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Abstract

Maximal estimates are considered for solutions to an initial value problem for the Schrodinger equation.
The initial value function is assumed to be radial in R", n > 2.
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Let / belong to the Schwartz space y(W) and set

SJ(x) = u(x, t) = dny f e"V"*r/<£)</$, x € W,t € R,

where a > 1. Here / denotes the Fourier transform of / , defined by

m = [ e-'t*f(x)dx.
Jx."

We then have u(x, 0) = / (* ) , and in the case a = 2, u is a solution to the Schrodinger
equation A« = idu/dt. We set

S*f(x) = sup |S,/(JC)| , x e R".
0<f<l

We also introduce Sobolev spaces Hs by setting

Hs = {f€y';\\f\\Hi<oo}, seWL,

where

\\f\\H, = ([ (i +1?i2

Jv
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[2] Radial functions and the Schrodinger equation 135

We shall here study estimates of the type

(i) (f \s*f(x)\2dx)l/2 < cK\\f\\Hi, f
JB(.0;R)

where B(Q; R) = [x € W; \x\ < /?}. The inequality (1) has implications for the
existence almost everywhere of \im,-+ou(x,t) for solutions u of the Schrodinger
equation. These problems were first studied by Carleson [3]. Later the inequality (1)
and related questions were studied in several papers: see for example Dahlberg and
Kenig [5], Kenig and Ruiz [6], Carbery [2], Cowling [4], Sjolin [10], Vega [12] and
Kenig, Ponce and Vega [7]. The following results are known. For n = 1,(1) holds
with 5 = 1/4, and 1/4 cannot be replaced by a smaller number. In one variable one
also has the improvement

(2) (f \S*f(x)\4dx)l/4<CR
JB(0;R)

\\f\\
Hi/t.

For n = 2, (1) holds with s = 1/2 and in the case n = 2, a = 2, Bourgain [1] also
has a result for HS(M?) for some s < 1/2. In the case n > 3, (1) is known to hold for
s > 1/2.

For radial functions in IR", n > 2, Prestini [9] has proved that

(3) / S*Hx)dx<CR\\f\\H
JB(0;R)

and here 1/4 cannot be replaced by a smaller number.
The purpose of this paper is to improve the integrability in the left hand side of (3).

For n > 2 w e shall prove the following results.

THEOREM 1. Ifq = 4n/(2n - 1), then for f radial,

(4)

Ifq > 4n/(2n — 1), then the estimate (4) does not hold for all radial functions f.

Theorem 1 is a direct consequence of the following theorem.

THEOREM 2. Assume 2<q<4.Ifa — q(2n-\)/4-n and f is radial, then

(5) /
JB(.0;R)

If a < q(2n — l)/4 — n then (5) does not hold for all radial functions f.
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In the proof of Theorem 2 we shall use Pitt's inequality for Fourier transforms,
which states that

(6) ( / \m)\q\H\~YqdH)llq < C{( \f{x)\p\xrdx)11",
Jm JR.

if q > p,0 < a < 1 — 1/p, 0 < y < l/q and y = a + \/p + \/q — 1 (see for
instance Muckenhoupt [8]). We take q — 2 and y — 1/4 in (6) and then obtain

(7) ( I i/(£)i2i£r1/2</£)1/2 <c(f

for 4/3 < p < 2.

PROOF OF THEOREM 2. We assume 2 < q < 4 and \/p + l/q = 1 so that
4/3 < p < 2. We let t(x) be a measurable and radial function in R" with 0 < t(x) < 1
and set T/(x) = Sl(x)f(x), / € ^ . It is then sufficient to prove (5) with 5* replaced
by7\

If / is radial we obtain S,f(s) = cns
l~ni2/0°° Jn/2^{rs)eitr° f(r)r"^dr, where

Jn/2-i denotes a Bessel function (see Stein and Weiss [11, p. 155]). Here we write
S,f(s) = Stf(x) if s = \x\ and f(r) = /(£) if/- = |f |.

Similarly, we obtain

Tf(s) = cn

Jo

To prove (5) we have to prove that

(8) ( / \Tf(s)\<s'*ln-W-1ds)1/'> < CR( f°° | f ( r ) | 2 ( l + r2)l'*r"-ldr)1'2.
Jo Jo

We have

-n/2 r Jn/I_
Jo

= cHs3'*-1" r Jn/2^
Jo

where g(r) = T(r)(l + r2)i/8A.(»-i)/2 W e s e t

/.OO

Pg(s) = s ^ - x " > / J ^ W
Jo

and then have
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We have to prove that

[ \Pg{s)\<ds)l"<CK{[ \g(r)\2dr)^2.
o Jo

(9)

The basic idea in the proof of (9) is to estimate the adjoint of P by use of an inequality
in our paper [10]. We set

f* '
r g\T) = ^ + r j r I Jn/2—\\rs)e s g\S)us, v < r < oo,

Jo

if g € L1 (0, R). It is then easy to prove that

f{r)T^g~{F)dr = / Pf(s)gH)ds

Jo
if g 6 L'(0, /?), / € L2(0, oo) and / has a suitable decay at infinity. It is therefore
sufficient to prove that

(10) ( f \P*g(r)\2dr)l/2<CR([ |g(s)|'<fc)I/j\ «6L ' (0 ,«) ,
Jo Jo

for 4/3 < p < 2.
It is well-known that there exist constants bx and b2 such that

l/,/2-i(0 - ib^'/t"2 + b2e-"/t1/2)\ < C/tV2, t > 1,

(see [11, p. 158]) and we therefore have

\t1/2Jn/2-i(t) - (bxe" + b2e~i{)\ < C/t, t > 1.

It is also clear that

\tl/2Jn/2-i(t) - (bxe" + b2e~")\ < C, 0 < t < 1.

Setting y = \/q - 1/4 we have 53/4~1/l? = sl/2s~y and it follows that

p*g(r) = bx{\ + r2)-1/8 / eirse-il{s)r"s-yg(s)ds
Jo

+b2(l + r2)"1/8 / e-irse-il(s)r°s-yg(s)ds + Q(r)
Jo

where

(11) 1(2(01 < C(l + r V / 8 /* min(l,
Jo
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We extend A to R by setting

CR

= (1 +£2r1 / 8 / et^s-'(sm'')s-yg(s)ds, -
./o

oo < f < 0.

Then f?(£) = A(—§), 0 < £ < oo, and to estimate A and fl it is therefore sufficient
to prove that

(12) (f \A(i-)\2d$)l/2 < CR\\g\\p,

where

\g\\P = ([ Igis^ds)1'".
Jo

Choose p real-valued in C£°(R) such that p(£) = 1, |£| < 1, and p( | ) = 0, |f | >
2, and set pN(£) = p(%/N) for N > 1. Then set

We shall prove that

(13) {f \ANm2dH)XI2<CR\\g\\p
J

with C« independent of N, and (12) follows from this inequality.
We have

JO

Jo Jo J&

It is proved in [10, pp. 709-712], that the inner integral is bounded by C\s — s'\~1/2

and we therefore obtain

(14) \AN\\\ <C [ [ \s - s'\
JRJR

where we have extended g to R by setting g(s) = 0 outside [0, /?].
We shall now use the Riesz potential operator Ip, 0 < /$ < 1, defined by

hf(x) = cp [ \x- yr1+pf(y)dy, xeR.

Here ce is chosen so that (7/i/Mf) = If r ' / ( $ ) .
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Using Fourier transforms one then has

\AN\\l < C

= C f

= c

This formula is justified since we may assume that g is bounded and vanishes close
to the origin.

Invoking (7) one then obtains

\\AN\\2 <C(f \s-*g\''\S\
i'"*-ids)1"' = C\\g\\p,

JR

since
-yp + ^ - l = - ( i - I ) j , + ^ - l = - * + p - l = O .

4 q 4 4 q

It remains to prove that if Q(r) satisfies (11), then

(15) ( / \Q(r)\2dr)l/2<CR\\g\\P.
Jo

For 0 < r < 1 one has

1(2(01 < I s-r\g\ds<([ s-"ds)l">\g\\p<CR\\g\\p,
Jo Jo

since yq = 1 — q/A < 1. Hence

(16) ( / \Q(r)\2dr)l'2<CR\\g\\p.
Jo

For r > 1 it follows from (11) that

\Q(r)\<CQl(r) + CQ2(r),

where Q,(r) = r~^ jljr s^\g\ds and Q2(r) = r~s'* f^s-
(here we assume R > 1).

Using a change of variable we obtain

I Qi(r)2dr= f Mx{tfdt,
J\ Jo
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where

t t t

f s~y\g\ds < f (t-s)-3/4s-y\g\ds
Jo Jo

One has

and invoking Plancherel's theorem and arguing as above we obtain

Qiirfdr < C / m-1/2\(s-y\g\) (^)|2^ < C\\gfp.

JK.

It remains to estimate Qi{r). We have

/

oo /-I

Q2{rfdr = / M2(t)
2dt,

Jowhere

= -Q2(-)=t1'4 f s-l-r\g\ds< I S-
3/4s

' « Jt Jt

< (s- tril4s-Y\g\ds < Chn(s~r\g\){t),

and it follows as above that

( j Qiirfdr)1'2 < C\\g\\p.

Hence (15) is proved and the proof of (5) is complete.
We shall now prove that (5) does not hold if a < q(2n — l)/4 — n. Therefore

assume that (5) holds for a = q(2n — l) /4 — n — e, where e > 0 is a small number.
We shall prove that this leads to a contradiction.

Let <p e C~(K") be radial and non-negative. Assume that supp^> C {£ : 1 <
|£| < 2} and that <p($) = 1 for 5/4 < |£| < 7/4. Then set <pc(£) = <p($/c), c > 1,
and choose / such that / = <pc. It is then easy to see that

d7) ii/m/4<cc"/2+i/4.

We have

S,f(x) = cn

f

https://doi.org/10.1017/S1446788700038520 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038520


[8] Radial functions and the Schrodinger equation 141

and

Sof(x) = cnc" / ^"'"(pi^dr) = cnc"(p(cx).

It follows that
S*f(x) > \Sof(x)\ > coc"

for |JC[ < S/c, where c0 and S are positive constants. For R > <S we therefore obtain

(/" IS' /Wn*!"^) 1 ' '^^/ C"\x\adx)l">

/

S/c

ta+n-ldt)x"> > coc"(c-a-ny/q

(18) = coc"-{a+n)lq.

Now
a + « 2n — 1 e n 1 e

n = n -— + - = - + - + -
q 4 <7 2 4 q

and combining (5) with (17) and (18) we obtain

Taking c large we conclude that e < 0, which gives a contradiction. The proof of
Theorem 2 is complete.

We finally remark that the method which we used in the proof of Theorem 2 to
show that (5) cannot be improved, can also be used to prove that the L4 estimate in
(2) cannot be replaced by an Lq estimate for q > 4.
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