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Abstract

We discuss modelling and simulation of volumetric rainfall in a catchment of the
Murray–Darling Basin – an important food production region in Australia that was
seriously affected by a recent prolonged drought. Consequently, there has been
sustained interest in development of improved water management policies. In order
to model accumulated volumetric catchment rainfall over a fixed time period, it is
necessary to sum weighted rainfall depths at representative sites within each sub-
catchment. Since sub-catchment rainfall may be highly correlated, the use of a Gamma
distribution to model rainfall at each site means that catchment rainfall is expressed as
a sum of correlated Gamma random variables. We compare four different models and
conclude that a joint probability distribution for catchment rainfall constructed by using
a copula of maximum entropy is the most effective.

2010 Mathematics subject classification: primary 62E17; secondary 62P12, 65C05,
65C20.

Keywords and phrases: rainfall modelling, correlated Gamma distributions, copulas of
maximum entropy.

1. Introduction

We consider modelling and simulation of volumetric rainfall in a catchment of the
Murray–Darling Basin in southeast Australia. Our methods elaborate and extend a
previous work of Zakaria [30]. We compare the performance of four different models
– a standard Gamma distribution fitted directly to the observed volumetric catchment
rainfall by the method of maximum likelihood, the Alouini model [1] for the sum
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of known correlated Gamma distributions each having the same shape parameter, a
modified Alouini model using the correlative coherence analysis (CCA) proposed by
Getz [8] to simplify the correlation structure and a model which uses a checkerboard
copula of maximum entropy [19] to construct a joint probability distribution for the
volumetric catchment rainfall that incorporates the prescribed marginal sub-catchment
rainfall distributions and matches the specified grade correlation coefficients.

We outline the structure of each model and discuss their relative merits. To
demonstrate the models, we use official records from the Australian Bureau of
Meteorology for seasonal rainfall in winter – the total rainfall in the months of
June, July and August at stations 081013 (Dookie Agricultural College), 082039
(Rutherglen Research Station), 082001 (Beechworth Composite) and 072023 (Hume
Reservoir) in the Murray–Darling Basin in southeast Australia. We use data for all
years between 1922 and 2000. Longer term data is not available due to missing
records in 2001 at one of the stations. The winter season was chosen, because winter
rainfall makes a significant contribution to total volumetric catchment rainfall. The
analysis could equally well be applied to other seasons or to other time periods. We
show that all four models generate simulated catchment rainfalls that provide a good
statistical match to the observed data. However, we emphasize that only one of the
four models, the checkerboard copula of maximum entropy, can be used to simulate
both the volumetric winter rainfall in the entire catchment and the corresponding
components of volumetric winter rainfall in each of the four sub-catchments.

In this application, the Alouini model and the modified Alouini model are
bedevilled by unwieldy numerical calculations. The probability density functions are
represented as an infinite sum of weighted Gamma distributions and in each case
some 3000 terms are required for adequate convergence. Moreover the numerical
calculations require considerable care because individual terms may involve the
products of very large and very small numbers. The modified Alouini model
uses the CCA to replace the observed pairwise correlation coefficients by a single
representative coefficient for all distinct pairs. Despite the simplified structure of
the correlation matrix, the numerical difficulties are still present and the rate of
convergence remains much the same.

Since each simulated outcome for the Alouini model generates an overall catchment
rainfall but does not generate the corresponding components of sub-catchment rainfall,
it seems that the main value of the model is to provide a conceptual solution to
the problem of finding an exact distribution that represents a finite sum of known
correlated Gamma random variables with a common shape parameter. Indeed, we
will show that the probability density functions found by both the Alouini model and
the modified Alouini model are almost identical to the density function defined by a
standard two-parameter Gamma distribution fitted directly to the observed data by the
method of maximum likelihood. Thus, the intensive numerical effort needed for the
Alouini models is – for this application – a practical waste of time.

The remaining model – the checkerboard copula of maximum entropy – is much
more useful than the others for simulation of catchment rainfall. In order to simulate
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[3] Modelling and simulation of volumetric rainfall 121

simultaneous winter rainfall in all four sub-catchments, it is necessary to construct a
four-dimensional joint probability distribution with prescribed marginal distributions
and specified grade correlation coefficients. For a given uniform subdivision of the
unit four-dimensional hypercube, the checkerboard copula of maximum entropy [19]
is the most disordered joint distribution with uniform marginals and constant density
on each sub-hypercube that satisfies the constraints imposed by the specified grade
correlation coefficients. The copula is defined by a multiply-stochastic hypermatrix
h ∈ R`, where ` = n4 is the number of equal subdivisions of the unit hypercube. By
an elementary transformation on each marginal distribution, the copula can be used
to find a corresponding joint probability distribution for the catchment rainfall with
prescribed marginal Gamma distributions for each of the sub-catchment rainfalls and
specified grade correlation coefficients.

Although some intricate numerical mathematics is required to determine the
checkerboard copula of maximum entropy, the necessary calculations and the
simulation itself can be performed accurately and efficiently on a standard laptop
computer. Special Matlab programs for the required calculations are available on
request. The model assumes prescribed marginal distributions and specified pairwise
grade correlation coefficients. In this case, we use marginal Gamma distributions
fitted by the method of maximum likelihood to the observed sub-catchment rainfalls
and grade correlation coefficients also estimated from the observed sub-catchment
rainfall data using the Spearman rank correlation coefficients [21]. While there is no
simple expression for the theoretical probability density defined by the checkerboard
copula of maximum entropy, the empirical probability distribution for large samples
generated by random simulations is stable and statistically consistent with the observed
distribution.

1.1. Previous research on rainfall modelling One must distinguish between
models, such as the ones discussed here, that are designed to simulate realistic
rainfall statistics and those that also attempt to predict future rainfall. The latter
task is immensely more difficult and must necessarily incorporate observations of
indices which are known to be associated with short-term or long-term variations in
climatological conditions.

The Gamma distribution has been widely used to model strictly positive rainfall
accumulations at a single site [25] and also at multiple sites in the same geographic
region [24]. Other authors [18, 22, 28] used a mixed Gamma distribution with an
additional parameter to allow a positive probability for zero rainfall totals. A more
sophisticated model [26] proposed random generation of wet and dry days by a
Markov chain with independent generation of rainfall depths on wet days by a Gamma
distribution. A similar model – with either a Markov chain or a binomial distribution
to determine wet and dry days and an exponential distribution for rainfall depths on
wet days – was used in [27] to generate monthly rainfall totals. More general chain-
dependent processes [13] were devised to investigate overdispersion in rainfall models
for different time scales.
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The exponential dispersion model [12] is an important form of generalized linear
model that has been used as a basis for modelling rainfall occurrence and depth.
The Poisson–Gamma distribution [5, 9] is one such model where a Poisson process
generates random rainfall events at a constant rate over a fixed time interval, and a
Gamma distribution determines the rainfall depth during each event. These models
belong to the so-called Tweedie family of generalized linear models [12] which allow
the possibility of either a zero total, if there is no rainfall event, or a nonzero total.
Special algorithms [6, 7] are required for calculation of probability density functions
for the Tweedie distributions. A Tweedie distribution with different parameters for
different times of the year [10] provides a good model for monthly rainfall, but recent
work [11] suggests that more complex Tweedie models may be required to model the
cyclical patterns that are sometimes evident in observed rainfall data. In particular, it
was found that the addition of climatological variables improves the fit and makes
substantial changes to the predicted monthly rainfall and the probability of a dry
month. Climatological variables, such as NINO 3.4, are thought to have a significant
impact on rainfall patterns in eastern Australia.

Synthetic rainfall data has often been used as a driver for simulation of water
management systems where a full range of possible rainfall scenarios is desirable.
The rGEN algorithm [20] uses a diagonal-band copula with marginal daily mixed
Gamma distributions to generate synthetic rainfall totals on different time scales –
daily, monthly and yearly.

Finally, we cite two papers [25, 29], which provide a more comprehensive review
of weather generation models.

1.2. A probability distribution for the sum of Gamma random variables It is
a common practice to model rainfall depth at a single site over a fixed time period
as a random variable following a Gamma distribution. The volumetric rainfall in a
particular region can then be modelled as the rainfall depth at a representative site
multiplied by the area of the region. Thus, volumetric rainfall is also modelled by a
Gamma distribution. Since catchment rainfall is calculated as the sum of the relevant
sub-catchment rainfalls, we are now led to a model for catchment rainfall as a random
variable defined by the sum of Gamma random variables.

Kotz and Adams [14] used moment generating functions to find the distribution of
a sum of identically distributed Gamma random variables with a negative exponential
correlation law. Their method has been the intuitive basis for much of the subsequent
work. A later paper by Mathai [15] modelled storage capacity in a dam with Gamma-
type distribution inputs and used zonal polynomials and confluent hypergeometric
functions to find an exact expression for the probability density function of a sum
of independent Gamma random variables. The Moschopoulos variation [16] on
the Mathai method for inversion of the moment generating function allowed the
probability density function for the sum of independent Gamma variables to be
expressed as an infinite sum of weighted Gamma densities with a common scale
parameter. A nice feature of the Moschopoulos series is a recursive formula for the
weights. The Moschopoulos model was later exploited by Alouini et al. [1] to find a
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probability density function for the sum of correlated Gamma variables, where each
Gamma variable is defined by the same shape parameter.

Despite intensive research into multivariate Gamma distributions [4], there is no
multidimensional classical distribution with prescribed marginal Gamma distributions
that matches an arbitrary set of specified grade correlation coefficients. Nevertheless,
the theory of copulas [17] can be used to construct joint probability densities that
preserve the marginal distributions and match observed correlation coefficients. In
particular, we note that checkerboard copulas of maximum entropy and checkerboard
normal copulas have been used [2, 19, 20] to construct joint distributions for seasonal
rainfall with correlated Gamma distributions for the marginal monthly rainfalls.
Although these joint distributions were constructed specifically to model correlated
temporal dependence at a single site for successive time periods, they can equally
well be applied to model correlated spatial dependence at multiple sites over the
same time period. The method is theoretically applicable to any number of marginal
distributions, but becomes more complex numerically as the dimension increases. In
this application, we consider a four-dimensional problem.

2. The observed data

We used official records from the Australian Bureau of Meteorology for stations
081013 (Dookie Agricultural College), 082039 (Rutherglen Research Station), 082001
(Beechworth Composite) and 072023 (Hume Reservoir) in the Murray–Darling Basin
in southeast Australia. See the Australian Bureau of Meteorology website (http:
//www.bom.gov.au/climate/data/) for access to the detailed records. We considered all
years between 1922 and 2000 – the longest time period with complete winter rainfall
records at each site. The winter season was chosen as a suitable time period for the
model. It is pertinent to note that the observed volumetric winter rainfall totals at each
site are all strictly positive.

The areas in square kilometres for the sub-catchments in which each of the above
stations is located were calculated approximately using the interactive map software
from the Victorian Government Land Services and Spatial Information website [3].
The volumetric rainfall in a sub-catchment is given in cubic metres (m3) by the formula

volumetric rainfall = [sub-catchment area × 106] × [rainfall depth × 10−3],

where the sub-catchment area is given in the usual units of square kilometres (km2)
and rainfall depth is measured in the standard units of millimetres (mm). The
areas of the respective sub-catchments are Dookie 905 km2, Rutherglen 1538 km2,
Beechworth 1847 km2 and Hume 3390 km2. The mean winter rainfall depths are
Dookie 169 mm, Rutherglen 182 mm, Beechworth 344 mm and Hume 223 mm. The
mean sub-catchment volumetric winter rainfalls are Dookie 153 × 106 m3, Rutherglen
280 × 106 m3, Beechworth 636 × 106 m3 and Hume 756 × 106 m3. In order to
work with reasonable numbers, henceforth, we use nonstandard units of 106 m3

for volumetric rainfall. Histograms for the observed volumetric winter rainfall in
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(a) (b)

(c) (d)

Figure 1. Histograms for observed volumetric winter rainfall in units of 106 m3 at Dookie (a), Rutherglen
(b), Beechworth (c) and Hume (d) with fitted maximum likelihood Gamma distributions.

the Dookie, Rutherglen, Beechworth and Hume sub-catchments with fitted Gamma
distributions are shown in Figure 1 with the corresponding time series in Figure 2.
We use a common scale for all histograms in Figure 1 and all graphs in Figure 2 to
allow a realistic comparison of the relative contributions from each sub-catchment. In
Figure 3, we show a histogram for the observed volumetric winter rainfall over the
entire catchment with a fitted Gamma distribution and the corresponding time series.

3. A model for catchment rainfall using the Gamma distribution

When there is no probability of a zero total, an elementary model for volumetric
catchment rainfall can be obtained by fitting a two-parameter Gamma distribution to
the observed data by the method of maximum likelihood. The probability density
function for the Gamma distribution Γ(α, β) with shape parameter α > 0 and scale
parameter β > 0 is defined for x > 0 by the formula

gα,β(x) =
xα−1e−x/β

βαΓ(α)
. (3.1)

The coefficients α and β in the maximum likelihood estimate must satisfy the equations

αβ = x and ψ(α) + loge β = loge x,
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(a) (b)

(c) (d)

Figure 2. Time series for observed volumetric winter rainfall for Dookie (a), Rutherglen (b), Beechworth
(c) and Hume (d).

(a) (b)

Figure 3. Histogram of observed volumetric catchment winter rainfall in units of 106 m3 compared with
maximum likelihood Gamma distribution (a) and time series for observed volumetric winter catchment
rainfall in units of 106 m3 (b).

where ψ(α) = Γ′(α)/Γ(α) is the Digamma function, x = (1/N)
∑N

k=1 xk is the mean
of the observed values {xk}

N
k=1 and loge x = (1/N)

∑N
k=1 loge xk is the mean of the

logarithms of the observed values {loge xk}
N
k=1. The observed catchment volumetric

winter rainfall data gives x = 1824 and loge x = 7.45. Thus, we obtained Y ∼ Γ(α, β),
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where α = 8.36 and β = 218. For later reference, note that the theoretical standard
deviation for the fitted maximum likelihood Gamma distribution σ =

√
αβ2 ≈ 631 is

a little higher than the standard deviation for the observed data s ≈ 609. Nevertheless,
a Kolmogorov–Smirnov (KS) test [23] showed that the maximum likelihood Gamma
distribution is a good fit to the observed data and should not be rejected at the 5%
significance level.

4. The Alouini model for catchment rainfall

The Alouini model [1] is an extension of an earlier Moschopoulos model [16]. We
consider a set of m correlated Gamma random variables Xi ∼ Γ(α, βi) with common
shape parameter α > 0 and with scale parameters βi > 0 for each i = 1, . . . ,m and an
associated random variable Y =

∑m
i=1 Xi. It is necessary to assume that the Pearson

correlation coefficients ρi, j are nonnegative for all i, j = 1, . . . ,m. See [21] for more
information. Define a diagonal matrix B ∈ Rm×m and a symmetric matrix C ∈ Rm×m by

B =


β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βm

 , C =


1

√
ρ1,2 · · ·

√
ρ1,m

√
ρ1,2 1 · · ·

√
ρ2,m

...
...

. . .
...

√
ρ1,m

√
ρ2,m · · · 1

 ,
where 0 < β1 ≤ · · · ≤ βm. Let λ = (λ1, . . . , λm) be the vector of eigenvalues for the
matrix A = BC. We assume that A is nonnegative and that 0 ≤ λ1 ≤ · · · ≤ λm. The
probability density function for Y is given by

fY (y) =

∞∑
k=0

δkgmα+k,λ1 (y), (4.1)

where gmα+k,λ1 (·) denotes the probability density function defined in (3.1) for
the Gamma distribution Γ(mα + k, λ1), and where the coefficients δk are defined
recursively by the formula

δk+1 =
α

k + 1

k+1∑
i=1

[ m∑
j=1

(
1 −

λ1

λ j

)i]
δk+1−i

for k = 0, 1, . . . with δ0 =
∏m

j=1(λ1/λ j)α. With this scaling,
∑∞

k=0 δk = 1 (see [1,
Theorem 1] and the original paper by Moschopoulos [16] for more details). The
Alouini method works well if δk → 0 rapidly. This requires 1 − λ1/λm � 1.

Remark 4.1. Application of the Alouini model depends on knowing that the
eigenvalues of the matrix C are nonnegative. In such cases, it is a common usage
to say that C is nonnegative. Although C was originally described as nonnegative by
Alouini et al. [1], we present a counter-example in Appendix B to show that C may
fail to be nonnegative. If so, the Alouini method will fail.
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Table 1. Maximum likelihood Gamma distributions for volumetric sub-catchment rainfall with µi = αiβ1

and σi =

√
αiβ

2
i and key observed values xi, loge xi and si.

αi βi xi σi loge xi si

Dookie 7.46 20.48 153 56 4.96 55
Rutherglen 7.00 39.99 280 106 5.56 101
Beechworth 8.36 76.06 636 220 6.39 220
Hume 8.02 94.19 756 267 6.56 250

Table 2. Spearman rank correlation coefficients.

Dookie Rutherglen Beechworth Hume
Dookie 1 0.87 0.87 0.83
Rutherglen 0.87 1 0.93 0.90
Beechworth 0.87 0.93 1 0.91
Hume 0.83 0.90 0.91 1

We begin by fitting a Gamma distribution to each of the four individual volumetric
sub-catchment rainfall data sets using the method of maximum likelihood. The
relevant data values and estimated parameters are shown in Table 1. A Kolmogorov–
Smirnov test confirms that the maximum likelihood Gamma distribution is a good fit
in all the four cases.

To estimate pairwise correlations, we used the Spearman rank correlation
coefficients given by

ρ̂i, j = 1 −
6
∑N

k=1(ri,k − r j,k)2

N(N2 − 1)
,

where ri,k and r j,k are the respective ranks for the observations (xi,k, x j,k) in the year k
from the observed data sets {(xi,k, x j,k)}Nk=1 for i, j = 1, . . . ,m. The Spearman coefficients
are shown in Table 2.

The Alouini method uses an infinite series to represent the probability density
function for the sum of a finite number of correlated Gamma random variables with a
common shape parameter. Since the values of αi in Table 1 are not too dissimilar, we
decided to use a common shape parameter αc =

∑4
i=1 αi/4 ≈ 7.71 to calculate revised

Gamma distributions to model Xi ∼ Γ(αc, βc,i) for each i = 1, . . . , 4 with a common
shape parameter α = αc and distinct scale parameters {βc,i}

4
i=1 using the method of

maximum likelihood. The maximum likelihood equations, in this case, are reduced to
the single equation αc βc,i = xi. The revised values are shown in Table 3. Once again
a Kolmogorov–Smirnov test confirms that the revised Gamma distributions provide a
good fit to the observed data.
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Table 3. Revised Gamma distributions for volumetric sub-catchment rainfall with µc = αcβc,i

and σc =
√
αcβ

2
c,i.

αc βc,i µc σc

Dookie 7.71 19.82 153 55
Rutherglen 7.71 36.28 280 101
Beechworth 7.71 82.45 636 229
Hume 7.71 98.04 756 272

We used the revised parameter values to calculate the probability density function
fY (y) for Y =

∑4
i=1 Xi according to (4.1). The matrix A = BC is given by

A ≈


19.8 18.4 18.5 18.1
33.8 36.3 34.9 34.5
77.1 79.4 82.4 78.7
89.5 93.1 93.6 98.0

 .
The eigenvalues of A are λ ≈ (1.66, 2.11, 4.50, 228). We used Matlab to find the
approximate Alouini probability density function from the series (4.1). Convergence
is extremely slow, and it is necessary to use around 3000 terms to obtain a good
approximation to fY (y).

5. The modified Alouini model

The measured pairwise Spearman rank correlation coefficients for the volumetric
monthly rainfall totals at the sub-catchment sites are all very similar (see Table 2).
This suggests that we could apply the correlative coherence analysis (CCA) proposed
by Getz [8] in order to construct a single overall correlation coefficient r ∈ [0, 1]
for the random vector X = (X1, . . . , Xm) with the matrix of Pearson correlation
coefficients [21] R(X) = [ρi, j(X)] ∈ Rm×m. Getz suggested that the diversity of
eigenvalues for the correlation matrix R(X) could be described using a Shannon–
Weaver measure [8]

H(X) = 1 −
1

loge(1/m)

m∑
i=1

(λi/m) loge(λi/m) ∈ [0, 1].

Now consider a special correlation matrix R(r) = [ri, j] ∈ Rm×m, where ri,i = 1 and
ri, j = r ∈ [0, 1] for i , j. In this case, the diversity measure h(r) = H[R(r)] reduces
to

h(r) =
[1 + (m − 1)r] loge[1 + (m − 1)r] + (m − 1)(1 − r) loge(1 − r)

m loge m

and there is a unique correlative coherence value r for the random vector X defined by

h(r) = H(X) ⇐⇒ r = h−1[H(X)].
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(a) (b)

(c) (d)

Figure 4. Density for the maximum likelihood Gamma distribution compared to partial sums for the
Alouini model (converging more quickly left to right) and the modified Alouini model (converging more
slowly left to right) showing 500 terms (a), 1000 terms (b), 1500 terms (c) and 3000 terms (d). Note that
the convergence is visually complete with 3000 terms.

The Alouini method can now be applied with the observed correlation matrix R =

R(X) replaced by the special CCA matrix R = R(r). Note that C = R(
√

r) is always
nonnegative. We calculated r ≈ 0.89 and hence A = BC is given by

A ≈


19.8 18.7 18.7 18.7
34.2 36.3 34.2 34.2
77.8 77.8 82.4 77.8
92.4 92.4 92.4 98.0

 .
Although the Getz model is more robust, the convergence rate in this case is slightly
slower. This is clearly shown by the graphs in Figure 4, where the partial sums are
compared to the maximum likelihood Gamma density.

6. A comparison of the first three models

Each of the first three models – the maximum likelihood Gamma distribution,
the Alouini model and the modified Alouini model – is designed to construct a
density function for the total volumetric catchment winter rainfall. From a practical
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viewpoint, at least in this application, the theoretical significance of the Alouini model
is completely lost, because the resultant density is visually indistinguishable from the
much simpler density generated by the maximum likelihood Gamma distribution. Our
conclusion is that in purely practical terms, to simulate volumetric catchment winter
rainfall, it is much better to use the elementary Gamma distribution.

The methods discussed so far simulate overall catchment rainfall, but do not
simulate the corresponding components of sub-catchment rainfall. Therefore, the
models replicate the overall risk of drought or flood, but do not simultaneously model
the risk of drought or flood in the sub-catchments.

7. The model using a checkerboard copula of maximum entropy

The theory justifying the checkerboard copula of maximum entropy can be
found elsewhere [19]. In this paper, we outline the basic ideas and present the
results of the application. An m-dimensional copula, where m ≥ 2, is a cumulative
probability distribution C(u) ∈ [0,∞), defined on the m-dimensional unit hypercube
u = (u1, . . . , um) ∈ [0, 1]m for a vector-valued random variable U = (U1, . . . , Um)
with uniform marginal distributions for each of U1, . . . ,Um on [0, 1]. The Pearson
correlation coefficients for the marginal distributions are defined by

ρi, j =
E[(Ui − 1/2)(U j − 1/2)]√

E[(Ui − 1/2)2] E[(U j − 1/2)2]
= 12E[UiU j] − 3

for each i, j = 1, . . . ,m. In order to model the joint probability distribution for a
vector-valued random variable X = (X1, . . . , Xm) ∈ (0,∞)m with prescribed cumulative
marginal distributions F1(x1), . . . , Fm(xm), we construct uniformly distributed random
variables Ui = Fi(Xi) ∈ (0, 1) for each i = 1, 2, . . . ,m and use an m-dimensional
copula C(u) = C(F(x)) = C(F1(x1), . . . , Fm(xm)). We say that the grade correlation
coefficients for X are simply the Pearson correlation coefficients for U, that is,

ρi, j = 12E[Fi(Xi)F j(X j)] − 3 (7.1)

for each i, j = 1, . . . ,m. In theory, we distinguish between the Spearman rank
correlation coefficients ρ̂i, j obtained from the observed data

{(x1,k, . . . , xm,k)}Nk=1

or equivalently from the transformed data {(u1,k, . . . , um,k)}Nk=1, where ui,k = Fi(xi,k)
and the grade correlation coefficients ρi, j are defined by (7.1). In practice, it may
be convenient to avoid explicitly transforming the observed data by simply using ρ̂i, j

in place of ρi, j.
The m-dimensional multivariate checkerboard copula is defined by subdividing the

unit hypercube [0, 1]m into nm congruent sub-hypercubes

I(i1,...,im) = [(i1 − 1)/n, i1/n] × · · · × [(im − 1)/n, im/n]
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for each i1, . . . , im = 1, . . . , n with constant density on each one. If the density on Ii,
where i = (i1, i2, . . . , im), is defined by nm−1hi ≥ 0, then the marginal distributions will
be uniform if ∑

i∈S (r,i)

hi = 1 for each r and each i,

where S (r, i) = {i | ir = i} for each r = 1, 2, . . . ,m and i = 1, 2, . . . , n. In such cases we
say that h = [hi] ∈ R`, where ` = nm is multiply stochastic. We wish to construct a joint
density in this form with the desired grade correlation coefficients. For sufficiently
large n, there are many ways that this can be done.

The principle of maximum entropy asserts that the best such distribution is the most
disordered or least prescriptive solution – the multiply-stochastic hypermatrix h ∈ R`
which has the most equal subdivision of probabilities but still allows the required
correlations. This is the hypermatrix that satisfies the grade correlation constraints
and has the highest possible entropy.

The mathematical problem to find the desired multiply-stochastic hypermatrix can
be neatly and rigorously solved using the theory of Fenchel duality. A formal statement
of the problem and the theoretical solution with details about numerical calculation
procedures can be found in [19]. For a more detailed discussion of computational
methods, see [20].

For our proposed application, we make the following remarks. The sub-catchment
rainfalls {Xi}

4
i=1 are modelled by the maximum likelihood Gamma distributions

Xi ∼ Γ(αi, βi) with the parameters given in Table 1. The cumulative distribution
functions Fi(x) = Gαi,βi (x) =

∫ x
0 gα,β(ξ)dξ define transformed random variables Ui =

Fi(Xi), which are uniformly distributed on (0, 1), and transformed observations
{ui.k}

N
k=1 defined by ui,k = Fi(xi,k) for each i = 1, . . . , 4. We use the Spearman rank

correlation coefficients in place of the theoretical grade correlation coefficients, but,
nevertheless, use the simpler notation ρi, j. This replacement is a convenience – not
a necessity, and makes no discernible difference to the results. For highly correlated
marginal distributions, it is important to realize that the correlation coefficients for
the checkerboard copula must satisfy ρi, j ∈ [−1 + 1/n2, 1 − 1/n2] for i, j = 1, . . . ,m,
where n is the number of uniform subdivisions of the unit interval [19]. Hence, in this
application, we can match the observed rank correlation coefficients if we use n = 6.
The multiply-stochastic hypermatrix contains ` = 64 = 1296 elements.

Matlab programs to calculate the multiply-stochastic hypermatrix h ∈ R1296 that
defines the checkerboard copula of maximum entropy and to run the simulations are
available from the first-named author. It is convenient to define h = [hpq], where
hpq = [hpqrs] ∈ R6×6 for each p,q = 1, . . . ,6. The elements hpq for p = 1,2,3 are shown
in Appendix Appendix C to four decimal places accuracy.

The checkerboard copula of maximum entropy was used to simulate corresponding
volumetric winter rainfalls for each sub-catchment over a period of N = 79 years. The
sub-catchment totals were then added together to find the catchment rainfall. We used
five successive trials to test the model. The sample statistics showed considerable
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(a) (b)

(c) (d)

Figure 5. Histograms for typical simulated volumetric winter rainfall [Sim 79 #2] over a period of
79 years in units of 106 m3 using a copula of maximum entropy compared to the relevant maximum
likelihood Gamma distributions for Dookie (a), Rutherglen (b), Beechworth (c) and Hume (d). Note that
there are three outliers in the range 1600–1850 not shown on the Hume histogram.

variation, but we begin by looking in detail at the results of an apparently typical
trial – the second Monte Carlo simulation over 79 years denoted by [Sim 79 #2].
Figure 5 shows histograms for the volumetric sub-catchment winter rainfall generated
in [Sim 79 #2] over a period of 79 years. The corresponding time series are shown in
Figure 6. The histogram and time series for the volumetric catchment winter rainfall
are shown in Figure 7. Repeated simulations confirm that the Kolmogorov–Smirnov
test statistics for the distributions generated by the copula of maximum entropy and the
observed distribution lie within the acceptable limits defined by the 0.05 significance
level (see Appendix A for details of the Kolmogorov–Smirnov tests on the volumetric
catchment winter rainfall). The overall mean and standard deviation in this trial were
given by (x, s) = (1842, 611).

There is no simple expression for the theoretical probability density defined by
the copula of maximum entropy, but an approximate density can be calculated by
simulating very large samples. We ran three separate simulations over a time period
of N = 7900 years. The mean and standard deviation for catchment rainfall in the first
Monte Carlo simulation over 7900 years denoted by [Sim 7900 #1] were found to be

https://doi.org/10.1017/S1446181116000183 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000183


[15] Modelling and simulation of volumetric rainfall 133

(a) (b)

(c) (d)

Figure 6. Time series for typical simulated volumetric winter rainfall [Sim 79 #2] in units of 106 m3 using
a copula of maximum entropy for Dookie (a), Rutherglen (b), Beechworth (c) and Hume (d).

(a) (b)

Figure 7. Histogram for typical simulated volumetric winter catchment rainfall [Sim 79 #2] in units of
106 m3 using a copula of maximum entropy compared to the maximum likelihood Gamma distribution
(a) and corresponding time series (b).

(x, s) = (1828, 596) with the Spearman rank correlation matrix given by

ρs =


1 0.86 0.87 0.83

0.86 1 0.93 0.90
0.87 0.93 1 0.91
0.83 0.90 0.91 1

 .
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(a) (b)

(c) (d)

Figure 8. Histograms for simulated volumetric winter rainfall [Sim 7900 #1] over a period of N =

7900 years in units of 106 m3 using the checkerboard copula of maximum entropy for Dookie (a),
Rutherglen (b), Beechworth (c) and Hume (d) compared to the the relevant maximum likelihood Gamma
distributions.

The histograms for the individual sub-catchment rainfalls in [Sim 7900 #1] are
compared to the corresponding maximum likelihood Gamma distributions in Figure 8,
while in Figure 9 we compare the simulated catchment rainfalls in [Sim 7900 #1] and
[Sim 7900 #3] to the fitted maximum likelihood Gamma distribution. It is interesting
to note that for the large samples of catchment rainfall generated by the copula of
maximum entropy, the standard deviation is quite close to the observed standard
deviation – much closer than it is for large samples generated by the maximum
likelihood Gamma distribution.

8. Variability in catchment rainfall

The sub-catchment rainfalls are highly correlated, and so it is not possible
to simulate realistic catchment rainfall by simply adding together independently
generated sub-catchment rainfalls. Although summation of independent sub-
catchment rainfalls produces a correct theoretical mean µ for the catchment rainfall,
the corresponding variance σ2

I will grossly underestimate the true variance σ2. Indeed,
the relevant estimates of variance using the fitted maximum likelihood marginal
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(a) (b)

Figure 9. Histograms for simulated overall volumetric winter catchment rainfall using the checkerboard
copula of maximum entropy showing [Sim 7900 #1] (a) and [Sim 7900 #3] (b) each over 7900 years
in units of 106 m3 both compared to the fitted maximum likelihood Gamma distribution for overall
volumetric winter rainfall. Convergence to a smooth distribution is relatively slow with simulations using
the copula of maximum entropy [2, 19, 20], but convergence is nevertheless consistent and there is no
direct reason to expect that the distribution will converge to the maximum likelihood Gamma distribution.

Gamma distributions are

σ2 ∼

4∑
i=1

αiβ
2
i +

∑
1≤i< j≤4

2ρi, j
√
αiα jβiβ j = σ2

I +
∑

1≤i< j≤4

2ρi, j
√
αiα jβiβ j.

This leads to the estimates µ ∼ 1824, σ ∼ 626 and σI ∼ 366. One may argue that
recent imprudent use of water resources in the Murray–Darling Basin is due in part to
a failure to recognize the inherently high variance in catchment rainfall.

Finally, we sound a note of caution about the interpretation of apparent temporal
trends in the observed rainfall data. In general terms, we believe that the 79 year
time span of observations is too short to make definitive judgements about observed
trends. Although we do not attempt a careful trend analysis in this study, other related
studies [2] show that random samples generated by stationary distributions, such as
those used here, frequently generate phantom trends of the same order of magnitude
as measured trends in the observed data. This is simply a consequence of the inherent
variability in small samples. In order to demonstrate the inherent variability in samples
of this size, we used the checkerboard copula of maximum entropy to simulate five
samples of catchment rainfall over a period of N = 79 years. The important point is
that each sample is generated by the same underlying distribution and yet the sample
statistics show a high degree of variation. Although there is no underlying theoretical
trend in rainfall generated by this model, each sample time series shows a trend
generated by chance alone. The detailed results for the selected typical simulation
[Sim 79 #2] are shown in Figures 5–7. The histograms for total volumetric catchment
rainfall for the remaining simulations [Sim 79 #1, #3, #4 and #5] are shown in
Figure 10.

The sample means and standard deviations (x, s) for the five simulated catchment
winter rainfalls with N = 79 were (1926, 642), (1842, 611), (1705, 608), (1819, 663)
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(a) (b)

(c) (d)

Figure 10. Histograms for simulated volumetric catchment winter rainfall [Sim 79 #1, #3, #4 and #5]
using the checkerboard copula of maximum entropy in units of 106 m3 over a period of 79 years compared
to the maximum likelihood Gamma distribution.

and (1698, 559). This simple demonstration underlines the inherent variation in both
the mean x ∈ [1698, 1926] and the standard deviation s ∈ [559, 663] for small samples.
The sample means and standard deviations (x, s) for the three simulated catchment
winter rainfalls with N = 7900 were (1828, 596), (1824, 614) and (1820, 600).

9. A note on extreme values

The Gamma distribution is the maximum-entropy distribution for situations where
the means of both the observed values and the logarithms of the observed values are
finite. Thus, it is no surprise that the Gamma distribution provides a good fit in general
terms to each of the marginal distributions. However, there is one extreme value in
each of the four observed sub-catchment rainfall records and in the observed total
catchment rainfall record that lies – at the very least – on the outer margins of what
could reasonably be expected from a simulation using the Gamma distribution. In this
regard, our proposed model could possibly be improved by replacing the marginal
Gamma distributions with appropriately chosen extreme-value distributions. It is
important to note that the checkerboard copula of maximum entropy can be used just
as effectively with any chosen marginal distribution.
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10. Conclusions and future work

We have compared four models that generate volumetric monthly rainfall for a
catchment in southeast Australia. The first three of these models – the maximum
likelihood Gamma distribution, the Alouini model and the modified Alouini model –
generate almost identical density functions, and each one generates catchment rainfall
that is consistent with the observed data. The Gamma distribution is straightforward
and easily implemented, but the Alouini models are more complicated and require
much more careful management. Thus, for practical simulation, the maximum
likelihood Gamma distribution is preferred. However, none of these models simulates
corresponding sub-catchment rainfall totals for each simulated catchment rainfall.

The fourth model – the checkerboard copula of maximum entropy – is the model
which we believe is the most effective. This model uses a joint probability distribution
for the sub-catchment rainfalls that preserves the marginal distributions and matches
the observed correlations. Each simulation produces separate sub-catchment rainfalls
from which the total catchment rainfall is easily computed. Thus, the output from
this model is much more informative. Although the required numerical calculations
are quite demanding, we have written accurate and efficient Matlab algorithms that
compute the underlying multiply-stochastic hypermatrix and run the simulations on a
standard laptop computer.

There is no theoretical bar to extending a model using the copula of maximum
entropy to more than four dimensions, but it is clear that for m dimensions with n
subdivisions the underlying hypermatrix with nm elements may be extremely large.
While this difficulty will be manifested in any method that requires a high-dimensional
probability density, we nevertheless believe that some serious numerical work is
needed to find efficient calculation and storage routines for the necessary numerical
calculations.

Appendix A. The Kolmogorov–Smirnov (KS) test

The hypothesis that two samples of size n come from the same distribution should
not be rejected at the 0.05 significance level if

Dn = max
k
|F(n)

1 (k) − F(n)
2 (k)| < 1.36

√
2
n
,

where F(n)
i (k) denotes the cumulative distribution function for sample i at point k. All

simulated samples using the checkerboard copula of maximum entropy with n = 79
were checked against the observed samples. In each case, the null hypothesis that the
samples came from the same population could not be rejected. The difference between
the cumulative frequency distribution functions for the observed and simulated
volumetric catchment winter rainfall is shown for [Sim 79 #1], [Sim 79 #2], [Sim
79 #3] and [Sim 79 #4] in Figure 11. Note that in each case, the difference lies within
the interval [−0.216, 0.216] defined by the 0.05 significance level.
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(a) (b)

(c) (d)

Figure 11. Difference between the observed and simulated cumulative frequency distribution functions
for volumetric catchment winter rainfall for [Sim 79 #1], [Sim 79 #2], [Sim 79 #3] and [Sim 79 #4]
showing that in each case the maximum modulus of the difference lies within the interval [−0.216, 0.216]
defined by the 0.05 significance level.

Appendix B. A counter-example

In this section, we show that the matrix C in the Alouini model may fail to
be nonnegative, in which case the model cannot be directly applied. Let {Zk}

3
k=1

be independent real-valued random variables with mean 0 and variance 1. Choose
unit-length vectors wk = [w1k,w2k,w3k]T for each k = 1, 2, 3, and define new random
variables {Xi}

3
i=1 by setting Xi =

∑3
k=1 wikZk for each i = 1, 2, 3. Now E[XiX j] =∑3

k=1 wikw jk = 〈wi,w j〉 = cos θi j. If we define a vector-valued random variable X =

[X1, X2, X3]T , then R = E[XiXT
j ] = [cos θi j]. If we assume that |θi j| ≤ π/2 for all i, j,

then we can define C = [
√

cos θi j]. We will show with a simple counter-example that
C is not necessarily nonnegative. If we let θ12 = 0.1, θ13 = 0.3 and θ23 = 0.2, then

C =


1

√
cos 0.1

√
cos 0.3

√
cos 0.1 1

√
cos 0.2

√
cos 0.3

√
cos 0.2 1
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and, according to Matlab, the eigenvalues are approximately given by

eig(C) =

−0.000033
0.023413
2.976620

 .
Hence, in this case, the matrix C fails to be nonnegative. The selected angles for the
matrices are feasible. In fact, the sum of the two smaller angles equals the largest
angle, so this represents an instance where the random variables are co-planar. The
objective of the example is to show that there are feasible R matrices for which the
corresponding C matrix fails to be nonnegative.

Appendix C. The hypermatrix specifying the checkerboard copula

The elements of the hypermatrix are shown to four decimal places. We recommend
that all calculations should use machine accuracy. The very small elements correspond
to the extreme events and truncation to (say) four decimal places in calculations would
mean that rare events will be excluded from the simulations. We have h = [hpq],
where hpq = [hpqrs] ∈ R6×6 for each p, q = 1, . . . , 6. The elements hpq for p = 1, 2, 3
are given by

h11 =



0.4736 0.1084 0.0022 0.0000 0.0000 0.0000
0.0354 0.0398 0.0039 0.0000 0.0000 0.0000
0.0000 0.0002 0.0001 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h12 =



0.0576 0.0367 0.0020 0.0000 0.0000 0.0000
0.0374 0.1171 0.0320 0.0006 0.0000 0.0000
0.0003 0.0046 0.0062 0.0006 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h13 =



0.0002 0.0004 0.0001 0.0000 0.0000 0.0000
0.0011 0.0099 0.0076 0.0004 0.0000 0.0000
0.0001 0.0034 0.0126 0.0033 0.0001 0.0000
0.0000 0.0000 0.0002 0.0002 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h14 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0001 0.0006 0.0004 0.0000 0.0000
0.0000 0.0000 0.0001 0.0003 0.0001 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,
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h21 =



0.1758 0.0406 0.0008 0.0000 0.0000 0.0000
0.0334 0.0379 0.0038 0.0000 0.0000 0.0000
0.0001 0.0004 0.0002 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h22 =



0.0391 0.0251 0.0014 0.0000 0.0000 0.0000
0.0645 0.2038 0.0562 0.0011 0.0000 0.0000
0.0013 0.0203 0.0275 0.0026 0.0000 0.0000
0.0000 0.0000 0.0001 0.0001 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h23 =



0.0003 0.0004 0.0001 0.0000 0.0000 0.0000
0.0036 0.0316 0.0243 0.0013 0.0000 0.0000
0.0006 0.0273 0.1030 0.0275 0.0005 0.0000
0.0000 0.0002 0.0039 0.0051 0.0005 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h24 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0001 0.0002 0.0000 0.0000 0.0000
0.0000 0.0008 0.0085 0.0063 0.0003 0.0000
0.0000 0.0001 0.0028 0.0102 0.0026 0.0001
0.0000 0.0000 0.0000 0.0001 0.0002 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h25 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0004 0.0003 0.0000
0.0000 0.0000 0.0000 0.0001 0.0002 0.0001
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h31 =



0.0177 0.0041 0.0001 0.0000 0.0000 0.0000
0.0085 0.0098 0.0010 0.0000 0.0000 0.0000
0.0001 0.0003 0.0001 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h32 =



0.0072 0.0047 0.0003 0.0000 0.0000 0.0000
0.0301 0.0962 0.0268 0.0005 0.0000 0.0000
0.0016 0.0243 0.0333 0.0032 0.0000 0.0000
0.0000 0.0001 0.0004 0.0002 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,
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h33 =



0.0001 0.0002 0.0000 0.0000 0.0000 0.0000
0.0031 0.0272 0.0211 0.0012 0.0000 0.0000
0.0014 0.0598 0.2278 0.0613 0.0012 0.0000
0.0000 0.0012 0.0219 0.0289 0.0027 0.0000
0.0000 0.0000 0.0000 0.0001 0.0001 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h34 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0002 0.0004 0.0001 0.0000 0.0000
0.0000 0.0032 0.0343 0.0257 0.0014 0.0000
0.0000 0.0005 0.0286 0.1052 0.0274 0.0006
0.0000 0.0000 0.0002 0.0038 0.0049 0.0005
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

h35 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0001 0.0002 0.0000 0.0000
0.0000 0.0000 0.0008 0.0084 0.0061 0.0004
0.0000 0.0000 0.0001 0.0027 0.0095 0.0029
0.0000 0.0000 0.0000 0.0000 0.0002 0.0003


,

h36 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0001 0.0005 0.0005
0.0000 0.0000 0.0000 0.0000 0.0001 0.0004


with h15 = h16 = h26 = [0.0000]. For p = 4, 5, 6, the elements of hpq can be found
from the symmetry condition, hpqrs = htuvw, where p + t = 7, q + u = 7, r + v = 7 and
s + w = 7.
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