RADIAL FUNCTIONS AND MAXIMAL ESTIMATES FOR SOLUTIONS TO THE SCHRÖDINGER EQUATION

PER SJÖLIN

(Received 20 September 1992; revised 29 January 1993)

Communicated by A. H. Dooley

Abstract

Maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation. The initial value function is assumed to be radial in $\mathbb{R}^{n}, n \geq 2$.

1991 Mathematics subject classification (Amer. Math. Soc.): 42B25, 35Q40.

Let f belong to the Schwartz space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ and set

$$
S_{t} f(x)=u(x, t)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{i t|\xi|^{0}} \widehat{f}(\xi) d \xi, \quad x \in \mathbb{R}^{n}, t \in \mathbb{R}
$$

where $a>1$. Here \widehat{f} denotes the Fourier transform of f, defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x
$$

We then have $u(x, 0)=f(x)$, and in the case $a=2, u$ is a solution to the Schrödinger equation $\Delta u=i \partial u / \partial t$. We set

$$
S^{*} f(x)=\sup _{0<t<1}\left|S_{t} f(x)\right|, \quad x \in \mathbb{R}^{n}
$$

We also introduce Sobolev spaces H_{s} by setting

$$
H_{s}=\left\{f \in \mathscr{S}^{\prime} ;\|f\|_{H_{s}}<\infty\right\}, \quad s \in \mathbb{R},
$$

where

$$
\|f\|_{H_{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

This research was supported by the Swedish Natural Science Research Council.
(C) 1995 Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

We shall here study estimates of the type

$$
\begin{equation*}
\left(\int_{B(0 ; R)}\left|S^{*} f(x)\right|^{2} d x\right)^{1 / 2} \leq C_{R}\|f\|_{H_{s}}, f \in \mathscr{S}\left(\mathbb{R}^{n}\right), \tag{1}
\end{equation*}
$$

where $B(0 ; R)=\left\{x \in \mathbb{R}^{n} ;|x| \leq R\right\}$. The inequality (1) has implications for the existence almost everywhere of $\lim _{t \rightarrow 0} u(x, t)$ for solutions u of the Schrödinger equation. These problems were first studied by Carleson [3]. Later the inequality (1) and related questions were studied in several papers: see for example Dahlberg and Kenig [5], Kenig and Ruiz [6], Carbery [2], Cowling [4], Sjölin [10], Vega [12] and Kenig, Ponce and Vega [7]. The following results are known. For $n=1$, (1) holds with $s=1 / 4$, and $1 / 4$ cannot be replaced by a smaller number. In one variable one also has the improvement

$$
\begin{equation*}
\left(\int_{B(0 ; R)}\left|S^{*} f(x)\right|^{4} d x\right)^{1 / 4} \leq C_{R}\|f\|_{H_{1 / 4}} . \tag{2}
\end{equation*}
$$

For $n=2$, (1) holds with $s=1 / 2$ and in the case $n=2, a=2$, Bourgain [1] also has a result for $H_{s}\left(\mathbb{R}^{2}\right)$ for some $s<1 / 2$. In the case $n \geq 3$, (1) is known to hold for $s>1 / 2$.

For radial functions in $\mathbb{R}^{n}, n \geq 2$, Prestini [9] has proved that

$$
\begin{equation*}
\int_{B(0 ; R)} S^{*} f(x) d x \leq C_{R}\|f\|_{H_{1 / 4}} \tag{3}
\end{equation*}
$$

and here $1 / 4$ cannot be replaced by a smaller number.
The purpose of this paper is to improve the integrability in the left hand side of (3). For $n \geq 2$ we shall prove the following results.

Theorem 1. If $q=4 n /(2 n-1)$, then for f radial,

$$
\begin{equation*}
\left(\int_{B(0 ; R)}\left|S^{*} f(x)\right|^{q} d x\right)^{1 / q} \leq C_{R}\|f\|_{H_{1 / 4}} . \tag{4}
\end{equation*}
$$

If $q>4 n /(2 n-1)$, then the estimate (4) does not hold for all radial functions f.
Theorem 1 is a direct consequence of the following theorem.
Theorem 2. Assume $2 \leq q \leq 4$. If $\alpha=q(2 n-1) / 4-n$ and f is radial, then

$$
\begin{equation*}
\left(\int_{B(0 ; R)}\left|S^{*} f(x)\right|^{q}|x|^{\alpha} d x\right)^{1 / q} \leq C_{R}\|f\|_{H_{1 / 4}} . \tag{5}
\end{equation*}
$$

If $\alpha<q(2 n-1) / 4-n$ then (5) does not hold for all radial functions f.

In the proof of Theorem 2 we shall use Pitt's inequality for Fourier transforms, which states that

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|\widehat{f}(\xi)|^{q}|\xi|^{-\gamma q} d \xi\right)^{1 / q} \leq C\left(\int_{\mathbb{R}}|f(x)|^{p}|x|^{\alpha p} d x\right)^{1 / p} \tag{6}
\end{equation*}
$$

if $q \geq p, 0 \leq \alpha<1-1 / p, 0 \leq \gamma<1 / q$ and $\gamma=\alpha+1 / p+1 / q-1$ (see for instance Muckenhoupt [8]). We take $q=2$ and $\gamma=1 / 4$ in (6) and then obtain

$$
\begin{equation*}
\left(\int_{\mathbb{R}}|\widehat{f}(\xi)|^{2}|\xi|^{-1 / 2} d \xi\right)^{1 / 2} \leq C\left(\int_{\mathbb{R}}|f(x)|^{p}|x|^{3 p / 4-1} d x\right)^{1 / p} \tag{7}
\end{equation*}
$$

for $4 / 3 \leq p \leq 2$.
PROOF OF THEOREM 2. We assume $2 \leq q \leq 4$ and $1 / p+1 / q=1$ so that $4 / 3 \leq p \leq 2$. We let $t(x)$ be a measurable and radial function in \mathbb{R}^{n} with $0<t(x)<1$ and set $T f(x)=S_{t(x)} f(x), f \in \mathscr{S}$. It is then sufficient to prove (5) with S^{*} replaced by T.

If f is radial we obtain $S_{t} f(s)=c_{n} s^{1-n / 2} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{i t r^{a}} \widehat{f}(r) r^{n / 2} d r$, where $J_{n / 2-1}$ denotes a Bessel function (see Stein and Weiss [11, p. 155]). Here we write $S_{t} f(s)=S_{t} f(x)$ if $s=|x|$ and $\widehat{f}(r)=\widehat{f}(\xi)$ if $r=|\xi|$.

Similarly, we obtain

$$
T f(s)=c_{n} s^{1-n / 2} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{i t(s) r^{a}} \widehat{f}(r) r^{n / 2} d r
$$

To prove (5) we have to prove that

$$
\begin{equation*}
\left(\int_{0}^{R}|T f(s)|^{q} s^{q(2 n-1) / 4-1} d s\right)^{1 / q} \leq C_{R}\left(\int_{0}^{\infty}|\widehat{f}(r)|^{2}\left(1+r^{2}\right)^{1 / 4} r^{n-1} d r\right)^{1 / 2} \tag{8}
\end{equation*}
$$

We have

$$
\begin{aligned}
T f(s) s^{(2 n-1) / 4-1 / q} & =c_{n} s^{(2 n-1) / 4-1 / q+1-n / 2} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{i t(s) r^{a}} \widehat{f}(r) r^{n / 2} d r \\
& =c_{n} s^{3 / 4-1 / q} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{i t(s) r^{a}} g(r)\left(1+r^{2}\right)^{-1 / 8} r^{1 / 2} d r
\end{aligned}
$$

where $g(r)=\widehat{f}(r)\left(1+r^{2}\right)^{1 / 8} r^{(n-1) / 2}$. We set

$$
P g(s)=s^{3 / 4-1 / q} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{i t(s) r^{a}} g(r)\left(1+r^{2}\right)^{-1 / 8} r^{1 / 2} d r
$$

and then have

$$
T f(s) s^{(2 n-1) / 4-1 / q}=c_{n} P g(s)
$$

We have to prove that

$$
\begin{equation*}
\left(\int_{0}^{R}|P g(s)|^{q} d s\right)^{1 / q} \leq C_{R}\left(\int_{0}^{\infty}|g(r)|^{2} d r\right)^{1 / 2} \tag{9}
\end{equation*}
$$

The basic idea in the proof of (9) is to estimate the adjoint of P by use of an inequality in our paper [10]. We set

$$
P^{*} g(r)=\left(1+r^{2}\right)^{-1 / 8} r^{1 / 2} \int_{0}^{R} J_{n / 2-1}(r s) e^{-i t(s) r^{a}} s^{3 / 4-1 / q} g(s) d s, \quad 0<r<\infty
$$

if $g \in L^{1}(0, R)$. It is then easy to prove that

$$
\int_{0}^{\infty} f(r) \overline{P^{*} g(r)} d r=\int_{0}^{R} P f(s) \overline{g(s)} d s
$$

if $g \in L^{1}(0, R), f \in L^{2}(0, \infty)$ and f has a suitable decay at infinity. It is therefore sufficient to prove that

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left|P^{*} g(r)\right|^{2} d r\right)^{1 / 2} \leq C_{R}\left(\int_{0}^{R}|g(s)|^{p} d s\right)^{1 / p}, \quad g \in L^{p}(0, R) \tag{10}
\end{equation*}
$$

for $4 / 3 \leq p \leq 2$.
It is well-known that there exist constants b_{1} and b_{2} such that

$$
\left|J_{n / 2-1}(t)-\left(b_{1} e^{i t} / t^{1 / 2}+b_{2} e^{-i t} / t^{1 / 2}\right)\right| \leq C / t^{3 / 2}, \quad t>1,
$$

(see [11, p. 158]) and we therefore have

$$
\left|t^{1 / 2} J_{n / 2-1}(t)-\left(b_{1} e^{i t}+b_{2} e^{-i t}\right)\right| \leq C / t, \quad t>1
$$

It is also clear that

$$
\left|t^{1 / 2} J_{n / 2-1}(t)-\left(b_{1} e^{i t}+b_{2} e^{-i t}\right)\right| \leq C, \quad 0<t \leq 1
$$

Setting $\gamma=1 / q-1 / 4$ we have $s^{3 / 4-1 / q}=s^{1 / 2} s^{-\gamma}$ and it follows that

$$
\begin{aligned}
P^{*} g(r)= & b_{1}\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{R} e^{i r s} e^{-i t(s) r^{a}} s^{-\gamma} g(s) d s \\
& +b_{2}\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{R} e^{-i r s} e^{-i t(s) r^{a}} s^{-\gamma} g(s) d s+Q(r) \\
= & b_{1} A(r)+b_{2} B(r)+Q(r),
\end{aligned}
$$

where

$$
\begin{equation*}
|Q(r)| \leq C\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{R} \min (1,1 / r s) s^{-\gamma}|g(s)| d s \tag{11}
\end{equation*}
$$

We extend A to \mathbb{R} by setting

$$
A(\xi)=\left(1+\xi^{2}\right)^{-1 / 8} \int_{0}^{R} e^{i\left(\xi s-t(s)|\xi|^{\alpha}\right)} s^{-\gamma} g(s) d s, \quad-\infty<\xi<0
$$

Then $B(\xi)=A(-\xi), 0<\xi<\infty$, and to estimate A and B it is therefore sufficient to prove that

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}|A(\xi)|^{2} d \xi\right)^{1 / 2} \leq C_{R}\|g\|_{p} \tag{12}
\end{equation*}
$$

where

$$
\mid g \|_{p}=\left(\int_{0}^{R}|g(s)|^{p} d s\right)^{1 / p}
$$

Choose ρ real-valued in $C_{0}^{\infty}(\mathbb{R})$ such that $\rho(\xi)=1,|\xi| \leq 1$, and $\rho(\xi)=0,|\xi| \geq$ 2 , and set $\rho_{N}(\xi)=\rho(\xi / N)$ for $N>1$. Then set

$$
A_{N}(\xi)=\rho_{N}(\xi)|\xi|^{-1 / 4} \int_{0}^{R} e^{i\left(s \xi-t(s)|\xi|^{\alpha}\right)} s^{-\gamma} g(s) d s
$$

We shall prove that

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left|A_{N}(\xi)\right|^{2} d \xi\right)^{1 / 2} \leq C_{R}\|g\|_{p} \tag{13}
\end{equation*}
$$

with C_{R} independent of N, and (12) follows from this inequality.
We have

$$
\begin{aligned}
\int_{\mathbb{R}} \mid & \left.A_{N}(\xi)\right|^{2} d \xi=\int_{\mathbb{R}} A_{N}(\xi) \overline{A_{N}(\xi)} d \xi \\
& =\int_{\mathbb{R}} \rho_{N}(\xi)^{2}|\xi|^{-1 / 2}\left(\int_{0}^{R} e^{i\left(s \xi-t(s)|\xi|^{\alpha}\right)} s^{-\gamma} g(s) d s\right) \cdot\left(\int_{0}^{R} e^{-i\left(s^{\prime} \xi-t\left(s^{\prime}\right)|\xi|^{\alpha}\right)} s^{-\gamma} \overline{g\left(s^{\prime}\right)} d s^{\prime}\right) d \xi \\
& =\int_{0}^{R} \int_{0}^{R}\left(\int_{\mathbb{R}} e^{i\left[\left(s-s^{\prime}\right) \xi-\left(t(s)-t\left(s^{\prime}\right)\right)|\xi|^{a}\right]} \rho_{N}(\xi)^{2}|\xi|^{-1 / 2} d \xi\right) s^{-\gamma} g(s) s^{\prime-\gamma} \overline{g\left(s^{\prime}\right)} d s d s^{\prime} .
\end{aligned}
$$

It is proved in [10, pp. 709-712], that the inner integral is bounded by $C\left|s-s^{\prime}\right|^{-1 / 2}$ and we therefore obtain

$$
\begin{equation*}
\left|A_{N} \|_{2}^{2} \leq C \int_{\mathbb{R}} \int_{\mathbb{R}}\right| s-\left.s^{\prime}\right|^{-1 / 2} s^{-\gamma}|g(s)| s^{\prime-\gamma}\left|g\left(s^{\prime}\right)\right| d s d s^{\prime} \tag{14}
\end{equation*}
$$

where we have extended g to \mathbb{R} by setting $g(s)=0$ outside $[0, R]$.
We shall now use the Riesz potential operator $I_{\beta}, 0<\beta<1$, defined by

$$
I_{\beta} f(x)=c_{\beta} \int_{\mathbb{R}}|x-y|^{-1+\beta} f(y) d y, \quad x \in \mathbb{R}
$$

Here c_{β} is chosen so that $\left(I_{\beta} f\right) \widehat{(\xi)}=|\xi|^{-\beta} \widehat{f}(\xi)$.

Using Fourier transforms one then has

$$
\begin{aligned}
\mid A_{N} \|_{2}^{2} & \leq C \int_{\mathbb{R}} I_{1 / 2}\left(t^{-\gamma}|g|\right)(s) s^{-\gamma}|g(s)| d s \\
& =C \int_{\mathbb{R}}|\xi|^{-1 / 2}\left(s^{-\gamma}|g|\right) \widehat{(\xi)\left(s^{-\gamma}|g|\right) \widehat{(\xi)} d \xi} \\
& =C \int_{\mathbb{R}}|\xi|^{-1 / 2} \mid\left(s^{-\gamma}|g|\right) \widehat{\left.(\xi)\right|^{2} d \xi} .
\end{aligned}
$$

This formula is justified since we may assume that g is bounded and vanishes close to the origin.

Invoking (7) one then obtains

$$
\left\|A_{N}\right\|_{2} \leq C\left(\int_{\mathbb{R}}\left|s^{-\gamma} g\right|^{p}|s|^{3 p / 4-1} d s\right)^{1 / p}=C\|g\| p
$$

since

$$
-\gamma p+\frac{3 p}{4}-1=-\left(\frac{1}{q}-\frac{1}{4}\right) p+\frac{3 p}{4}-1=-\frac{p}{q}+p-1=0 .
$$

It remains to prove that if $Q(r)$ satisfies (11), then

$$
\begin{equation*}
\left(\int_{0}^{\infty}|Q(r)|^{2} d r\right)^{1 / 2} \leq C_{R}\|g\|_{p} \tag{15}
\end{equation*}
$$

For $0<r<1$ one has

$$
|Q(r)| \leq \int_{0}^{R} s^{-\gamma}|g| d s \leq\left(\int_{0}^{R} s^{-\gamma q} d s\right)^{1 / q} \mid g\left\|_{p} \leq C_{R}\right\| g \|_{p}
$$

since $\gamma q=1-q / 4<1$. Hence

$$
\begin{equation*}
\left(\int_{0}^{1}|Q(r)|^{2} d r\right)^{1 / 2} \leq C_{R}\|g\|_{p} \tag{16}
\end{equation*}
$$

For $r>1$ it follows from (11) that

$$
|Q(r)| \leq C Q_{1}(r)+C Q_{2}(r)
$$

where $\quad Q_{1}(r)=r^{-1 / 4} \int_{0}^{1 / r} s^{-\gamma}|g| d s \quad$ and $\quad Q_{2}(r)=r^{-5 / 4} \int_{1 / r}^{R} s^{-1-\gamma}|g| d s$ (here we assume $R>1$).

Using a change of variable we obtain

$$
\int_{1}^{\infty} Q_{1}(r)^{2} d r=\int_{0}^{1} M_{1}(t)^{2} d t
$$

where

$$
\begin{aligned}
M_{1}(t) & =\frac{1}{t} Q_{1}\left(\frac{1}{t}\right)=\frac{1}{t} t^{1 / 4} \int_{0}^{t} s^{-\gamma}|g| d s \\
& =t^{-3 / 4} \int_{0}^{t} s^{-\gamma}|g| d s \leq \int_{0}^{t}(t-s)^{-3 / 4} s^{-\gamma}|g| d s \\
& \leq C I_{1 / 4}\left(s^{-\gamma}|g|\right)(t)
\end{aligned}
$$

One has

$$
\left(I_{1 / 4}\left(s^{-\gamma}|g|\right)\right) \widehat{\jmath}|\xi|=|\xi|^{-1 / 4}\left(s^{-\gamma}|g|\right) \widehat{(\xi)}
$$

and invoking Plancherel's theorem and arguing as above we obtain

$$
\int_{1}^{\infty} Q_{1}(r)^{2} d r \leq C \int_{\mathbb{R}}|\xi|^{-1 / 2}\left|\left(s^{-\gamma}|g|\right)(\xi)\right|^{2} d \xi \leq C\|g\|_{p}^{2}
$$

It remains to estimate $Q_{2}(r)$. We have

$$
\int_{1}^{\infty} Q_{2}(r)^{2} d r=\int_{0}^{1} M_{2}(t)^{2} d t
$$

where

$$
\begin{aligned}
M_{2}(t) & =\frac{1}{t} Q_{2}\left(\frac{1}{t}\right)=t^{1 / 4} \int_{t}^{R} s^{-1-\gamma}|g| d s \leq \int_{t}^{R} s^{-3 / 4} s^{-\gamma}|g| d s \\
& \leq \int_{t}^{R}(s-t)^{-3 / 4} s^{-\gamma}|g| d s \leq C I_{1 / 4}\left(s^{-\gamma}|g|\right)(t)
\end{aligned}
$$

and it follows as above that

$$
\left(\int_{1}^{\infty} Q_{2}(r)^{2} d r\right)^{1 / 2} \leq C\|g\|_{p}
$$

Hence (15) is proved and the proof of (5) is complete.
We shall now prove that (5) does not hold if $\alpha<q(2 n-1) / 4-n$. Therefore assume that (5) holds for $\alpha=q(2 n-1) / 4-n-\varepsilon$, where $\varepsilon>0$ is a small number. We shall prove that this leads to a contradiction.

Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be radial and non-negative. Assume that $\operatorname{supp} \varphi \subset\{\xi: 1<$ $|\xi|<2\}$ and that $\varphi(\xi)=1$ for $5 / 4 \leq|\xi| \leq 7 / 4$. Then set $\varphi_{c}(\xi)=\varphi(\xi / c), c>1$, and choose f such that $\widehat{f}=\varphi_{c}$. It is then easy to see that

$$
\begin{equation*}
\|f\|_{H_{1 / 4}} \leq C c^{n / 2+1 / 4} \tag{17}
\end{equation*}
$$

We have

$$
\begin{aligned}
S_{t} f(x) & =c_{n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{i t|\xi|} \varphi(\xi / c) d \xi \\
& =c_{n} \int_{\mathbb{R}^{n}} e^{i c x \cdot \eta} e^{i t|c \eta|^{a}} \varphi(\eta) d \eta c^{n}
\end{aligned}
$$

and

$$
S_{0} f(x)=c_{n} c^{n} \int_{\mathbb{R}^{n}} e^{i c x \cdot \eta} \varphi(\eta) d \eta=c_{n} c^{n} \widehat{\varphi}(c x)
$$

It follows that

$$
S^{*} f(x) \geq\left|S_{0} f(x)\right| \geq c_{0} c^{n}
$$

for $|x| \leq \delta / c$, where c_{0} and δ are positive constants. For $R>\delta$ we therefore obtain

$$
\begin{align*}
& \left(\int_{B(0 ; R)}\left|S^{*} f(x)\right|^{q}|x|^{\alpha} d x\right)^{1 / q} \geq c_{0}\left(\int_{|x| \leq \delta / c} c^{n q}|x|^{\alpha} d x\right)^{1 / q} \\
& \quad=c_{0} c^{n}\left(\int_{0}^{\delta / c} t^{\alpha+n-1} d t\right)^{1 / q} \geq c_{0} c^{n}\left(c^{-\alpha-n}\right)^{1 / q} \\
& \quad=c_{0} c^{n-(\alpha+n) / q} \tag{18}
\end{align*}
$$

Now

$$
n-\frac{\alpha+n}{q}=n-\frac{2 n-1}{4}+\frac{\varepsilon}{q}=\frac{n}{2}+\frac{1}{4}+\frac{\varepsilon}{q}
$$

and combining (5) with (17) and (18) we obtain

$$
c^{n / 2+1 / 4+\varepsilon / q} \leq C c^{n / 2+1 / 4}
$$

Taking c large we conclude that $\varepsilon \leq 0$, which gives a contradiction. The proof of Theorem 2 is complete.

We finally remark that the method which we used in the proof of Theorem 2 to show that (5) cannot be improved, can also be used to prove that the L^{4} estimate in (2) cannot be replaced by an L^{q} estimate for $q>4$.

References

[1] J. Bourgain, 'A remark on Schrödinger operators', Israel J. Math. 77 (1992), 1-16.
[2] A. Carbery, 'Radial Fourier multipliers and associated maximal functions’, in: Recent Progress in Fourier Analysis, North-Holland Mathematics Studies 111 (North-Holland, Amsterdam, 1985) pp. 49-56.
[3] L. Carleson, 'Some analytical problems related to statistical mechanics', in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779 (Springer, Berlin, 1979) pp. 5-45.
[4] M. Cowling, 'Pointwise behaviour of solutions to Schrödinger equations', in: Harmonic Analysis, Lecture Notes in Math. 992 (Springer, Berlin, 1983) pp. 83-90.
[5] B. E. J. Dahlberg and C. E. Kenig, 'A note on the almost everywhere behaviour of solutions to the Schrödinger equation', in: Harmonic Analysis, Lecture Notes in Math. 908 (Springer, Berlin, 1982) pp. 205-209.
[6] C. E. Kenig and A. Ruiz, 'A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation', Trans. Amer. Math Soc. 280 (1983), 239-246.
[7] C. E. Kenig, G. Ponce and L. Vega, 'Oscillatory integrals and regularity of dispersive equations', Indiana Univ. Math. J. 40 (1991), 33-69.
[8] B. Muckenhoupt, 'Weighted norm inequalities for the Fourier transform', Trans. Amer. Math. Soc. 276 (1983), 729-742.
[9] E. Prestini, 'Radial functions and regularity of solutions to the Schrödinger equation', Monatsh. Math. 109 (1990), 135-143.
[10] P. Sjölin, 'Regularity of solutions to the Schrödinger equation', Duke Math. J. 55 (1987), 699-715.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, 1971).
[12] L. Vega, 'Schrödinger equations: pointwise convergence to the initial data', Proc. Amer. Math. Soc. 102 (1988), 874-878.

Department of Mathematics
Royal Institute of Technology
S-10044 Stockholm
Sweden
email: pers@math.kth.se

