closed under finite intersections and such that if A ∈ F and
A ⊂ B then B ∈ F). Given a topological space S , a function f : I −→ S , a
filter F on I and s ∈ S , we write limF(i) f (i) = s and say that f converges to s
along F if f −1[V] ∈ F for every neighbourhood V of s. The definition makes
sense even if f is only defined on some A ∈ F: just consider the limit along
the family {B ∈ F : B ⊂ A}, which is a filter on A. Keep this fact in mind since
it will be used without further mention. An ultrafilter on I is a maximal filter
with respect to inclusion. Not exactly trivial, but nonetheless graspable, is the
very elegant characterisation of ultrafilters as those filters F such that for every
partition of I into two (or finitely many) subsets, exactly one of them belongs
to F. The only ultrafilters that one will ever see explicitly are the principal,
or fixed, ultrafilters: an ultrafilter U is fixed if it contains a finite set (hence a
singleton) in which case there is i ∈ I such that U = {A ⊂ I : i ∈ A}. Otherwise,
U is called free. An ultrafilter U is said to be countably incomplete if there is
a decreasing sequence of elements of U with empty intersection. This happens
if and only if there is a strictly positive function f : I −→ (0,∞) such that
f (i) −→ 0 along U. Every free ultrafilter on N is countably incomplete. The
simplest way to produce a free ultrafilter is to start with a filter containing no
finite subsets (for instance, the cofinite subsets of I when this is infinite) and
use Zorn’s lemma to refine it to an ultrafilter, or use the following variation
that will appear over and over: when I carries a partial directed order, i.e. such
that for every i, j ∈ I, there exists k ∈ I such that i, j ≤ k, the sets { j ∈ I : i ≤ j}
generate the so-called order filter, and every ultrafilter containing it is free
unless I has a maximal element. The key point is that every function with
values on a compact (Hausdorff) space has a (unique) limit along any ultrafilter,
and this is actually a topological version of the ultrafilter characterisation
alluded to earlier.

To avoid unnecessary complications, we will work with families of p-Banach
(instead of arbitrary quasi-Banach) spaces: this yields the continuity of
the quasinorms and, more importantly, a uniform bound for the moduli of
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24 Complemented Subspaces of Banach Spaces

concavity. So, let (Xi)i∈I be a family of p-Banach spaces indexed by I, and let
U be an ultrafilter on I. The space of bounded families `∞(I, Xi) is a p-Banach
space, and cU0 (I, Xi) = {(xi) ∈ `∞(Xi) : limU(i) ‖xi‖ = 0} is a closed subspace
of `∞(I, Xi). The ultraproduct of the spaces (Xi)i∈I following U is defined as
the quotient [Xi]U = `∞(I, Xi)/cU0 (I, Xi). We denote by [(xi)] the element of
[Xi]U which has the family (xi) as a representative. Using the continuity of
p-norms, it is not difficult to show that ‖[(xi)]‖ = limU(i) ‖xi‖. It is clear that
two bounded families (xi)i∈I and (yi)i∈I define the same element of [Xi]U if the
set {i ∈ I : xi = yi} belongs to U. As we remarked before (claiming falsely
that the fact will be used without further mention), to define an element of
[Xi]U, one just needs a bounded family (xi)i∈A defined only on some subset
A ∈ U. When Xi = X for all i ∈ I, we denote the ultraproduct by XU and call
it the ultrapower of X following U. The diagonal mapping X −→ XU sending
each x ∈ X to [(x)] is an isometric embedding, and so each p-Banach space
is isometric to a subspace of its ultrapowers. If Ti : Xi −→ Yi is a uniformly
bounded family of operators, where Xi and Yi are all p-Banach spaces, the
ultraproduct operator [Ti]U : [Xi]U −→ [Yi]U is given by [Ti]U[(xi)] = [Ti(xi)].
Quite clearly, ‖[Ti]U‖ = limU(i) ‖Ti‖.

Definition 1.4.12 An ultrasummand is a quasi-Banach space complemented
in all its ultrapowers through the diagonal embedding.

The following result confirms the intuition that the unit ball of an ultrasum-
mand enjoys a kind of ‘compactness’ (after all, a projection of XU onto X must
select one point of X from each bounded family of points).

Proposition 1.4.13 Let X be a Banach space. The following are equivalent!

(i) X is an ultrasummand,
(ii) X is complemented in its bidual,

(iii) X is a complemented subspace of some dual space.

Proof We prove the implications (ii) =⇒ (iii) =⇒ (i) =⇒ (ii). The first one
is trivial. To prove (iii) =⇒ (i), we assume that Y is a Banach space whose dual
contains X and that P : Y∗ −→ X is a bounded projection. Now, if U is
an ultrafilter on I and XU is the corresponding ultrapower, we can define a
projection L : XU −→ X as L[(xi)] = limU(i) xi, where the limit is taken in
the weak* topology of Y∗. The proof of (iii) =⇒ (i) relies on the principle
of local reflexivity, which is responsible for embedding X∗∗ as a very well-
placed subspace of a suitable ultrapower of X: indeed, consider the order in
F (X∗∗) ×F (X∗) × (0,∞) given by (F,G, ε) ≤ (F′,G′, ε′) if F ⊂ F′,G ⊂ G′
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and ε′ ≤ ε. Let U be a free ultrafilter refining the order filter on F (X∗∗) ×
F (X∗) × (0,∞). Given F ∈ F (X∗∗),G ∈ F (X∗) and ε > 0, we consider the
operator T(F,G,ε) : F −→ X provided by the principle of local reflexivity. We
define a map 4 : X∗∗ −→ XU by letting 4(x∗∗) = [(x(F,G,ε))], where x(F,G,ε) =

T(F,G,ε)(x∗∗) if x∗∗ ∈ F, and 0 otherwise. Clearly, 4 is a linear isometry of
X∗∗ into XU. Note that x(F,G,ε) and T(F,G,ε)(x∗∗) agree ‘eventually’, and so the
linearity of 4 is not a problem due to our choice of U. The isometric copy thus
obtained is moreover 1-complemented via the operator 5 : XU −→ X∗∗ sending
[(x(F,G,ε))] to the weak* limit of (x(F,G,ε)) along U. Clearly, 5 is a well-defined,
contractive operator and 54 = 1X∗∗ , since the family x(F,G,ε) converges to x∗∗ in
the weak* topology along U because each x∗ ∈ X∗ eventually falls in G. �

Thus, reflexive and L1(µ)-spaces are ultrasummands. Since c0 is not com-
plemented in `∞, it cannot be an ultrasummand, and the same happens to
any space containing c0 complemented. To present typical non-locally convex
ultrasummands, note that the only property of a dual Banach space which is
needed to carry out the proof of the implication (iii) =⇒ (i) in the preceding
result is that the weak* topology is a linear topology weaker than the norm
topology and makes the unit ball compact. Quasi-Banach spaces admitting a
weaker-than-the-quasinorm topology, making the unit ball compact, are termed
pseudoduals. One has

1.4.14 The spaces `p,Hp and S p are pseudoduals for all 0 < p < ∞ and,
therefore, ultrasummands.

We only sketch the proof. The case `p is clear since the topology of
pointwise convergence makes its unit ball compact. As for the Hardy classes
Hp, the estimate (1.5) is exactly what we need to invoke Montel’s theorem on
normal families to conclude that the ball of Hp is compact under the topology
of pointwise convergence on points of the open disc. The case of the Schatten
classes S p is because the quasinorm of S p is lower semicontinuous with respect
to the weak operator topology of L(H) [157, Corollary 2.3]. Nevertheless, Lp

emphatically refuses to be an ultrasummand for 0 < p < 1 (see Note 1.8.3
for details).

1.5 The Dunford–Pettis, Grothendieck, Pełczyński
and Rosenthal Properties

Although the borders between global and local properties are somewhat
permeable, we now discuss some ‘global’ properties important in the study
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of Banach spaces mainly because of their connections with the structure of
C -spaces. A terse exposition can be found in [22, Appendix A1].

Definition 1.5.1 A Banach space X is said to have

• the Dunford–Pettis property (DPP) if every weakly compact operator
defined on X sends weakly convergent sequences to convergent sequences,

• Pełczyński’s property (V) if every operator defined on X is either weakly
compact or an isomorphism on a copy of c0,

• Rosenthal’s property (V) – the same as before, replacing c0 by `∞,
• Grothendieck’s property if every operator from X to a separable Banach

space is weakly compact.

Dunford and Pettis themselves established that L1(µ) and C(K) spaces have
DPP. The extension to L∞-spaces and the name are due to Grothendieck;
see [151]. It is clear that a complemented subspace of a space with the DPP
has DPP and that an infinite-dimensional space with DPP cannot be reflexive
since, otherwise, weakly convergent sequences must be convergent, which
makes the unit ball compact. General background about the Dunford–Pettis
property can be found in [151] and [102, Chapter 6]. Pełczyński proved in
[376, Theorem 5] that C -spaces have property (V). This property clearly
passes to quotients and, since Johnson and Zippin showed in [234] that
every separable Lindenstrauss space is a quotient of C[0, 1] (plus the obvious
fact that each separable subspace of a Lindenstrauss space is contained in
a separable Lindenstrauss subspace), all Lindenstrauss spaces have property
(V). However, not all L∞-spaces have property (V) (see Section 10.5 for
accessible counterexamples). The combination of property (V) and DPP shows
that every infinite-dimensional complemented subspace of a Lindenstrauss
space contains c0. Reflexive spaces enjoy Grothendieck’s property for obvious
reasons, but so do injective spaces [152, VII, Theorem 15]. The information
we need is that L∞-spaces with Grothendieck’s property do not contain
separable complemented subspaces [22, Proposition 2.8]. Ultrasummands of
type L∞ or, equivalently, injective Banach spaces [22, Proposition 1.5] even
have Rosenthal’s property (V) [22, Proposition 2.8].

1.6 C(K)-Spaces and Their Complemented Subspaces

We focus on the following idea: the homeomorphism type of a compact space
is independent of the particular realisation of it one encounters. The web
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formed of the seven compacta appearing in this book that we describe now
has been woven with that silk:

1. ωN is the only countable compact whose Nth derived set is one point.
2. ωω is the only countable compact whose ωth derived set is one point.
3. The Cantor set ∆ is the only compact that is totally disconnected perfect

and metrisable, regardless of whether it appears as {0, 1}N, as {−1, 0, 1}N or
wearing other clothes.

4. The unit interval [0, 1].
5. βN is the Stone–Čech compactification of the discrete space N, i.e. the

only compact space containing a dense copy of N such that every bounded
function on N extends to a continuous function on βN. Thus, `∞ = C(βN).
βN can be obtained as the Stone space of P(N), aka the space of ultrafilters
on N.

6. N∗ is βN \N. Two continuous functions on βN coincide on N∗ if and only if
their difference converges to 0 on N, and thus C(N∗) can be identified with
`∞/c0. Under CH, N∗ is the only totally disconnected Hausdorff F-space
without isolated points of weight c and such that every non-empty Gδ

subset has a non-empty interior by Parovičenko’s other theorem, see [453,
Chapter 3, p. 80–83]. Parovičenko’s first theorem [45] asserts that N∗ maps
continuously onto each compact space of weight ℵ1 or less.

7. The unit ball B∗X of the dual of a Banach space X is endowed with the weak*
topology.

The passage from the compact K to the corresponding C(K)-space tears the
cobweb apart:

1.6.1 Classification of separable C -spaces Let K be a metrisable compact
space. If K is uncountable then C(K) is isomorphic to C[0, 1]. If K is countable
then C(K) is isometric to C(α) for some countable ordinal α.

The first assertion is Milutin’s theorem [364], which in particular means that
C[0, 1] ' C∆) ' C(B∗X) for all separable X. No proof for Milutin’s theorem is
perhaps clearer than the one presented in [5, §4.4]. The second assertion is a
famous theorem of Mazurkiewicz and Sierpiński [360, Théorème 1], see also
[430, Theorem 8.6.10]. Moreover, so far as separability is involved, C(∆) is the
guy to deal with:

Lemma 1.6.2 Let K be any compact metric space. Then there exist positive
contractive operators S : C(K) −→ C(∆) and R : C(∆) −→ C(K) such that
R1∆ = 1K , S 1K = 1∆ and RS = 1C(K).
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The problem of identifying the complemented subspaces of C -spaces was
hermetically open until Plebanek and Salguero [393] betrayed our trust by
finding a complemented subspace of a non-separable C(K) space that is not
isomorphic to a C(K)-space while this book was in print.

1.6.3 This is (most of) what is currently known:

(a) Every complemented subspace of `∞ is isomorphic to `∞.

(b) A subspace of c0(I) is complemented if and only if it is isomorphic to c0(J)
for some J, and if and only if it is an L∞-space.

(c) Every complemented subspace of C(ωω) is isomorphic to either c0 or
C(ωω).

(d) A complemented subspace of C[0, 1] with non-separable dual must be
isomorphic to C[0, 1].

Assertion (a) results from a combination of the DPP and Rosenthal’s prop-
erty (V) of `∞: together they yield that complemented subspaces of `∞ contain
`∞, necessarily complemented, and therefore, by Pełczyński’s decomposition
method, they must be isomorphic to `∞. Incidentally, this is the case p = ∞

in Proposition 1.2.3. The first part of (b) for countable I is consequence of the
DPP and Pełczyński’s property of c0 plus Pełczyński’s decomposition method
(‘only if’). The ‘if’ part is a particular case of Sobczyk’s theorem (the main
topic of Section 1.7). The general non-separable version is due to Suárez
Granero [199]. The second part of (b) is due to Godefroy, Kalton and Lancien
[190, Remark 5.4], who proved that an L∞-subspace of c0(I) is isomorphic
to some c0(J). Part (c) is due to Benyamini [40]. The proof of (d) is built
on a beautiful lemma of Rosenthal [415]: an operator T : C[0, 1] −→ X for
which T ∗[X∗] is non-separable fixes a copy of C[0, 1]. Therefore, let X be a
complemented subspace of C[0, 1], and let P : C[0, 1] −→ X be a projection.
If X has a non-separable dual then P∗[X∗] is non-separable, and thus P fixes
a copy of C[0, 1]. Therefore, X contains a copy of C[0, 1]. Now we isolate a
useful result of Pełczyński [380, Theorem 1]

1.6.4 A subspace of a separable C(K) that contains a copy of C(K) must also
contain a complemented copy of C(K).

The proof of (d) can be completed as follows: if X is complemented in, and
contains a copy of, C[0, 1], apply Pełczyński’s decomposition method using
c0-vector sums. �
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1.7 Sobczyk’s Theorem and Its Derivatives

It is a straightforward consequence of the Hahn–Banach theorem that when
Y is a subspace of a Banach space X, every operator u : Y −→ `∞ can be
extended, with the same norm to X. In particular, but in the end equivalently,
`∞ is 1-complemented in any Banach space containing it. The following funda-
mental result of Sobczyk establishes that c0 has a similar homological property
for separable spaces, although doubling the norm of the extension. What
follows is not Sobczyk’s original proof but the beautiful proof of Veech [451],
one of the masterpieces in THE BOOK, which Diestel will be annotating now.

1.7.1 Sobczyk’s theorem If X is a separable Banach space and Y is a
subspace of X, then every operator u : Y −→ c0 has a 2-extension to X.

Proof Assume ‖u‖ = 1 and write u(y) = (〈y∗n, y〉)n≥1, where (y∗n)n≥1 is a
weak*-null sequence in the unit ball of Y∗. The strategy is to find a weak*-null
sequence of extensions of these functionals. For each n, let x∗n ∈ X∗ be a Hahn–
Banach extension of y∗n. Let D be the set of weak*-accumulation points of the
sequence (x∗n)n, and recall that the dual ball of a separable space is weak*-
metrisable by some metric d. The ridiculously simple observation ‘a sequence
such that every subsequence contains a further subsequence converging to zero
is itself convergent to zero’ yields limn d(x∗n,D) = 0. Choose fn ∈ D such that
d(x∗n, fn) ≤ d(x∗n,D) + 1

n . The sequence (x∗n − fn)n is weak*-null and extends
(y∗n) since an accumulation point of (x∗n) must vanish on Y . Thus, the mapping
U : X −→ c0 given by U(x) = (〈x∗n − fn, x〉)n≥1 is an extension of u and, quite
clearly, ‖U‖ ≤ 2. �

The bound 2 cannot be improved because the norm of any projection of c
onto c0 is at least 2, as can be seen just considering the ‘obvious projection’
with kernel [1N]. The notion looming over Sobczyk’s theorem is isolated in the
next definition.

Definition 1.7.2 A Banach space E is separably injective if, for every
subspace Y of a separable space X, every operator u : Y −→ E has an extension
U : X −→ E. If the extension can be achieved with ‖U‖ ≤ λ‖u‖ then E is said
to be λ-separably injective.

It is easy, though not entirely trivial, to see that each separably injective
space must be λ-separably injective for some λ ≥ 1 [22, Proposition 1.6].
The theory of separably injective spaces is surprisingly rich with examples and
applications, as can be deduced from the mere existence of [22]. The theory of
separably injective spaces concerns non-separable Banach spaces, in view of
the outstanding
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1.7.3 Zippin’s theorem c0 is the only separable separably injective Banach
space, up to isomorphism.

Despite its pristine formulation, the proof requires a clever combination of
Banach space machinery and delicate computations. Following Wittgenstein’s
mandate, we remain silent on the issue and refer to Zippin [466].

En Route to Non-separable Versions of Sobczyk’s Theorem

The only well-known aspect of Sobczyk’s result is the scalar separable case. To
handle large non-separable spaces, we introduce a further batch of properties.

Definition 1.7.4 A Banach space is weakly compactly generated (WCG) if it
contains a weakly compact subset with dense linear span.

Reflexive spaces and separable spaces are the two basic types of WCG
spaces. The space c0(I) is WCG for all I since the inclusion `2(I) −→ c0(I) has
dense range, and so is L1(µ) for finite µ since the inclusion L2(µ) −→ L1(µ)
has dense range. Let us present an accurate formulation for the idea that WCG
spaces have many complemented subspaces.

Definition 1.7.5 A Banach space X has the separable complementation prop-
erty (SCP) if every separable subspace of X is contained in a complemented
separable subspace of X.

All WCG spaces have SCP [148, Chapter IV, Lemma 2.4], but there are
many more, as can be seen in [396].

Definition 1.7.6 A projectional resolution of the identity (PRI) on a Banach
space X is a system of projections (Pα)ω≤α≤µ, where µ = dim(X) such that

• ‖Pα‖ = 1,
• PαPβ = Pmin(α,β),
• dim Pα[X] ≤ |α|,
•

⋃
β<α Pβ[X] = Pα[X],

• Pµ[X] = 1X .

It is not simple to prove, but every WCG space admits a PRI [148, VI,
Theorem 2.5]; however, it is simple that a Banach space with dimension ℵ1

and a PRI has the SCP. Being obvious that Sobczyk’s theorem works in SCP
spaces, it works in WCG spaces with dimension ℵ1. A straight projectional-
resolution-free proof can be given:
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Proposition 1.7.7 c0 is complemented in every WCG superspace (or, more
generally, in a Banach space with the property that the closure of a countable
set is metrisable in the weak topology).

Proof Since weakly compact sets in a separable space are metrisable, sepa-
rable sets in a WCG space are metrisable in the weak topology too. Veech’s
proof applies. �

We now consider special types of C -spaces with PRI.

Definition 1.7.8 A compact space K is said to be

• Eberlein if it is homeomorphic to a weakly compact set of a Banach space,
• Corson if it is homeomorphic to a compact subset of some Σ(I), the subspace

of all countably supported elements of [0, 1]I ,
• Valdivia if there exist an I and an embedding of ϕ : K −→ [0, 1]I such that
ϕ[K] ∩ Σ(I) is dense in ϕ[K].

It would be very hard, if not impossible, to show the implications Eberlein
=⇒ Corson =⇒ Valdivia more clearly than [148, VI. Theorem 7.2], and the
same is true for [148, VI. Lemma 7.4]: K is an Eberlein compact if and only
if C(K) is WCG. Focusing now on the largest class of Valvidia compacta, we
have the following decomposition [148, VI. Lemma 7.5]:

Lemma 1.7.9 Let K ⊂ [0, 1]I be a Valdivia compact for which we assume
that K ∩ Σ(I) is dense in K. Assume that K ∩ Σ(I) contains a dense subset of
cardinality µ. Then there exists an increasing family (Iα)ω≤α≤µ of subsets of I
such that, for every ω ≤ α < µ,

(a) |Iα| ≤ α,
(b) Iα =

⋃
β<α Iβ+1,

(c) Iµ = I.

Moreover, if we define RL : [0, 1]I → [0, 1]I by RL(x) = 1Lx when L ⊂ I, then
Kα = RIα [K] ⊂ K is a Valdivia compact.

Taking the embeddings R◦Iα : C(Kα) −→ C(K),R◦Iα ( f ) = f ◦ RIα , associated
to the family (Iα)α leads to [148, VI. Theorem 7.6 and Remark 7.7, p. 256]:

Proposition 1.7.10 If K is a Valdivia compact, then C(K) has a PRI (Pα)α
such that Pα[C(K)] is isometric to C(Kα), with Kα again a Valdivia compact.

And thus we are ready to discuss:

https://doi.org/10.1017/9781108778312.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.003


32 Complemented Subspaces of Banach Spaces

Sobczyk’s Theorem for c0(I)

Sobczyk’s theorem steadily percolates out from the separability reservoir,
first to copies of c0 in WCG spaces. Then comes the smashing surprise that
Sobczyk’s original proof ‘remains valid for c0(I)’, with the meaning that copies
of c0(I) inside spaces X such that X/c0(I) is separable must be complemented.
See [440] but also [79] for a lively discussion and full details. This leads
to the question, first formulated by Yost, of whether copies of c0(I) must be
complemented in WCG spaces (or beyond). Our first example of set theoretic
considerations bursting into a seemingly remote domain appears while trying
to answer this question: Yost’s problem has a positive solution if |I| < ℵω, while
there exists an Eberlein compact K such that C(K) admits an uncomplemented
copy of some c0(I) with |I| = ℵω (the latter result shows that the former is
optimal). We present now the positive part of the answer and postpone the
negative part to Proposition 2.2.15.

Definition 1.7.11 A Banach space X is said to be K-Sobczyk if every κ-
isomorphic copy of c0(I) inside X is Kκ-complemented.

For instance, separable Banach spaces are 2-Sobczyk. We now begin our
practice of using ‘long’ decompositions based on ordinals. To this end, let us
explain the meaning of x =

∑
α<µ x(α): form the function x̂ : [0, µ) −→ X

inductively defined with x̂(0) = 0, then{
x̂(β) = x̂(α) + x(α + 1), if β = α + 1 is a successor ordinal,
x̂(β) = x(β) + limα→β x̂(α), if β is a limit ordinal,

and finally asking for x = limβ→µ x̂(β). Let X be a Banach space and µ an
ordinal. We say that a family (Xα)α<µ of subspaces, indexed by the ordinals
below µ, is a decomposition of X if every point x ∈ X can be written in a
unique way as x =

∑
α<µ x(α), where x(α) ∈ Xα. A cardinal µ is said to be

regular when the union of fewer than µ sets of cardinality smaller than µ has
cardinality smaller than µ.

Lemma 1.7.12 Let µ be an uncountable regular cardinal, and let X be a
Banach space which admits a decomposition (Xα)α<µ. Assume that for some
constants K,M < ∞ and each α < µ, we have

(a) dim(Xα) < µ,
(b) is a projection Pα : X −→ [Xβ : β < α] such that ‖Pα‖ ≤ M,
(c) [Xβ : β < α] is K-Sobczyk.

Then X is 2MK-Sobczyk.
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Proof For x ∈ X, denote supp(x) = {α < µ : x(α) , 0} and observe that
| supp(x)| ≤ ℵ0. Since cf(µ) = µ > ℵ0, there exists β < µ such that x(α) = 0
for all β < α < µ. Let Y be a κ-isomorphic copy of c0(I) in X. For each
i ∈ I, let yi ∈ X be the isomorphic image of ei ∈ c0(I). Let us dispose of
the case where |I| < µ. Since each yi has countable support, there is some
ν < µ such that [Xβ : β < ν] contains every yi, hence the whole of Y; the
result follows using the M-projection Pν provided by (b) followed by any
K-projection [Xβ : β < ν] −→ Y , whose existence is guaranteed by (c). For the
remainder of the proof, we assume |I| = µ. As the only relevant property of
I is its cardinality, we treat it also as a cardinal (namely µ), and we identify
I = {iα : α < µ}. We maintain the different names, I and µ, mostly for notational
(and psychological) reasons.

Claim 1 For every α < µ, we have |{i ∈ I : yi(α) , 0}| < µ.

Proof of Claim 1 Let J = {i ∈ I : yi(α) , 0}. Let ν be the smallest cardinal
of a subset spanning a weak*-dense subspace of X∗α. Since ν ≤ dim(Xα) < µ

(because of (a)), the vectors {y j} j∈J can be separated from 0 using no more than
ν functionals of X∗α. So, the unit basis {e j} j∈J of c0(J) can be separated from 0
using ν functionals of `1(J), which cannot be if |J| = µ > ν. �

Since µ is regular, for each α < µ, one has

|{i ∈ I : supp(yi) ∩ [0, α) , ∅}| < µ. (1.9)

This allows us to introduce a correspondence between points of I, certain
subsets of I and limit ordinals below µ that ‘stabilises supports’ as follows.
Given β, γ ≤ µ, we write I[β, γ) = {i ∈ I : supp yi ⊂ [β, γ)}.

Claim 2 Given β < µ and j ∈ I[β, µ), there exist a limit ordinal ρ = ρ(β, j)
with β < ρ < µ and a subset J(β, j) ⊂ I[β, µ) containing j, with |J(β, j)| < µ,
such that

• for every i ∈ J(β, j), we have supp yi ⊂ [β, ρ),
• if i ∈ I[β, µ)\J(β, j), then supp yi ∩ [β, ρ) = ∅.

Proof of Claim 2 Take any limit ordinal α1 ∈ [β, µ) such that [β, α1) contains
supp y j. By (1.9), the set {i ∈ I : supp(yi) ∩ [β, α1) , ∅} has cardinality smaller
than µ. As µ is regular, we can find another limit ordinal α2 ∈

(
α1, µ

)
such that

i ∈ I[β, µ) and supp yi ∩ [β, α1) , ∅ =⇒ supp yi ⊂ [β, α2).

Iterating the argument, we obtain a strictly increasing sequence of limit
ordinals (αk)k≥1 with αk < µ for all k in such a way that

i ∈ I[β, µ) and supp yi ∩ [β, αk) , ∅ =⇒ supp yi ⊂ [β, αk+1).
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We set the limit ordinal ρ = supk≥1 αk. Clearly, ρ < µ, and the set

J =
{
i ∈ I[β, µ) : supp yi ∩

[
β, ρ

)
, ∅

}
=

⋃
k≥1

{
i ∈ I[β, µ) : supp yi ∩

[
0, αk

)
, ∅

}
has the required properties. �

The main piece of the proof is the following:

Claim 3 There exists an increasing family of ordinals (ρα)α<µ such that

• ρα < µ is a limit ordinal for all α > 0 and ρ0 = 0,
• the sets Iα = I[ρα, ρα+1) form a partition of I, with |Iα| < µ for all α < µ.

Proof of Claim 3 Note that µ, being an infinite cardinal, cannot be a successor
ordinal, so α + 1 < µ for α < µ. The proof is by transfinite induction on α. For
the initial step we set β = 0 and j = i0 in Claim 2. Then I0 = J(0, i0), ρ0 = 0
and ρ1 = ρ(0, i0). Note that i0 ∈ I0 and that ρ1 is a limit ordinal. Let us perform
the inductive step: to this end, assume that for some η < µ, we have already
obtained an increasing family of limit ordinals (ρα+1)α<η such that

(†η) |Iα| < µ for all α < η and iβ ∈
⋃
α≤β Iα for all β < η,

(‡η) if i <
⋃
α<η Iα, then supp yi

⋂⋃
α<η[ρα, ρα+1) = ∅,

and let us focus on iη. If iη is already in
⋃
α<η Iα, there is nothing to do but wait:

set ρη = ρη+1 = supα<η ρα+1. Needless to say, in this case, we have Iη = ∅, but
we are at peace with that. Otherwise, if iη is not yet in

⋃
α<η Iα, we distinguish

two cases, as is by now customary:
• If η = γ + 1 is a successor, use Claim 2 with j = iη and β = ρη = ργ+1 and

set ρη+1 = ρ(ρη, η). Note that Iη corresponds to the output set J(ρη, η).
• If η is a limit ordinal, set β = supα<η ρα and j = iη in Claim 2 and ρη = β,

ρη+1 = ρ(β, j). This yields Iη = J(β, j), and everything works fine.
This finishes the induction process. Iterating the construction until η = µ

proves the claim. �

Finally, we use Claim 3 to conclude the proof. It is clear that [yi : i ∈ Iα]
is a subspace of [Xβ : ρα ≤ β < ρα+1] κ-isomorphic to c0(Iα), so hypothesis (c)
provides a projection Rα : [Xβ : ρα ≤ β < ρα+1] −→ [yi : i ∈ Iα] with norm at
most Kκ. Since

(Pρα+1 − Pρα )[X] = [Xβ : ρα ≤ β < ρα+1]

and limα→µ ‖(Pρα+1 − Pρα )x ‖ = 0 for each x ∈ X, it is possible to define a
projection Q : X −→ Y taking

Q(x) =
∑
α<µ

Rα(Pρα+1 − Pρα )(x).
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Quite clearly, ‖Q‖ ≤ 2MKκ. �

We are thus ready to provide a lavish solution to Yost’s problem.

Proposition 1.7.13 Let m < ω. If K is a Valdivia compact of weight at most
ℵm then C(K) is 2m+1-Sobczyk.

Proof Note that the dimension of C(K) equals the weight of K. The proof
proceeds by induction on m. Before we begin, recall that Proposition 1.7.10
asserts that C(K) spaces with K a Valdivia compact are overt examples of
spaces with a PRI decomposition and that the spaces in the decomposition
can be chosen C(S )-spaces with S Valdivia compact again. Now trust us, just
sit at the peak of the induction roller coaster and let yourself go down with
it: when m = 0, separable (C(K) or not) spaces are 2-Sobczyk; when m = 1,
Lemma 1.7.12 shows that Banach spaces with a PRI and dimension ℵ1 (C(K)
or not) are 4-Sobczyk. This includes C(K) spaces with K a Valdivia compact.
And from that point on, recall that we only need to consider C(K)-spaces with
K Valdivia and apply Lemma 1.7.12. �

A class of compacta K produces two classes of Banach spaces: one by the
simple method of isolating those Banach spaces X such that B∗X ∈ K, the other
by generation – an element of K spans a dense subspace of X. Sometimes
the match is perfect, as in the case of Eberlein compacta, but not always; that
explains the formulation of the next result.

Proposition 1.7.14 Let X be a Banach space such that B∗X is a Valdivia
compact. If m < ω, then every M-isomorphic copy of c0(ℵm) in X is 2m+1M-
complemented.

Proof We show that when K is a Valdivia compact, any copy of c0(ℵm) inside
C(K) is contained in a complemented subspace C(Km) of C(K) such that Km

is a Valdivia compact with dim C(Km) = ℵm in order to then apply Proposition
1.7.13 to get a 2m+1 projection. To do that, just let yourself go down the cardinal
slide: let I be a set of cardinality ℵm and K ⊂ [0, 1]I a Valdivia compact. Let
ωm be the first ordinal with cardinal |ωm| = ℵm, let µ = dimC(K), and pick
a subset H = {hi : i < ωm} of K ∩ Σ(I) that norms c0(I). Use Lemma 1.7.9
to obtain the increasing family {Iα : ω ≤ α ≤ µ} and then Proposition 1.7.10
to get a PRI (Pα)ω≤α≤µ on C(K) for which Pα[C(K)] = C(Kα) with each
Kα ⊂ K a Valdivia compact. By construction, Pωm is an isometry on c0(I), and
dim C(Km) = ℵm. �

In due course, Proposition 2.2.15 will show that the preceding result is
optimal. On the other hand, despite that ordinal spaces [0, α] are not Valdivia
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compacta for α ≥ ω2 [147, II. Proposition 2], the decomposition method of
Lemma 1.7.12 still works, providing:

Proposition 1.7.15 The space C[0, ω2] is 23-Sobczyk.

Proof The space C[0, ω2] admits a PRI (Pα)ω≤α<ωm given by

Pα( f )(β) =

 f (β) if β ≤ α

f (α) if β ≥ α

(details can be seen in [148, p. 259]). Taking into account that the range of Pα

is isometric to C[0, α] for α < ω2, and that [0, α] is a Valdivia compact, we
are ready for induction: Proposition 1.7.13 yields that it is 4-Sobczyk, and the
induction Lemma 1.7.12 applies to obtain that C[0, ω2] is 8-Sobczyk. �

It could be interesting to determine relations between I and α so that copies
of c0(I) are complemented in C[0, α]. A remarkable example in [302, Theorem
2.7] isolates a compact scattered space K of height 3 and Lindelöf (every open
cover contains a countable subcover) in its weak topology that contains an
uncomplemented copy of c0(ℵ1).

1.8 Notes and Remarks

1.8.1 Topological Stuff

The reader can skip this section now and eventually return when some non-
Hausdorff space pops up. Because non-Hausdorff topologies will pop up.
Indeed, there are places in this book where non-Hausdorff linear topologies
are unavoidable. Let X be a linear space. A mapping % : X −→ R+ is said to
be a semi-quasinorm if it is positively homogeneous (that is, %(λx) = |λ|%(x)
for every x ∈ X and every scalar λ) and there is a constant ∆ such that
%(x + y) ≤ ∆(%(x) + %(y)) for all x, y ∈ X. If, moreover, one has %(x + y)p ≤

%(x)p + %(y)p for all x, y ∈ X then we say that % is a semi-p-norm, or just a
seminorm when p = 1. Yes, right: this is nothing different from a quasinorm,
just omitting the requirement that if an element has ‘size’ zero, it has to be
zero. Let us agree that a semi-quasinormed space is a linear space X endowed
with a semi-quasinorm %. In a semi-quasinormed space, we can form the linear
topology for which the sets {x ∈ X : %(x) ≤ ε} are a fundamental system of
neighbourhoods of zero as in the quasinormed case. Needless to say, such
a topology is Hausdorff precisely when % is a quasinorm. There is also a
uniform structure whose (basic) neighbourhoods of the diagonal are the sets
{(x, y) ∈ X × X : %(y − x) ≤ ε}. It turns out that X is complete if and only if
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every Cauchy sequence converges. This can be taken as the definition, if one
prefers. Of course, by a Cauchy sequence, we mean a sequence (xn) such that
for every ε > 0, there is k ∈ N such that %(xn − xm) < ε for all n,m ≥ k.
And (xn) converges to x if %(x − xn) → 0 as n → ∞. Note that if (xn)
converges to x and %(x′ − x) = 0, then (xn) converges to x′ too. By the very
definition, ker % = {x ∈ X : %(x) = 0} is a closed subspace of X and %(x)
essentially depends only on the class of x in X/ ker %, because when y ∈ ker %,
∆−1%(x) ≤ %(x + y) = ∆%(x). When % is a semi-p-norm, we actually have
%(x + y) = %(x). In any case, % induces a quasinorm %[x] = inf%(y)=0 %(x + y)
on the quotient space X/ ker %. Since any linear projection X −→ ker % is
continuous, ker % is complemented in X, and X is linearly isomorphic to
ker % × X/ ker % endowed with the product topology, corresponding to the
functional (y, [x]) 7−→ max

(
%(y), %[x]

)
= %[x]. No open mapping theorem

exists for non-Hausdorff spaces: consider the formal identity X −→ Y , where
X is your favourite Banach space and Y is the same space with the trivial
seminorm. The two basic examples of semi-quasinormed spaces to keep in
mind are:
• The quotient of a quasinormed space X by a possibly non-closed subspace Y
endowed with the quotient semi-quasinorm

‖x + Y‖ = inf
y∈Y
‖x + y‖.

The class of x in X/Y is zero if and only if x ∈ Y . However, we have ‖x+Y‖ = 0
if and only if x belongs to the closure of Y in X. It is clear that if X is complete
(a quasi-Banach space), then so is X/Y , no matter if it is Hausdorff or not.
• The space Q(X,Y) of homogeneous maps Φ : X −→ Y acting between two
quasinormed spaces X,Y such that

Q(Φ) = sup
x,y,0

‖Φ(x + y) − Φ(x) − Φ(y)‖
‖x‖ + ‖y‖

< ∞.

It is clear that Φ ∈ Q(X,Y) 7−→ Q(Φ) ∈ R+ is a semi-quasinorm whose
modulus of concavity does not exceed that of Y and that Q(Φ) = 0 if and
only if Φ is linear (maybe unbounded). These maps will have their moments
of glory in Chapter 3 and after that throughout the book.

A subset B of a topological vector space X is said to be bounded if it is
absorbed by all neighbourhoods of zero; i.e. for every neighbourhood V of
zero, there is λ > 0 such that B ⊂ λV . A topological vector space is said to
be locally bounded if it has a bounded neighbourhood of the origin. Semi-
quasinormed spaces are locally bounded because the unit ball BX = {x ∈ X :
%(x) ≤ 1} is a bounded neighbourhood of zero. Conversely, if B is a bounded
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symmetric neighbourhood of zero in X, the functional ‖x‖ = inf{t > 0: x ∈ tB}
is a semi-quasinorm giving the topology of X.

1.8.2 Orlicz, Young, Fenchel and L0 Too

The terminology in this section may differ from that used in other, more
respectable texts. An Orlicz function is a continuous, increasing function
ϕ : [0,∞) −→ [0,∞) vanishing only at zero and satisfying the ‘∆2-condition’:
there is a constant C such that ϕ(2t) ≤ Cϕ(t) for all t ≥ 0. We do not require
Orlicz functions to be convex or that ϕ(t) → ∞ as t → ∞, conditions which
are basically equivalent to the fact that the associated Orlicz space is a Banach
space (see, for instance, Lindenstrauss-Tzafriri [334, pp. 137]). If (S , µ) is a
measure space then the associated Orlicz space Lϕ(µ) is the space of those
measurable functions f : S −→ K such that

| f |ϕ =

∫
S
ϕ(| f (s)|)dµ(s) < ∞.

Although | · |ϕ need not be homogeneous or subadditive, it defines a linear
topology on Lϕ(µ) for which the sets { f : | f |ϕ < ε} are a neighbourhood base
at zero. The condition limλ→0 supt

ϕ(λt)
ϕ(t) = 0 guarantees that Lϕ(µ) is a locally

bounded space, in which case, the functional ‖ f ‖ϕ = inf{r > 0: |r−1 f |ϕ ≤ 1}
is a quasinorm, called the Luxemburg quasinorm. When µ is the counting
measure on N, we obtain the so-called Orlicz sequence spaces.

Let V be a finite-dimensional linear space, possibly of dimension 1. A Young
function Φ : V −→ R+ is an even convex function such that Φ(tv) → ∞ for
each v ∈ V as |t| → ∞. We do not require that Φ vanish only at zero. A family
Φk : Vk −→ R+ of Young functions defines a modular sequence space

h((Φk)k) =

v ∈
∏
k≥1

Vk :
∞∑

k=1

Φk(tvk) < ∞ for all t > 0

 ,
equipped with the Luxemburg norm

‖v‖(Φk)k = inf

t > 0:
∞∑

k=1

Φk(vk/t) ≤ 1

 .
If Vk = Kn for some n and all k and all the Φk agree with some Young function
Φ : Kn −→ R+, then the modular sequence space h(Φ) is called a Fenchel-
Orlicz space; if, moreover, n = 1, then h(Φ) agrees with the small Orlicz space
as defined in [334, bottom of p. 137]. There is a considerable overlap between
Orlicz sequence spaces and modular spaces in the locally convex zone. These
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subtleties will be necessary only in Chapter 8: note that, according to our fussy
definitions, c0 is a modular sequence space, but not an Orlicz space.

The space L0 of all measurable functions on the unit interval deserves a
special mention. The topology of convergence in measure is metrisable: set

|h|0 =

∫ 1

0

|h|
1 + |h|

dt

so that the formula d( f , g) = | f − g|0 defines a complete (invariant) metric
on L0. Thus, L0 is an Orlicz function space in the wide sense adopted earlier.
However, L0 is not locally bounded. More yet:

Proposition Each operator from L0 to a quasinormed space is zero.

Proof The key is that | f |0 ≤ λ(supp( f )) regardless of the values assumed by
f . Let u : L0 −→ Y be an operator, where Y is a p-normed space. Take δ > 0
such that ‖u( f )‖ ≤ 1 for | f |0 ≤ δ. Divide [0, 1] into n subintervals I1, . . . , In of
measure less than δ. Pick any f ∈ L0. Then f =

∑n
i=1 fi, where fi = 1Ii f . For

each scalar c, we have

‖u(c f )‖p ≤
∑

1≤i≤n

‖u(c fi)‖p ≤ n,

and since n is fixed and c arbitrary, we see that ‖u( f )‖ = 0. �

1.8.3 Ultrapowers of Lp When 0 < p < 1

We emphatically concluded Section 1.4 with the assertion that Lp is not an
ultrasummand if 0 < p < 1. The following result shows that Lp is uncom-
plemented even in its ‘countable’ ultrapowers. The proof, a re-elaboration of a
quip of Kalton [255, Proof of Lemma 8.1], will be eased by recalling that, given
a family (S i)i∈I of sets and an ultrafilter U on I, the set theoretic ultraproduct
〈S i〉U is the set

∏
i S i factored by the equivalence relation (si) = (ti) ⇐⇒

{i ∈ I : si = ti} ∈ U. The class of (si) in 〈S i〉U will be denoted 〈(si)〉.

Proposition Let U be a free ultrafilter on N. Then L((Lp)U,Y) = 0 for every
separable quasi-Banach space Y.

Proof Let us treat the Lebesgue measure on [0, 1] as a probability and,
accordingly, the elements of Lp as random variables. Our first observation is
that if f ∈ Lp is simple then there is a sequence of ‘Rademacher-like’ functions
(rn) mutually independent and independent with f such that λ{t : rn(t) = ±1} =
1
2 for all n ∈ N, where λ is Lebesgue measure on the unit interval: just write
f =

∑
k ak1Ak with Ak a partition of [0, 1] and work on each Ak separately. Take
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finitely many non-zero scalars cn. Applying Khintchine’s inequality [153, p.
10] on each Ak, we get ∥∥∥∥∑

n

cnrn f
∥∥∥∥

p
≤ ‖ f ‖p‖(cn)‖2. (1.10)

Now, let U be a free ultrafilter on a countable set I and form the ultrapower
(Lp)U. For notational reasons, it’s better to keep using I instead of N for the
index set of the ultrafilter. Take a normalised f ∈ (Lp)U and a representative
( fi) with fi simple and ‖ fi‖p = 1 for all i ∈ I. For each i we select a
‘Rademacher’ sequence (rn

i )n≥1 of mutually independent functions which are,
moreover, independent with fi and λ{t : rn

i (t) = ±1} = 1
2 for all n and i. Let

n : I −→ N be any function. Consider the class of (rn(i)
i ) in the ultrapower

(L∞)U and write [(rn(i)
i )] f = [(rn(i)

i fi)]. The class of (rn(i)
i ) in (L∞)U depends

only on the class of (n(i)) in the set theoreric ultrapower 〈N〉U. Thus, if
α = 〈(n(i)〉, then rα = [(rn(i)

i )] is correctly defined as an element of (L∞)U,
and so is the product rα f = [(rn(i)

i fi)] for every f ∈ (Lp)U.

Claim 1 If T : (Lp)U −→ Y is an operator and f and {rα : α ∈ 〈N〉U} are as
before, then there is y ∈ Y such that for every ε > 0, the set

{α ∈ 〈N〉U : ‖y − T (rα f )‖ ≤ ε}

has the cardinality of the continuum.

Proof of Claim 1 Assume Y is q-normed for the remainder of the proof and
write it as the union of countably many balls of radius 1. Since 〈N〉U has the
cardinality of the continuum (use an almost disjoint (Definition 2.2.9) family
of size c), some of its members must contain T (rα f ) for ‘continuum many’ αs.
Take that ball and write it as the union of countably many balls of radius 1

2 ,
and so on. Continuing in this way, we get a sequence of closed balls (Bn)n≥1

in Y such that Bn+1 ⊂ Bn for every n ∈ N; Bn has radius 2−n, and for every
n, the cardinality of the set of those α ∈ 〈N〉U for which T (rα f ) ∈ Bn is
the continuum. The intersection of the balls yields the point we were looking
for. �

Claim 2 The point in Claim 1 has to be zero.

Proof of Claim 2 Let y ∈ Y a point for which the conclusion of Claim 1
is true. Take a sequence (αn)n of different indices in 〈N〉U such that ‖y −
T (rαn f )‖qp ≤ 2−n. Then, for every integer n, we have

∥∥∥∥ny −
n∑

k=1

T (rαk f )
∥∥∥∥q

p
≤

n∑
k=1

1
2k ≤ 1 =⇒

(†)︷                               ︸︸                               ︷∥∥∥∥ n∑
k=1

T (rαk f )
∥∥∥∥q

p
≥ nq‖y‖q − 1 .
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But if we apply (1.10) ‘coordinatewise’ to
∑n

k=1 rαk f with ck = 1 for 1 ≤ k ≤ n,
we obtain ∥∥∥∥ n∑

k=1

rαk f
∥∥∥∥

p
≤ n1/2 =⇒

∥∥∥∥ n∑
k=1

T (rαk f )
∥∥∥∥q

p
≤ ‖T‖qnq/2,

which is compatible with (†) only if ‖y‖ = 0. This proves Claim 2. �

To conclude the proof, pick any normalised f ∈ (Lp)U and construct the
corresponding family (rα) as before. For each ε > 0, there is some α such that
‖T (rα f )‖ ≤ ε. Note that, by independence, ‖(1 + rα) f ‖p = 2p−1‖ f ‖p, that is,
‖(1 + rα) f ‖ = 21−1/p‖ f ‖. Recalling that Y is q-normed, we have

‖T f ‖q ≤ ‖T (1 + rα) f ‖q + ‖T (rα f )‖q ≤ εq + ‖T‖q2q−q/p‖ f ‖q.

But ε is arbitrary, and so ‖T‖ ≤ 21−1/p‖T‖; that is, T = 0. �

This result trivially implies that every compact operator on Lp with values in
a quasi-Banach space is zero if 0 < p < 1, which is a result of Pallaschke. We
will not explore this line of research here since anyone interested in operators
on non-locally convex spaces should begin with Chapters 7 and 8 of [283] or
with [166]. The conclusion we prefer to draw instead is that the proof of the
proposition depends only on that fact that the cardinality of the set theoretic
ultrapower 〈N〉U is greater than the dimension of the target space Y; it actually
works when dim(Y) < c. On the other hand, 〈N〉U can be as large as we want:

Lemma For every cardinal ℵ, there is an ultrafilter U on some index set such
that |〈N〉U| ≥ ℵ.

Proof Let A be any set and I = fin(A) the set of all non-empty finite subsets
of A ordered by inclusion. Let U be any ultrafilter refining the order filter of
I. Let 〈F〉U denote the set theoretic ultraproduct of the family {F : F ∈ fin(A)}
following U, that is, the ‘elements’ of 〈F〉U are (classes of) families (aF) of the
product space

∏
fin(A) F, where aF belongs to F for every F and 〈(aF)〉 = 〈(bF)〉

if the set of those F for which aF = bF belongs to U. There is an obvious
embedding of A into 〈F〉U. Get the idea? Thus, |A| ≤ |〈F〉U| ≤ |〈N〉U|. �

Corollary If Y is an ultrasummand, then L(Lp,Y) = 0 for 0 < p < 1.

Proof Let T : Lp −→ Y be an operator, and let U be an ultrafilter on some
index set I for which the cardinality of 〈N〉U is strictly greater than dim(Y). Let
P : YU −→ Y be a projection through the diagonal embedding. The hypotheses
imply that the composition PTU : (Lp)U −→ Y is zero, and so is T . �
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1.8.4 Sobczyk’s Theorem Strikes Back

According to Veech’s proof, Sobczyk’s theorem is the statement that every
weak*-null sequence on a subspace of a separable Banach space can be
extended to a weak*-null sequence on the whole space. The norm of the
elements in the sequence of extended functionals, however, doubles. This fact
makes it apparently impossible to produce a proof à la Hahn–Banach obtaining
a suitable extension to one more dimension and then iterating the argument.
Such a proof is almost possible, nonetheless, and it was obtained in passing
by Kalton [273, Section 5]. Following, pretty badly, Behrends [35], we call an
ordered space as groundless when any decreasing sequence of elements has
a lower bound. The groundless set we need is the space P∗∞(N) of all infinite
subsets of the integers modulo finite sets endowed with the order [A] ≤ [B] if
B\A is finite. It is not obvious that it is obvious that P∗∞(N) is groundless: if
(An)n≥1 is a sequence of infinite subsets of N such that [An+1] ≤ [An] for all n,
then A = {kn : n ∈ N}, where kn ∈

⋂
i≤n Ai is infinite and [A] ≤ [An] for all n. A

mapping f : P −→ Q, acting between ordered sets, is order preserving if y ≤ x
implies f (y) ≤ f (x). We say that a point x ∈ P is stationary if f (y) = f (x) for
all y ≤ x.

Behrends’ lemma Let f : P −→ Q be an order-preserving map, where P is
groundless. Then f has a stationary point in the following cases:

• Q is a subset of RN.

• Q = K(M) is the set of all compact subspaces of a metric space M ordered
by inclusion.

Proof We first show the result for Q = R: since P is groundless, there is
p0 ∈ P such that f must be bounded on {y ∈ P : y ≤ p0}. If m = inf{ f (y) : y ≤
p0} = inf f (yn) and y ≤ yn for all n, then f (a) = f (b) for all a, b ≤ y. The result
for RN follows by diagonalisation. The second case also follows by taking
into account that K(M) is ‘countably determined’ in the sense that there is an
order-preserving, injective mapping g : K(M) −→ [−1, 1]N. Indeed, let (hn)n∈N
be a dense sequence in the unit ball of the real-valued C(M) and set g(K) =

(sups∈K hn(s))n∈N. �

Let X be a Banach space, and let Kn be a sequence of weak*-compact convex
subsets of the unit ball of X∗. If A is an infinite subset of N, we set

KA =
⋂
n∈N

⋃
i∈A,i≥n

Ki. (1.11)
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This definition is formally identical to the definition of an upper limit and,
clearly, KA depends only on [A]. One thus has an order-preserving function

K• : P∗∞(N) −→ K(B∗X).

Lemma Assume that KA is weak*-metrisable.

(a) If x∗ ∈ KA then x∗ is the weak*-limit of a sequence (x∗i )i∈A with x∗i ∈ Ki for
all i ∈ A if and only if, for every infinite subset B ⊂ A, one has x∗ ∈ KB.

(b) There is an infinite subset B ⊂ A with the property that KM = KB for every
M ⊂ B. For this B, the set KB is convex.

Proof The ‘only if’ implication in (a) is clear. For the converse, given
x∗ ∈ KA, we can arrange a decreasing sequence of weak* open sets (Vk)k≥0

such that x∗ =
⋂

k≥1(Vk ∩ KA), with V0 = X∗. The hypothesis implies that for
each k the set {i ∈ A : Ki ∩Vk , ∅} is cofinite in A. Pick an increasing sequence
( j(k))k of indices in A such that Ki ∩ Vk , ∅ for i ≥ j(k) and define a sequence
(xi)i∈A taking x∗i ∈ Ki ∩ Vk if j(k) ≤ i < j(k + 1). Clearly, x∗i −→ x∗ weak*
as i increases in A. The first part of (b) is an obvious application of Behrend’s
lemma to the map K• : P∗∞(A) −→ K(KA) defined as B −→ KB. The convexity
of KB follows from part (a). �

It is plain that if the ambient compact KN is metrisable then each infinite set
contains a stationary subset, from which a kind of à-la-Hahn–Banach-better-
than-the-original Sobczyk-like theorem follows:

Corollary Let Y be a closed subspace of a real Banach space X such that
X/Y is separable, and let τ : Y −→ c0 be an operator. If, for every x ∈ X, there
is a λ-extension Tx : Y + [x] −→ c0, then there is a λ-extension T : X −→ c0.

Proof Assume ‖τ‖ = 1, and write τ = (τn) as a sequence of functionals. Let
Kn be the set of all extensions of τn with norm at most λ, and consider the
family of compacta KA defined by (1.11). The separability of X/Y makes the
bounded subsets of Y⊥ = {x∗ ∈ X∗ : x∗|Y = 0} weak*-metrisable, as well as KA

for every P∗∞(N). Assume that no weak*-null extension of (τn) with norm at
most λ exists. Applying the first part of the previous lemma with A = N, we
get an infinite subset B ⊂ N such that 0 < KB. Without loss of generality, we
can assume this B is the stationary set appearing in (b), and so KB is convex.
We can thus separate KB from 0 by an element x ∈ X; say 〈x∗, x〉 ≥ ε for some
ε > 0 and all x∗ ∈ KB. The hypothesis yields a λ-extension Tx : Y + [x] −→ c0.
If ( fn)n≥1 is the corresponding sequence of functionals, we have fn ∈ Kn for all
n since ‖ fn‖ ≤ λ and 〈 fn, x〉 → 0 as n→ ∞. If f is a weak*-accumulation point
of the subsequence ( fn)n∈B, then f ∈ KB and 〈 f , x〉 = 0, which contradicts the
choice of x. �
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The previous approach only really makes sense for λ < 2, because for λ = 2,
we already have Sobczyk’s theorem. For λ = 2, it would provide a proof
for Sobczyk’s theorem if it were true that c0-valued operators extend to one
more dimension, doubling the norm. But proving that is actually as hard as
Sobczyk’s theorem! A nice loophole would exist were it obvious, clear or at
least true that hyperplanes of Banach spaces are 2-complemented, but this is
false; see comments and examples before Definition 2.1.6. Two more remark-
able results about c0 complementation deserve mention [394, Theorem 3]: for
every n ∈ N, there exists a 6(n + 1)-Sobczyk space that is not n-Sobczyk, from
which it follows [394, Corollary 4] that there exists a Banach space X admitting
a countable chain of subspaces (Yn)n≥0 such that X =

⋃
n Yn, Y0 = c0, Yn is

complemented in Yn+1 but c0 is not complemented in X – even if every copy of
c0 in X contains a subspace isomorphic to c0 and complemented in X [182].

Sources

General references on quasi-Banach spaces are [283; 269; 408]. The result
1.1.5 is from Day [144], but the proof we present is in the spirit of [303,
§15.9.9]. Proposition 1.2.5 is from [84]. The proof of Proposition 1.3.3 is a
clever insight in Phillips’ proof taken from an exercise in Bourbaki [47, 55,
Exercice 16]. Two long-standing problems have been whether complemented
subspaces of spaces with unconditional basis have unconditional basis and
whether every Banach space contains an unconditional basic sequence. The
first one is still open [83, Problem 1.8], while the second was solved by Gowers
and Maurey [197], leading, with the aid of W. B. Johnson, to the discovery
of H.I. spaces, thoroughly studied by Argyros and his group. Precisely, that
H.I. spaces are subspaces of `∞ is due to Argyros, although a proof can be
traced back to Plichko-Yost [396], and the proof presented in the text has been
taken from [2]. The principle of local reflexivity is the wondrous creation of
Lindenstrauss and Rosenthal [331]. Besides WCG spaces, the list of known
spaces with SCP includes weakly sequentially complete Banach lattices [187],
Banach spaces with the commuting bounded approximation property [83],
duals of Asplund spaces [224, p. 38]; see also [207, Theorem 3.42], spaces
of continuous functions on any ordinal [244, Theorem 1.6] and Plichko spaces
[243]. Just in case the definition has momentarily slipped our minds, recall that
a Banach space X is called Plichko if there is a dense subset A ⊂ X and norming
subset B ⊂ X∗ such that for every x∗ ∈ B, the set {x ∈ A : 〈x∗, x〉 , 0} is count-
able. There also exist C -spaces with SCP that are not Plichko [309]. Propo-
sition 1.7.7 is from Yost [460, corollary], who invented the Veech topological
spaces: those in which every separable subset is metrisable. The paper [396]
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contains a lot of additional information about the SCP property. Proposition
1.7.13 has been taken from the Argyros versus Spain paper [16], where much
more results and examples can be found. The results and ideas in 1.8.4 are
from Kalton [273], although we followed a different path through Behrends’
lemma, which has been obviously taken from [35, Section 2], even if Behrends
generously attributes the idea to Hagler and Johnson (see [152, p. 231]).

https://doi.org/10.1017/9781108778312.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.003

