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Abstract

A E-group is an abelian group on which is given a family of infinite sums having properties sug-
gested by, but weaker than, those which hold for absolutely convergent series of real or complex
numbers. Two closely related questions are considered. The first concerns the construction of
a E-group from an arbitrary abelian group on which certain series are given to be summable,
certain of these series being required to sum to zero. This leads to a E-theoretic construction
of R from Q and in general of the completion of an arbitrary metrizable abelian group (with
the associated unconditional sums) from that group. The second question is whether, in a
given E-group, the values of the infinite sums may be determined solely from a knowledge of
which series are summable. Such a E-group is said to be relatively free and it is shown that
all metrizable abelian groups are relatively free.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 K 99.

1. Introduction

A E-group is an abelian group on which is given a collection of infinite sums
satisfying some natural conditions (see §3); the notion is due to Wylie [6]. A
basic example of a E-group is the additive group R of real numbers together with
all the absolutely convergent series on R and their sums. Two questions suggest
themselves:

I. Can R as a S-group be constructed directly from the additive group Q of
rational numbers together with appropriate additional data?

The research of the second author was supported by NSERC Grant A-8054.
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[2] E-groups 9

II. Why is it t h a t some (all?) infinite sums in R necessarily have the value
they do have by vir tue of algebraic manipula t ions alone? (For example if s =
h + \ + \ + ' '" t h e n 2s = 1 + § + ± + • • • = 1 + s and so s = 1.)

These and related questions were made precise and answered in [2, 4.5], within
the context of E-groups in general. Our intention is to give an account of this
work and of various further developments concerning the ideas involved.

Sections 2 and 3 are mainly devoted to introducing the concepts we shall use.
In §3, the classes of complete E-groups and regular E-groups are defined and the
properties of those E-groups given by unconditional sununability in Hausdorff
topological abelian groups are reviewed.

The work of the paper starts properly with Section 4, in which the "X1-
construction" is described. The idea here is that, given an abelian group A
together with a suitable set S of series on A and subset K of S, one attempts
to construct from these ingredients a E-group in which the series in 5 have
sums, with value 0 if the series are in K. Besides producing R from Q, and
more generally the completion of any metrizable abelian group from that group,
the T-construction leads to a proof of the fact that every regular S-group is
embeddable in a complete regular E-group.

The second of the two questions posed above gives rise to the subject-matter
of Section 5. We wish to consider those E-groups in which the value of each sum
is determined algebraically, in some reasonable sense. The class of relatively free
E-groups is defined and is shown to be closed under countable products and to
contain all metrizable abelian groups; this latter fact provides an answer to the
second question.

We are grateful to Isidore Fleischer for many helpful discussions on the subject
matter of this paper, in particular for suggesting to us the present definition of a
E-group (this was prior to our learning of Wylie's work) and for making available
to us a preliminary version and a preprint of [3].

2. Series, s-monoids, sums, and s-kernels

To start with, our idea of a series on an abelian group A is simply that of
a family (en: i € /) of elements of A. However, since we are only going to be
considering the unordered sum (in some sense) of such a family, the indexing
of the terms is irrelevant and we need only know the number of times a given
element of A occurs as a term in the series; moreover, occurrences of 0 will not
affect the sum and can be suppressed, or inserted, at will. We are thus led
to define a series on A as an equivalence class of families of elements of A, two
families being equivalent if they differ either in their indexing (via some bijection
between the index sets involved) and/or terms=0. We could equivalently define
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10 Don Brunker and Denis Higgs [3]

a series on A as a function N from A \ {0} to the class of cardinals, where N(a)
gives the number of times a occurs in the series. This approach was used in
[2, 4.5] (for the case when every N(a) is finite) and with it, series are the same
as the elements of Rado's cardinal module 0 [5] except for the restriction to
A \ {0} as domain. Nevertheless in practise the picture of series as families is
usually more suggestive and easier to work with, though then one does have to
check that definitions phrased in terms of families apply unambiguously to the
associated series (these checks are trivial and will not be mentioned explicitly).

The following terminology and notation will be used in connection with series
a, 0, 7, etc. on A: The cardinality of a is the number of (non-zero) terms of
a; 0 denotes the unique series of cardinality 0; (a) denotes the singleton series
with a as its only term; a + 0 denotes the series obtained by concatenating a
and 0; 0 i 6 / a* denotes the series obtained by concatenating the a*, i e / ; na
denotes the series obtained by concatenating K copies of a, where K is a cardinal
(we only need this for K < u>); —a denotes the series obtained by replacing each
term a of a with —a; a — 0 denotes a + (—0); if a = (a*: t £ /) and F is a
finite subset of / then a(F) denotes E^^a*; 0 is a subseries of a if a = 0 + T
for some 7; /? is a contraction of a, or a contracts to 0, if a = (a*: i € I) and
0 = (a(Ij): j € J) for some partition (/,•: j € J) of / into finite sets Ij\ 0 is
a subcontraction of a if 0 is a subseries of a contraction of a, equivalently, if 0
is a contraction of a subseries of a; Ser(A) denotes the class of all series on A;
Fin(A) denotes the set of all finite series on A; if / : A —> B is a function from
A to an abelian group B such that /(0) = 0 and a is a series on A then f(a)
denotes the series on B obtained by replacing each term a of a with /(a).

The above notions enjoy quite a number of very easily verified properties
which we shall use without explicit mention, remarking here only that, were it
not a proper class, Ser(A) would be a commutative monoid under the above +,
with 0 as identity element. In any case, we may speak of the submonoids of
Ser(v4), it being understood that these are sets.

An s-monoid on A is a submonoid S of Ser(.A) which contains Fin(j4) and is
closed under minus and contraction. For example, Fin(i4) is itself an s-monoid
on A, being the smallest such. The following fact is simple but useful.

(2.1) / / S is an s-monoid on A and a + 0 and 0 are in S then a is in S.

PROOF, a + 0 — 0 is in S and contracts to a.

An s-monoid S is said to be subseries-closed if all subseries of the series in S
are themselves in 5. If S is any s-monoid then the set 5 of all subseries of the
series in S is easily seen to be the smallest subseries-closed s-monoid containing
S.

(2.2) Let S be an s-monoid on A.
(1) If a is in S and a contracts to some 0 in S then a is in S.
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(2) a is in S if and only if a — a is in S.

PROOF. For (1), let a + a' be in S; then a + a' — 0 is in S and contracts to
a'; hence a' is in S so that a is in S by (2.1). (2) follows from (1) since a — a
contracts to 0 and a is a subseries of a — a.

A sum on A is a monoid morphism E: S —• B, where S is an s-monoid on A
and B is an abelian group, such that if a in S contracts to /? then E(a) = E(/?).
For a = (dj: i € /) in S, E(a) is often written as Ejg/a*, or simply as EjOj.

A notion closely related to that of a sum is the following. If S is an s-monoid
on A then an s-kernel in S is a submonoid K of S which is closed under minus
and contraction and contains a — a for all a in S. It is clear that if E: S -* B
is a sum on A then the kernel kerE of S, namely {a G S: S(a) = 0}, is an
s-kernel in S. Conversely, every s-kernel K in S is the kernel of a sum: as
is easily checked, the condition a — /3 € K defines a monoid congruence on S
for which the corresponding quotient monoid S/K is an abelian group and the
natural map [-] from S to S/K is a sum on A with K as its kernel.

The set of s-kernels in S is closed under intersection and in particular there
is a smallest s-kernel in 5, which we denote by fco(S). ko(S) will be studied in
detail in §5. The following facts are easily verified.

(2.3)(1) If K is an s-kernel in S and a in S contracts to some 0 in K then
a is in K.

(2) An s-kernel in S is also an s-kernel in S.
(3) ko(S) = ko(S).

We remark that the sum [—]: 5 —> S/ko{S) is a universal sum on A with
domain 5 in the sense that if / : S/ko(S) - > 5 i s a group morphism, where B is
abelian, then /[—]: S —> B is a sum and every sum S: S —<• B arises in this way
from a unique such / .

An s-kernel K in an s-monoid 5 is said to be ®- closed in S if, whenever «i
is in K for all i and 0 j c*j is in S, then 0 i oti is in K.

3. E-groups

A Ti-group is a triple (̂ 4, S, E) consisting of an abelian group A, an s-monoid
S on A, and a sum E: S —> A such that £((a)) = a for all a in A. This notion
of E-group is equivalent to Wylie's notion of a congregation [6] and is somewhat
more general than that used in [2] and [4], which consider only those S-groups
in the present sense which are complete and regular, as defined below.

A morphism from a E-group (A, S, E) to a E-group (B, T, E) is a group mor-
phism / : A^>B such that, for all a in 5, / (a ) is in T and £(/(<*)) = /(£(<*)).
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12 Don Brunker and Denis Higgs [5]

A morphism / from (A, S, E) to (B, T, E) is an embedding if a is in S for ev-
ery series a on A such that f(a) is in T and S( / (a ) ) is in f{A); such an / is
necessarily injective for if / (a ) = 0 then /(w(a)) is in T with E(/(w(a))) = 0
so that u(a) is in S and hence a — 0 since w(a) — w(a) contracts to (a) as well
as to 0. The following notion is essentially equivalent to that of an embedding:
if (B, T, E) is a E-group and A is a subgroup of B then the relativization of
(B, T, E) to A is the E-group (A, S, E) where 5 consists of the series on A which
are in T and have their sums in A, and E is the restriction to S of the E on T.
Note that a series on A is in S if and only if it is in T (use (2.2)(2)).

The product Y\i(Ai, Si,H) of a family of S-groups (Ai,Si,E) is the E-group
(Ili ^») S, E) where a series a on ]\i M is in S if and only if ?Ti(a) is in S, and
7Tj(E(a)) = E(7Tj(a)) for all i (TTJ is the projection from Yli^i to Ai). In this
case, a series a on fli -^t is in S if and only if 7Tj(a) is in Si for all t (use (2.2)(2)
again).

A E-group (A, S, E) is said to be: complete if 5 is subseries-closed; regular if,
whenever a* is in S for all i and © i a* is in 5 , then (E(aj): i € / ) is in S and
EiE(cti) = S ( ® i a*); and discrete if 5 = Fin(yl). The art'ty of (A,S,E) is the
supremum of the cardinalities of the series in S. If {B, T, E) is a E-group then
a subgroup A of B is said to be E-closed (in B) if E(a) is in A for every series
a on A which is in T. The following result is straightforward.

(3.1) (1) A relativization of a complete T,-group is complete if and only if the
subgroup involved is E-c/oaed. Relativizations of regular H-groups are regular.

(2) Products of complete H-groups are complete, and likewise for regular E-
groups.

If (.4,5, E) is a regular E-group then ker E is clearly ®-closed in S, but we
can say somewhat more.

(3.2) In every regular H-group (A,S,H), kerE is ^-closed in S.

PROOF. Let a* be in kerE for all i in / and let ©<«* be in S, so that
©j«i + ©.,(&,) is in S for some series (&.,: j e J) - Qjibj). By regu-
larity, (E(ai): i e I) + (E((6j)): j G J) = ©.,(6j) is in S and has sum

© » + ©,%))• Hence ®« a « i s in s (by (2-1) (© 0
The following result is proved by means of a similar argument.

(3.3) / / (A, S, S) is o regular T.-group and if ai is in S for all i in I and © i aj
is in S then (E(c*i): i € I) is in S.

To see that a E-group (A, S, E) with ker S ©-closed in S is not necessarily
regular, consider the S-group with A = R, S= the set of all absolutely convergent
series on R with all but finitely many terms in Q, and E = the usual E. Then
(A,S,E) is complete and kerE is ©-closed in S = S. Regularity fails, however,
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for if we split up the series ( 2 ~ n ! : n G u/) in S into infinitely many infinite
subseries then each subseries has an irrational sum so t h a t the series of these
sums is not in S.

Let A be a Hausdorff topological abelian group. Then we may associate with
A the E-group (A, S, E) in which S = the set of all unconditionally summable
series on A and S = the uncondit ional sum (for a discussion of uncondit ional
sums, see Bourbaki [1, Chap te r III, §5]). The following two results review some
of the properties of the E-groups which arise in this way.

(3.4) If A is a Hausdorff topological abelian group then the associated T,-group
(A, S, E) is regular and if A is complete then (A, S, E) is complete. If B is a
Hausdorff topological abelian group and A is a subgroup of B with the relative
topology then the H-group associated with A is the relativization to A of the
E-group associated with B. If Ai, i in I, is a family of Hausdorff topological
abelian groups and A is their product (with the product topology) then the E-
group associated with A is the product of the H-groups associated with the Ai.

PROOF. The proof of Theorem 2 in [1, Chapter III, §5] gives regularity and
the statement about relativization is obvious. The remaining two statements are
Propositions 2 and 4 respectively in [1, Chapter III, §5].

(3.5) Let A be a metrizable abelian group and let (A, S, E) be the associated
T.-group. Then

(1) (A, S, E) is of countable arity,
(2) (^4,5, E) is complete if and only if A is complete,
(3) if (sn: n € ui) is a Cauchy sequence in A then there exist no < n% < n.2 <

• • • such that (snic+1 — snk: k e w) is in S, and if sn —» 0 then the rik can be
chosen so that (snk: k € w) is in S.

PROOF. (1) is the Corollary to Proposition 1 in [1, Chapter III, §5], one uses
the first part of (3) for the "only if" in (2), and (3) itself is easy once one takes
an invariant metric for A (such exists by Proposition 2 in [1, Chapter IX, §3])
and chooses the n/t so that the relevant sequences tend to 0 sufficiently rapidly.

It is not true in general that if A is a Hausdorff topological abelian group
such that the associated E-group is complete then A is complete. The following
proposition will make it easy to give a counterexample.

(3.6) Let A be a Hausdorff topological abelian group in which each countable
intersection of neighbourhoods of 0 is again a neighbourhood of 0. Then the
associated Ti-group is discrete.

PROOF. Suppose that some infinite series (a^: i € / ) of non-zero terms is
unconditionally summable in A, where without loss of generality we may take
/ to be countably infinite, and for each i in I let Ni be a neighbourhood of 0
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14 Don Brunker and Denis Higgs [7]

not containing Oj. Then f\ TVj is a neighbourhood of 0 containing none of the
a.i contrary to Proposition 1 of [1, Chapter III, §5].

Since discrete E-groups are trivially complete, to obtain our counterexample
we need only find an incomplete topological group satisfying the hypothesis of
(3.6), and the following is such: let A be the subgroup of ZUl consisting of
the elements of finite support (countable support would do as well), order A
lexicographically, and give it the order topology.

4. Constructions of E-groups

A triple (A, S, K) with A an abelian group, S an s-monoid on A, and K
an s-kernel in S will be called an ASK. Given an ASK (A,S,K), we want to
construct from it a E-group in which the series in S become summable, to 0
if they are in K. As in §2, let S/K be the abelian group {[a]: a G S}, where
[a] = {/? € S: a — 0 E K}, and let T be the s-monoid on S/K consisting of
all series of the form ([oti]: i e /) where the a* and ©j oti are in S; we wish to
define a sum E: T -> S/K on S/K by putting ±i[ati] = [©< a*].

(4.1) Let (A,S,K) be an ASK and suppose that K is (^-closed in S. Then
E: T -> S/K is well defined and the resulting (S/K, T, E) is a E-group.

PROOF. It is easily verified that E is well-defined, that it is a monoid
morphism, and that E(([a])) = [a] for all [a] in T. Let ([en]: i € /) be
in T, where the ai are as above, and let (/,-: j € J) be a partition of /
into finite sets, so that ([<*<]: i € /) contracts to (Eigj^a-j]: j € J). Then
E,Ei€/y[<*i] = [ © j © ^ . ^ ] = [©<«;] = E ^ ] , and thus (S/K,T,t) is a
E-group.

If (A, S, K) is an ASK in which K is ©-closed in S, we denote the E-group
(S/K,T,il) by T(A, S, K). Note that if in addition S is subseries-closed then
so is T, so that T(A, S, K) is a complete E-group. In order for T(A, S, K) to be
regular, a slight strengthening of the condition that K is ©-closed in S appears
to be necessary.

(4.2) // (A, S, K) is an ASK with K ^-closed in S then the 1,-group
T(A, S, K) is regular.

PROOF. Let (A,S,K) be as stated. We first obtain a subsidiary result,
namely that if a{ - fa is in K for all i in 7, © i «j is in 5, and ©j & is in 5,
then ©j/?i is in S. The hypothesis here implies that ©^(a, - pi) = ©j«t -
©i/Sj is in S, hence also in if C 5, so that ©;& is in S by (2.1). Now
write T(A,S,K) = (S/K,T,±) and let £,, j in J, and ©.,. (,- be in T; we
want to show that (E(£,): j G J) is in T with sum=E(©J £,-). We may write
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fy = ([a,-]; { e Ij) and © £, = ([ft]: i € I) where / is the disjoint union of the

Ij, aj — ft is in K for all i in / , © i 6 / a* is in S for all j in J, and © i € / ft
is in S. Then © i € j A is in 5 and hence also in S by what we have already
proved. It follows that £(£,•) = [©i6 /> ft] and since © y © i e / j ft = ©, ft is in
5, (£(&): j e J) is in T with mim=[©, ft] = £(©,- fc).

Now let (A, 5, £) be any regular E-group. Then (A, S,ker£) is an ASK in
which, by (3.2), ker£ is ©-closed in S and so T(A, 5,ker£) may be formed.

(4.4) For any regular T,-group (A,S, E), the map <j>: A —> 5 / k e r £ defined
by <j>(a) = [(a)} is an embedding of {A,S,T.) into the complete regular H-group

, kerE).

PROOF. We have T{A, S.kerE) = (S/ker £,T, £) as above. To see that <j> is
a £-group morphism, let a = (a<: i e /) be in S. Then <j>(a) = ([(a^)]: i G I) is
in T since each (OJ) and ©^(ai) = a are in S; moreover £(0(a)) = £i[(oj)] =
(©i(a«)] = N = <£(£(")) ( t h e las* equality holds since a - (£(«)) is in kerE).
To see that 0 is an embedding, let a = (OJ : i € /) be a series on .4 such that
<j>(a) is in T with £(</>(<*)) = </>(a) for some a in A. Then there exist series «i
in S with © t â  also in 5 such that each c*i — (a,), and also ©j a* — (a), are
in ker £, from which it follows that the a* and © i aj are actually in S. Since
£((**) = Oj for all i, the regularity of (.4, S, E) shows that a = (a*: f € /) is in
5.

We remark that the map 4> in this result gives an isomorphism of (A, S, E)
onto T(,4,S, ker £).

If (.4, S, E) is a regular E-group then T(A, S, ker S) is its regular completion,
denoted by RC{A, S, E). The regular completion of a regular E-group was orig-
inally constructed by Fleischer [3]; it may be described intrinsically as follows.

(4.5) Let f be an embedding of a regular H-group (A, S, E) into a complete
regular H-group (B, T, E) and suppose that for all (bi: i € /) in T there exist
series cti on A such that © i /(a*) is in T and E(/(aj)) = 6, for all i. Then
(B,T,E) is isomorphic to RC(A,S,Z).

PROOF. Write RC{A,S,E) as (5/ker£,T' ,£) and define g: S/kerE -> B
by g{[a}) = £(/(a)) (since a is in S, f{a) is in f = T). To see that g is a E-group
morphism, let ([aj]: i € I) be in T", where the a» are as in the definition of the
T-construction. Then the /(aj) and © i /(a,) = /(©^ cti) are in T so that, by
the regularity of (B, T, E), (£(/(«<)): i G /) is in T with sum = E(©i /(a*)) =
£(/(©< <*i))> that is, {g(\oti]): i € I) is in T with sum = ^ ( ^ a*]) = ff(E<[tti])
as required, g is injective for if £(/(a)) = 0 then the fact that / is an embedding
shows that a is in kerE. Also g is surjective: if b is in B then (b) is in T and
hence there exists a series a on A such that f(a) is in T and E(/(a)) = 6; since
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16 Don Brunker and Denis Higgs [9]

E ( / ( a — a)) = 0, a — a is in S and so a is in 5 , whence g([a)) is defined and
equals E( / (a ) ) = b. The fact that every sum in (B,T, E) is the image under g
of some sum in RC(A, S, E) is shown similarly.

A particular case of this result is the following.

(4.6) Let Abe a metrizable abelian group and let B be its completion. Then the
H-group associated with B is isomorphic to the regular completion of the E-group
associated with A.

PROOF. By a slight extension of the argument suggested for (3.5)(3), it can
be seen that every sum in B is representable as an iterated sum of elements of
A, as the hypothesis of (4.5) requires.

The example given at the end of §3 shows that (4.6) does not hold for all
Hausdorff topological abelian groups.

5. Relatively free E-groups

A E-group (A, S, E) will be said to be relatively free if ker E = ko(S) (this is
stronger than the similar property introduced in [2, 4.5.14]). In order to study
relatively free E-groups, an explicit description of the series in fco(S) is desirable
and condition (v) in (5.6) below gives a useful criterion. The following notions
and lemmas are needed.

By a series of partial sums (SPS) of a series a on an abelian group A, we
mean a series a on A obtained as follows: let a = (ai: i € / ) , let (/_,•: j € J ) be a
partition of / into countably infinite sets, and for each j in J let (Fjtk: k € w) be a
strictly increasing sequence of finite subsets of /_,- with Ij as their union; then put
a = (a{Fjtk) '• J' G J, k G u). In such a situation, we say that (Fj^: j e J,k 6 CJ)
is an ascension to, and that o is based on, the partition (Ij: j € J).

(5.1) If a is an SPS of a then a — a and a. have a common contraction.

PROOF. Let a be as above; then (a(Fjt0): j e J) + {a(Fj,k+i) - a(Fj,k) • j G
J,k € w) is a common contraction of a — a and a.

(5.2) Let an SPS a of a = (ai: i G / ) be based on the partition (Ij: j 6 J)
of I and let (I'r: r G R) be a coarser partition of I into countably infinite sets.
Then a contracts to an SPS of a based on (I'r: r € R).

PROOF. Let a be an above and for each r in R let jr{0), jr(l),... be an

enumeration of the j's in J for which Ij C I'r. Then the contraction

(a(Fjr(o),o),a{Fjr(O),i) + a{Fjr{1)i0),

a(FM0)t2) + a(FjrWtl) + a(Fjr{2)<0),... : r € R)

of a is as required.
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(5.3) Let an SPS a ofa = (OJ : i G / ) be based on the partition (Ij: j G J) of
I and let (Gjtk '• j € J,k G u>) be any ascension to (Ij: j G J). Then there exists
an ascension (G'jk: j G J, k G w) to (Ij: j G J) contained in (Gj,jt: j G J,k G w)
suc/i </ia< </ie corresponding SPS T of a is a subcontraction of a + a.

PROOF. Let a be as above again and let (Fj fc: j , k) and (G'}k: j , k) be
ascensions to {Ij: j) contained in (Fj<k: j , k) and (Gy,t: j , k) respectively such
that F'JQ C G'j0 C F j j c G'}-^ C • • • for all j in J. Then {G'jk: j,k) is as
stated since r = (a(G'J-)fc): j , A;) = (a(Fj k) + a(G'jk \ F'jk): j , k) is a contraction
of (a(Fjk): j,k) + (a(G'jk \F'jk): j,k), the first series here being a subseries of
a and the second being a subcontraction of a.

(5.4) / / a is an SPS of a and a contracts to /3 then some subcontraction of
a + a is an SPS of 0.

PROOF. Let a be indexed by / . By (5.2) we may without loss of generality
take a to be based on a partition (Ij: j) of / which is coarser than the partition
of / into finite sets giving rise to the contraction of a to /?. Let (Gj<k: j , k) be an
ascension to (Ij: j) constructed by taking successive finite unions within each Ij
of these finite sets and let r be as in (5.3); then r is an SPS of /? as well as of a.

(5.5) / / /? contracts to a and to 0 then some subcontraction of /? is an SPS
of a.

PROOF. Since p contracts to 0 if and only if 0 is an SPS of /?, this is a
particular case of (5.4).

(5.6) Let S be an s-monoid on an abelian group A and let a be in S. Then
the following conditions are equivalent:

(i) a is in ko(S),
(ii) E(a) = 0 for every sum E on A with domain S,
(iii) a is a contraction of (3 — /3 for some 0 in S,
(iv) some (3 in S contracts to a and to 0,
(v) some SPS of a is in S.

PROOF, (i) and (ii) are equivalent by what was said in §2 about sums and
s-kernels. The set of a in S which satisfy (iii) is easily verified to be an s-kernel
in 5, and thus (i) implies (iii). (iii) clearly implies (iv), and (iv) implies (v) by
(5.5). Finally, (v) implies (i): if IT is an SPS of a in S then a — a is in 5 by
(2.2)(2) and is thus in Jfco(5), from which it follows by (5.1) and (2.3)(1) that a
is in fco(S).

The equivalence of (i) and (iv) here leads to the observation that for a, /? in
S, a — (3 is in ko(S) if and only if there exists 7 in S which contracts to both
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a and /?. (iii) may be pictured as saying that a can be written as a sum which
"telescopes" to 0.

(5.7) Relativizations of relatively free Y,-groups are relatively free.

PROOF. Let (A, S, E) be a relativization of a relatively free E-group (B, T, E)
and let a in S have E(a) = 0. Then a is in fco(T) and hence some S P S a of a
is in T. But a is a series on A and so a is in S. Thus a is in fco(S).

We next show that countable products of relatively free E-groups are relatively
free and for this we need a further lemma on SPS.

(5.8) Let a be a series on a countable product A = Yln€u An of abelian groups
and for each n let an be an SPS of Try,(a). Then there exists an SPS a of a
such that for each n, Trn(a) is a subcontraction of an + (n + l)7rn(a).

PROOF. Let a be indexed by / . Since the number of An is countable and
likewise for each set in any partition on which an SPS is based, (5.2) entitles us
to suppose without loss of generality that there is a single partition (/ , : j e J)
of / on which every an is based. Let {Gjtk- j,k) be the ascension (to (/,: j))
which produces the SPS a0 of 7ro(a). By (5.3), {Gjtk: j , k) contains an ascension
(G'jk: j , k) such that the corresponding SPS, r\ say, of wi (a) is a subcontraction
of o\ + 7Ti (a). Then by (5.3) again, {G'jk: j , k) contains an ascension {G"k: j , k)
giving rise to an SPS r2 of ^ ( a ) which is a subcontraction of o<i + ^ ( a ) . Con-
tinuing in this way, we obtain a descending sequence of ascensions ( G ^ : j , k) to
(Ij: j) such that for each n the corresponding SPS rn of itn(a) is a subcontrac-
tion of an +7rn(a). Then (Gj k : j , k) will be an ascension to (Ij: j) such that for

each n the corresponding SPS of irn(a) differs in at most its terms 7rn(a(GJ fc')),
j in J, k < n, from a subseries of rn. The result follows on taking a to be the
SPS of a corresponding to {Gjk : j , k).

(5.9) Countable products of relatively free H-groups are relatively free.

PROOF. Let (A, S, E) be the product ]ln(^»> &n, E) of countably many rela-
tively free E-groups and let a in S have E(a) = 0. Then for each n, E(7rn(a)) = 0
and by (5.6) some SPS an of 7rn(a) is in S n . Let a be as in (5.8); then each
7rn(er) is in Sn and hence a is in S. Thus a is in ko(S).

This result has a corollary which we shall need later on in discussing an
example.

(5.10) Let (Ai,Si, E), i in I, be a family of relatively free H-groups of countable
arity, let A be the subgroup of Yii A{ consisting of the elements of countable sup-
port, and let (A,S,E) be the relativization to A ofH^Ai^i, E). Then ( J 4 , S , E )

is relatively free.
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PROOF. Let a in S have £ ( a ) = 0 and let (/,•: j € J) be a part i t ion of / into

countable sets such tha t the support of each te rm of a is contained in some Ij

(the existence of such a part i t ion depends upon bo th of the above countability

assumptions). Then a = ® ^ otj where atj consists of the terms of a whose

supports are contained in Ij. Clearly £ ( « , ) = 0 for each j and since we may

regard a , as a series on Y\i€I Ai, (5.9) shows t ha t there exists an SPS Oj of a,-

in S. Then a = 0 <TJ will be an SPS of a in S, and so a is in ko{S).

We now obtain various results on countable series and on E-groups of count-

able arity. First we deal with the very special case of a singleton series.

(5.11) A singleton series (a) has only one SPS, namely w(a). For any s-

monoid S on A, (a) is in ko{S) if and only ifw(a) is in S.

PROOF. The first s ta tement is evident from the definition of an SPS. The

second follows from (5.6) and the fact t ha t u(a)—u(a) contracts to w(o), showing

tha t if w(a) is in S then it is in 5 .

Define a classical SPS of a countable series a = ( a n : n e w) to be an SPS

of a of the form (snic: k € w) where no < n\ < n-i < • • • and sn = ao H \-an.

(This notion definitely involves the ordering ao, a i , 0 2 , . . . of the terms of a,

which is not the case for SPS in general.)

(5.12) Let a = ( a n : nEui) be a countable series on A.

(1) If a is an SPS of a then some subcontraction ofa + a is a classical SPS

of a.
(2) For any s-monoid S on A, a is in ko(S) if and only if a is in S and some

classical SPS of a is in S.

PROOF. In (1), (5.2) shows that a contracts to an SPS a' of a based on the
partition of u into one part and the conclusion of (1) is obtained by applying
(5.3) to a' and the ascension ({n: n < k}: k € OJ). (2) follows from (5.6) and
(1).

(5.13) Let (A,S, S) be a E-group of countable arity. Then the following con-
ditions are equivalent:

(i) (A, S, E) is relatively free,
(ii) for all a in kerE, some classical SPS of a is in S,
(iii) for all (an: n € w) in S, there exist no < ni < n? < ... such that

(En>n/kan: k E w) is in S.

PROOF, (i) and (ii) are equivalent by (5.12)(2). Suppose that (ii) holds and
that a = (an: n € w) is in S with E(a) = s say. Then (—s) + a is in kerE and
by (ii) there exist no < "1 < "2 < • • • such that {—s + snk: k € ui) is in S, which
is (iii). (iii) implies (ii) similarly.
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(5.14) The T,-group associated with an arbitrary metrizable abelian group is
relatively free.

PROOF. We have countable arity from (3.5)(1), and (5.13)(ii) holds by virtue
of the second statement in (3.5) (3).

Let A be a metrizable abelian group, let B be its completion, and let (.A, S, E)
and (B, T, E) be the associated E-groups. Then, combining the preceding result
with (4.6), we see that (B,T,E) is isomorphic to T{A,S,ko(S)). This shows
in particular that we may construct R with its usual S-structure by forming
T(Q,S", ko{S')) where S' consists of all series (an: n 6 u) on Q for which the
partial sums of (\an\: n e w ) are bounded.

(5.15) Let (A, S, S) be a regular T,-group of countable arity such that for every
series (an: n € w) in S there exists natural numbers mn, n in w, such that
mn —> oo and 0 n w n ( a n ) is in S. Then (A, S, E) is relatively free.

PROOF. We may assume without loss of generality that mn takes the values
0,1,2,.. . Successively, With possible repetitions. Let n* denote the largest n
for which mn = k; then © n m n ( a n ) = ©fc(an: n > n*). Since this series is
given to be in S and each (an: n > n^) is in S, (En>flfcan: k E a>) is in S by
(3.3), and the conclusion follows by (5.13).

A E-group (4, S, E) is denned to be adic if, for all (a*: i € /) in S and all
families (mj: i € I) of natural numbers, © ^ { ( O J ) is also in S. The following
result is immediate from (5.15).

(5.16) Every regular adic H-group of countable arity is relatively free.

In conclusion, we describe an example which will show, amongst other things,
that in the preceding result the hypothesis of countable arity cannot be omit-
ted. Let (B, T, E) be the E-group ZWl with the product E-structure, each copy
of Z having the discrete E-structure, and let (A, S, E) be the relativization of
(B, T, E) to the subgroup A of B consisting of the elements of countable support.
(B, T, E) and (A, S, E) both have the same arity, namely u>i, and the facts stated
in (3.4) show that they are the E-groups associated respectively with the two
topological groups: B with the product topology (the factors Z being discrete)
and A with the relative topology, hence that both are regular, with {B,T,E)
being complete—in fact it is clearly adic. (A, S, E) is not complete and indeed
we easily see from (4.5) that its regular completion is isomorphic to (B, T, E).
(5.10) shows that (A, S, S) is relatively free, but (B,T, E) is not relatively free.
To see this let e and ev, v in wi, be the elements of B defined by 7rM(e) = 1 and
Tr^e,,) = 6^ for all /i, and let a = (e) — {ev: v G wi); then a is in ker E but it
is not in fco(T). For let a be any SPS of a. Then the term e of a is coupled,
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via the part i t ion on which a is based, with only countably many of the — ev in

a and thus if we take —eVo to be distinct from each of these — eu, TT,,0(<7) will

have infinitely many non-zero terms. It follows tha t a cannot be in T and so a is

not in ko{T). (It can be shown tha t ko(T) consists of all series in T of the form

0 ^ oti with each on countable and in ker E. Hence fco(T) is 0 - c l o s e d in T and

so (B,T,E) fails to be relatively free even in the weaker sense of [2, 4.5.14].)

This example shows tha t an uncountable product of relatively free S-groups

is not necessarily relatively free (in fact the argument shows tha t no product

with uncountably many non-trivial factors is relatively free) and likewise for the

E-group associated with an arbi trary Hausdorff topological abelian group, for a

regular adic E-group of uncountable arity, and for the regular completion of a

relatively free regular E-group.
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