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Summary

Whole genome data are allowing the estimation of population genetic parameters with an accuracy
not imagined 50 years ago. Variation in these parameters along the genome is being found
empirically where once only approximate theoretical values were available. Along with increased
information, however, has come the issue of multiple testing and the realization that high values of
the coefficients of variation of quantities such as relatedness measures may make it difficult to draw
inferences. This review concentrates on measures of allelic association within and between
individuals and within and between populations.

1. Introduction

This journal started at a time when statistical genetics
was about to undergo a revolution brought about by
the generation of isozyme data with the new tech-
nology of electrophoresis. Almost overnight it became
possible to score dozens of genetic markers in samples
of hundreds of individuals. These new data called
into question the predictions about levels of genetic
variation expected under theories developed over
the previous 50 years. A fierce debate between the
‘neutralists ’ and ‘selectionists ’ pitted population
geneticists against each other, with each side invoking
statistical analyses of quantities such as heterozygo-
sity, inbreeding coefficients, linkage disequilibrium
and population structure parameters. Publications
reporting isozyme data have now almost disappeared,
as have papers arguing about the role of selection
since there is a realization that both natural selection
and random processes have a role in evolution. As
the journal celebrates its 50th anniversary another
revolution is about to take place – one leading to
whole genome sequence data on large numbers of
individuals (The 1000 Genomes Consortium, 2010).
There does not appear to be any danger of statistical
geneticists falling out in the 2010s as they did in the

1960s but surely major shifts in our understanding of
evolution will come.

In this discussion we will concentrate on the char-
acterization of allelic associations in the era that
has provided whole-genome single nucleotide poly-
morphism (SNP) datasets, and we will be guided by
the experience of our colleagues and ourselves with
data collected for genome-wide association studies
(GWAS) (Laurie et al., 2010). With a million data
points per individual we and many other investigators
in 2010 are uncovering properties of genomes and
populations we could not begin to address in 1960.
We have data that give us empirical values where once
we had to take limits in mathematical expressions. We
have the data but maybe not the statistical tools to
exploit them fully.

2. The data

Human geneticists now have array technology that
allows the rapid generation of up to 2.5 million SNP
genotypes per individual and twice that number will
soon be possible. The decisions as to which SNPs of
the over 15 million that have been discovered to in-
clude on commercial genotyping platforms have been
based on uniformity of coverage in terms of physical
distances along the genome or in terms of linkage
disequilibrium between pairs of markers. In either
case, early concerns of bias resulting from the
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discovery of SNPs in small samples of people of
European ancestry, thereby missing variants in other
populations, are diminishing with the use of sequen-
cing to discover new variants over many populations
in activities such as the 1000-genomes project (http://
www.1000genomes.org/).

The amount of SNP data being reported in the lit-
erature is substantial. A recent publication on human
height reported results from 183 727 individuals with
genotype data observed or imputed for 2 834 208
SNPs (Allen et al., 2010). An online catalogue of
GWAS results (http://wwww.genome.gov/gwastudies)
lists over 700 publications and results from over one
million study participants.

3. Allelic associations

(i) Hardy–Weinberg testing

The first measure of association considered by popu-
lation geneticists is that between the two alleles a
diploid individual receives at each autosomal locus
from its parents. The realization that there should be
no such association in randommating populations for
neutral genes goes back almost to the rediscovery of
Mendel’s laws (Hardy, 1908; Weinberg, 1908). In the
biochemical genetic era, examining new data sets for
possible departures from Hardy–Weinberg Equili-
brium (HWE) was one of the ways in which evidence
for the action of natural selection was sought. In the
current genome era, Hardy–Weinberg testing is still a
frequent activity but the motivation is more of seeking
evidence of problems with data. Consistency with the
Hardy–Weinberg Law is expected for outcrossing
species, so departures raise the possibility of miss-
classification of some genotypes. The sheer scale of
performing a million tests on a single data set has
revealed aspects of the tests that were not previously
of concern.

It is well recognized that the classical chi-square
goodness of fit test for HWE suffers from spurious
significant values when one or more genotype classes
have small expected values, and problems follow
when the continuous chi-square distribution is used to
provide P-values even though the data are discrete.
Tests that provide exact P-values are preferred, but
it was not until the work of Wigginton et al. (2005)
that the actual nature of exact HWE P-values was
widely recognized. If a sample of size n consists of
nAA, nAa, naa copies of genotypes AA, Aa, aa then an
exact test statistic is the multinomial probability
of these counts conditional on the allele counts
nA=2nAA+nAa, na=2naa+nAa under the assumption
that the HWE hypothesis H0 is true. Writing this
probability as Pr(nAa|nA,H0) :

Pr(nAajnA,H0)=
C2nAa

nAA!nAa!naa!

where C=(n !nA !na !)/(2n) !. The P-value for any value
of nAa is this probability for the data plus the prob-
abilities of all sets of genotype counts with the same
allele counts and a greater departure from HWE than
seen in the data. Under the alternative hypothesis H1

that HWE does not hold, the probability of the data
can be written as:

Pr(nAajnA,H1)=
CynAa

nAA!nAa!naa!
,

where y=PAa=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PAAPaa

p
is a function of genotype

probabilities in the population and C is chosen to
make these probabilities sum to one over all valid
values of nAa. The sum of these quantities for the data
and all data sets with a greater departure from HWE
gives the power of the test. Note that y=2 under
HWE. The rejection rule for the exact test specifies
those values of nAa for which the P-value is less than
some nominal significance level, such as 0.05. The
empirical significance level, the sum of the prob-
abilities under HWE of all nAa values in the rejection
region, however, will always be less than or equal to
this nominal value. Rohlfs & Weir (2008) plotted
these empirical significance levels, and corresponding
probabilities when HWE does not hold to emphasize
the coarseness of the distributions of these statistics.
Depending on the allelic counts, the empirical signifi-
cance levels may be a long way from the nominal
values and the power of the test may be quite low.

For an experiment on which a million tests for
HWE are conducted, a simple way to account for
multiple testing is to use the Bonferroni procedure –
for an experiment-wise error rate of 5% an individual
SNP would be declared significantly out of HWE
if it had a P-value less than 5r10x8. This procedure
is known to be very conservative and is generally
avoided in favour of a Q–Q plot in which the ith of
one million ranked P-values is plotted against i/106,
i=1,2, …, 106 which are the uniformly distributed
expected values if all million SNPs are in HWE.
The P-values beyond which observed values start to
depart from expected values indicate the ‘significant’
values (Fig. 1). The appeal of this procedure needs to
be balanced against the findings of Wigginton et al.
(2005) that the P-values may have a distribution far
from uniform. We show an example in Fig. 1, where
xlog10(p) values are plotted against the values ex-
pected if there was HWE. These data are from the
Prostate, Lung, Colorectal and Ovarian (PLCO)
cancer screening trial (Prorok et al., 2000) and the
figure is from The GENEVA Consortium (2008) re-
port of data on 1651 individuals genotypedon the
Illumina HumanHap550v3_B array. The figure shows
values for 552 278 SNPs and departures from HWE
are occurring for P values in the range of 0.01–0.001
instead of the much lower value of 9.1r10x8 sug-
gested by the Bonferroni correction.
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Very large numbers of hypothesis tests that can be
conducted with genome data reveal inherent problems
with conventional testing theory and basing decisions
only on P-values. The use of Bayesian methods as an
alternative for HWE inference goes back, implicitly,
at least to Altham (1971) and, explicitly, to Pereira &
Rogatko (1984). Wakefield (2010) has recently given
a spirited account of an approach based on Bayes’
factors rather than P-values. He pointed out that the
rationale for control of the experiment-wise error rate
by the Bonferroni correction is not obvious when it is
likely that some of the million HWE hypotheses are
false. SNPs in regions under the influence of natural
selection, for example, may well depart from HWE
while those in linkage disequilibrium with disease
susceptibility genes will depart from HWE if testing is
confined to affected individuals (Feder, 1996; Nielsen
et al., 1998).

Wakefield (2010) made use of Dirichlet prior dis-
tributions on genotype frequencies and he saw the
need for a decision rule that depends on sample size
and on allele frequencies. The Bayes’ factor is the
probability of the observed genotypic data under
HWE divided by the probability under the alternative
hypothesis and this does depend on both sample size
and allele frequencies. Using the Bayes’ factor as a
test statistic gives a procedure by which the type I and
type II errors (false rejections of H0 and false failures
to reject H0) decrease to zero with increasing sample
size. To pick a threshold for rejection of HWE using
Bayes’ factors it is necessary to specify the prior odds
ofH0, and the ratio of costs of type II to type I errors.
The costs of avoiding both types of error will vary
with the context : if HWE tests are being used to detect
genotyping errors there may be little cost in retaining
SNPs that do depart from HWE (type II error) or in
discarding SNPs that do not (type I error). Type I
errors would be of concern, however, if SNPs that

were truly associated with a disease were discarded
because of departures from HWE.

The multiple-testing issues surrounding HWE test-
ing in the genome era apply more generally of course.
Wakefield (2009) looked at case-control association
testing where the costs of both type I and type II errors
can be significant. A false rejection of the null hypo-
thesis of no association of an SNP with a disease may
waste resources in following up this SNP in a repli-
cation study, whereas a failure to detect a real as-
sociation may delay the location of causal variants.
Wakefield invoked a Bayesian decision theory ap-
proach by specifying the costs of false non-discovery
CFND and false discovery CFD and setting R=CFND/
CFD. He would flag an SNP as significant if the
posterior odds on the null hypothesis drop below the
ratio R : an association is called noteworthy if the
Bayes’ factor times the prior odds are less than R.
There are three elements to the decision problem: the
ratio of the probabilities of the data under null and
alternative, the prior odds on the null hypothesis and
the ratio of costs. The use of Bayes’ factors could also
be applied to tests of linkage disequilibrium, popu-
lation structure and so forth.

(ii) Estimation of inbreeding and relatedness

Many applications of statistical-genetic theory rest on
knowledge of the relatedness of pairs of individuals
in a study sample. Two individuals are related when
their alleles are associated because of descent from
common ancestral alleles. A single individual is inbred
when the two alleles it receives at a locus have de-
scended from a single common allele. Inbreeding and
relatedness here refer to allelic associations (identity
by descent) brought about by past events, unlike the
within-population associations (identity in state) that
result in departures from HWE. A recent application

Fig. 1. Q-Q plot of xlog10(p) values for tests of HWE in PLCO data (Prorok et al., 2000). Tests for HWE at 552 278
SNPs are represented. The left panel shows all results, and the right panel shows only those results with P<10x6.
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concerns the search for ‘missing heritability ’ (Manolio
et al., 2009). When evidence is sought for associations
between single SNPs and a trait of interest the SNPs
that pass genome-wide threshold values for statistical
significance account for only a small fraction of the
genetic variation for the trait found in pedigree-based
studies (Manolio et al., 2009). For human height, for
example, analyses of data on twin pairs suggests a
heritability of 80% (Visscher et al., 2007), whereas
180 highly associated SNPs account for only 10%
(Allen et al., 2010). There have been several explana-
tions for the discrepancy, including the possibility of
epigenetic effects or that the observed SNPs are
not causal but are in linkage disequilibrium with the
causal variants. Yang et al. (2010) used 294 831 ob-
served SNPs in 3925 individuals of European descent
to estimate the actual inbreeding of individuals and
the actual relatedness of pairs of individuals and then
estimated the heritability of height with a method that
rests on the relationships

Var(X)=(1+ �FFX)s
2
A+s2

E,

Cov(X,Y)=2�hhXYs
2
A:

Here F̌X is the actual inbreeding coefficient for indi-
vidual X, �hhXY is the actual coancestry coefficient for
individuals X and Y, sA

2 is the additive component of
genetic variance for the trait and sE

2 is the non-genetic
component of trait variance. Dominance and epistatic
components of variance are ignored. The ‘actual ’
inbreeding and coancestry values reflect Mendelian
sampling and linkage as opposed to the expected
values that follow from pedigree information (Hill &
Weir, 2010). Yang et al. were able to account for 45%
of the variance in height and they concluded (Yang
et al., 2010, p. 565). ‘Thus, most of the heritability
is not missing but has not previously been detected
because the individual effects are too small to pass
stringent significance tests. ’

In the past, values for inbreeding and coancestry
have been inferred from pedigree information. Yu
et al. (2006) were among the first to suggest that more
appropriate values may be obtained from genetic
marker information. They were concerned with situ-
ations where pedigree records may not be accurate or
where artificial selection for crop species altered the
relationships at selected loci. The results of Yang et al.
(2010) go much of the way to accounting for missing
heritability but there are additional complexities sur-
rounding the estimation of inbreeding and relatedness
that can be addressed with genomic data.

(a) Estimation methods

For non-inbred individuals, inbreeding and related-
ness parameters can be estimated by ad hoc methods
of moments or by maximum likelihood. Either
procedure requires large numbers of genetic markers

to provide reliable estimates. Yang et al. (2010)
phrased estimators in terms of indicator variables
defined for locus j and individual X as xj=2, 1, 0 for
genotypes AA, Aa, aa. If the frequencies of A, a at
locus j are pj, qj in the population to which the
individuals of interest belong then for one individual
E(xj)=2pj, Var(xj)=2pjqj(1+FX) and for two indi-
viduals X,Y with indicator variables xj and yj,
Cov(xj,yj)=4pjqjhXY. Means and variances here refer
to averages over all evolutionary histories that have
led to the current pair of genotypes at this locus for
these two individuals. The estimators used by Yang
et al. (2010) build on these values and are

F̂X=
1

J
g
J

j=1

x2
jx(1+2pj)xj+2p2

j

2pjqj
,

ĥXY=
1

J
g
J

j=1

(xjx2pj)(yjx2pj)

2pjqj
:

These estimators have smaller variance than those
implicit in the work of Price et al. (2006) for the
EIGENSTRAT package for population structure.
The variance may be further reduced by taking the
ratios of the sums over loci of the numerators and
denominators instead of averaging the ratios.

There may well be interest in a more detailed
description of the relatedness of two individuals, with
the three k-coefficients of Thompson (1975) serving to
distinguish, say, parent-offspring from full-siblings
even though both pairs have coancestries of 0.25. The
ki are the probabilities that two non-inbred relatives
share i=0, 1, 2 pairs of alleles identical by descent
from a recent common ancestor, and these are sum-
marized by the coancestry h=k2/2+k1/4. Moment
estimates of the kiwere given by Purcell et al. (2007) in
their very useful computer package PLINK. For a
pair of individuals, they equated the numbers Ni of
loci for which two individuals share i pairs of alleles
identical-in-state to the expected numbers for these
categories expressed in terms of the identity-by-
descent probabilities ki and solved these equations for
the ki. At locus jwith alleles A, a and allele frequencies
pj, qj, the first two states and their probabilities are

i=0 : Pr(AA, aa or aa,AA)=2p2
j q

2
j k0,

i=1 : Pr(AA,Aa or Aa,AA or aa,Aa or Aa, aa)

=4pjqj(p
2
j+q2

j )k0+2pjqjk1:

Ignoring finite-sampling and other corrections to en-
sure valid estimates (Purcell et al., 2007) this provides

k̂0=
N0

2g
j
p2
j q

2
j

,

k̂1=
N1xg

j
4pjqj(p

2
j+q2

j )k̂0

g
j
2pjqj

,

k̂2=1xk̂0xk̂1,
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which lead to

ĥ=
1

2
x

4N0+N1

8g
j
pjqj

:

Moment estimators are not unique and care is
needed to ensure that they provide valid estimates. In
general, maximum likelihood estimates are preferred
although the computational burden can be substan-
tial. If loci j can be regarded as being independent
then the likelihood is the product over loci of the
probabilities Pr(Gj) of the observed genotypes, to
estimate the inbreeding coefficient, or over pairs
of genotypes to estimate the ki’s and hence h. The
correlations that are observed to exist among SNPs,
especially those within a few megabases of each other,
may not affect the bias of the resulting estimates
although they will increase the variance. It would be
appropriate to limit the SNPs used in relationship
estimation to those not in strong linkage dis-
equilibrium with each other. If F represents the
probability the individual in question has two ibd
alleles at locus j,

Pr(AAjinbred)=pj, Pr(AAjNot inbred)=p2
j ,

Pr(Aajinbred)=0, Pr(AajNot inbred)=2pjqj,

Pr(aajinbred)=qj, Pr(aajNot inbred)=q2
j :

From Bayes’ theorem then

Pr(inbredjAA)

=
Pr(AAjinbred)Pr(inbred)

Pr(AA)
=

F

F+pj(1xF)
,

Pr(inbredjAa)=0,

Pr(inbredjaa)= F

F+qj(1xF)
:

This suggests an iterative scheme: assign an initial
value to F, and then average the updated values over
loci. If Gj is the genotype at locus j, the updated value
Fk is

Fk=
1

J
g
J

j=1
Pr(inbredjGj):

This value is then substituted into the right-hand side
and the process continues until convergence.

For two individuals with genotype pair Gj at locus j,
there are three unobserved identity-by-descent states
Di, i=0, 1, 2 that have probabilities ki :

Pr(Gj)=g
2

i=0
Pr(GjjDi)ki

and an iterative scheme similar to that for the in-
breeding coefficient was described by Choi et al.
(2009). Since Pr(Di|Gj)=Pr(Gj|Di)ki/Pr(Gj) from Bayes’

theorem, initial values ki0 assigned to the ki’s can be
updated to kij’s at locus j :

kij=
Pr(GjjDi)ki0

g2
i=0Pr(GjjDi)ki0

and these values averaged over loci to provide new
estimates. This pair of operations is repeated until the
likelihood changes by less than a specified amount.
Estimates given by this procedure for the PLCO data
referred to above are similar to those shown in Fig. 2
which were produced by the moment method in
PLINK. Estimates are shown only for those pairs of
individuals with a coancestry coefficient greater than
1/32, which accounts for the angling of points away
from the line k0+k1=1 near k0=1. There is a parent–
offspring pair at k0=0, k1=1, several pairs of full
sibs centred on k0=0.25, k1=0.50, pairs of half sibs
centred on k0=k1=0.5 and various pairs of less-
related individuals on the line k0+k1=1. Unrelated
pairs of individuals, not shown in the figure, would
have k0=1, k1=0.

(b) Variation in actual relatedness

It has long been recognized that there is variation in
actual inbreeding and relatedness about the values
predicted from pedigrees and indeed there is variation
about expected values for the estimates shown in
Fig. 2. Half siblings, for example, are expected to share
one pair of alleles by descent from their common

Fig. 2. Estimates of relationship coefficients k0, k1 for
participants in the PLCO study (Prorok et al., 2000). Only
estimates for pairs of individuals where k0+k1/2f15/16
are shown. The orange bars centred on k0=0.25, k1=0.5
(full sibs), k0=k1=0.5 (half sibs) and k0=0.75, k1=0.25
(first cousins) are two predicted standard deviations in
length each side of the centre points.
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parent with probability k1=0.5. At any one SNP,
however, half siblings either have one pair of identical
alleles or they do not: the actual identity coefficient ǩ1

has values 0 or 1. Over the genome this quantity has a
mean of k1=0.5 and a variance of k1(1xk1)=0.25.
The variance over a chromosome with m SNPs of the
actual proportion of SNPs with one pair of identical
alleles is the average over all pairs of SNPs j, jk of the
covariances of actual identities :gj,jk Cov(ǩ1j, ǩ1jk/m

2. In
their prediction of the variances and covariances of
the ǩi’s for any degree of relatedness, Hill & Weir
(2010) recognized that the only wayhalf siblings can
have ǩ1=1 at loci j, jk is for them each to receive the
same recombinant or the same non-recombinant
haplotype from their common parent. This provides

Cov( �kk1j, �kk1jk)=
1

2
c2jjk+

1

2
(1xcjjk)

2x
1

4
,

where cjjk is the recombination fraction between loci
j and jk. Although this simplifies to (1x2cjjk)

2/4 it helps
later generalizations to write the covariance as

Cov(�kk1j, �kk1jk)=4
1xcjjk

2

� �2

x
1

4

� �2� �

x2
1xcjjk

2

� �1

x
1

4

� �1� �
,

which is a special case of the expression gnan
[bnx(1/4)n] with b=(1xc)/2. Here there are two va-
lues of n and a2=4, a1=x2.

If there are many loci on a chromosome, adding
variances and covariances over pairs of loci is equi-
valent to integrating over all pairs of positions on the
chromosome. Assuming Haldane’s mapping function
(Haldane, 1919) relating recombination fraction c to
map positions x, y : (1xc)=(1+ex2|xxy|)/2, Hill &
Weir (2010) found it convenient to define the function
wn(l) for a chromosome of length l map units :

wn(l)=
2

l2
1

4

� �n Z l

x=0

Z x

y=0
[(1+ex2(xxy))nx1]dy dx

=
1
2l2

1
4

� �ngn

r=1

n

r

� �
2rlx1+ex2rl

r2
, no1,

0, n=0:

8<
:

This let them write the variance of k̄1 on a chromo-
some of length l for half sibs as

VarHS(k̄1, l)=4w2(l)x2w1(l):

There is an immediate extension to descendants of
half sibs. For each additional generation (strictly,
each meiosis) separating the descendants, two-locus
haplotypes remain intact and the expectation of the
product of two ǩ1j’s is reduced by a factor of (1xc)/2.
For separation by g generations/meioses (g=2 for

half sibs, g=3 for half-uncle nephew, g=4 for half-
cousins etc) :

VarHS, g(k̄1, l)=4wg(l)x2wgx1(l)+
1

2
wgx2(l):

It is straightforward to average over chromosomes
with different map lengths. Hill & Weir (2010) gave
similar expressions for an individual with a lineal de-
scendant and for pairs of individuals descending from
full sibs. The variance of ǩ1 for first cousins, for ex-
ample, is

VarFC(k̄1, l)=8w4(l)x4w3(l)+
3

2
w2(l)x

1

2
w1(l):

Because ǩ1 for first cousins refers to identity for pairs
of alleles carried on gametes from full sibs, this vari-
ance also applies to the actual inbreeding coefficient
for an offspring of full sibs. The variances for other
degrees of inbreeding follow from the variances for
appropriate pairs of related parents.

Estimation of the inbreeding coefficient for an in-
dividual or the coancestry coefficient for a pair of in-
dividuals requires many thousands of SNPs and was
not possible in the pre-genome era. Even with sub-
stantial data, however, the estimates will reflect the
inherent variation of actual identity along the genome.
Subject to computational resources, maximum likeli-
hood estimation is preferred over the method of
moments but both methods are affected by the need to
use sample allele frequencies rather than population
values and this can be an issue for structured popu-
lations when the target allele frequencies for a specific
individual or pair of individuals are not the same
as the frequencies in the study population to which
the specific individual(s) belong (Anderson & Weir,
2007). There is a further complication in estimating
the relatedness of a pair of individuals when they are
inbred as then there are nine measures of identity by
descent instead of three (Jacquard, 1970; Weir et al.,
2006).

(iii) Population structure

Not only are genomic data revealing the structure
of allelic associations along the genome within indi-
viduals but also they are revealing information
about the structure of populations. The F-statistics of
Wright (1951) can be regarded as reflecting the history
of populations in the same way that coancestry
coefficients reflect the pedigrees of individuals. The
F-statistics describe the associations of alleles within
and between populations. Early treatments of the
variances of these quantities have now been aug-
mented by empirical studies. Weir et al. (2005) pres-
ented plots of FST estimated from all the SNPs in
five Mb windows along the genome and these plots
showed substantial variation. A similar plot is shown
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in Fig. 3 for chromosome 19 andthree of the HapMap
III populations, Han Chinese from Beijing (CHB),
Japanese from Tokyo (JPT) and Yoruba from
Nigeria (YRI). The full data set has information from
11 populations and all those populations were used
for the population-specific values in Fig. 3. The values
are for 100-SNP windows of 11 906 SNPs. For each
population i, suppose pij is the minor allele frequency
for SNP j and nij the number of individuals typed
at that SNP in that population. The average SNP j
frequency over populations is p̄j=ginijpij/ginij. Then,
the analogue of FST for population i is

bi=1x
g

j2w
�
(g

i
nij*)

nij
nijx1

pij(1xpij)
	

g
j2w



g

i
[nij(pijxp̄j)

2+nij*pij(1xpij)]
� ,

where nij
*=nijxnij

2 /ginij. As Weir & Hill (2002)
pointed out, bi is the value of FST for population
i relative to the relationship between pairs of alleles
among all pairs of populations in the study. The plots
in Fig. 3 show great similarity between the CHB and
JPT values with differences from the YRI values, but
great variation along the chromosome.

Although some of the variations along the chro-
mosome in Fig. 3 reflects Mendelian sampling, some
of it will reflect the effects of natural selection (e.g.
Akey et al., 2002). There has been some success with
using FST variation for detecting selection, but there
is the difficulty of the high variances of single-SNP
estimates predicted by the following argument. By
assuming allele frequencies were approximately nor-
mally distributed across populations, Weir & Hill

(2002) were able to find a maximum likelihood esti-
mate of the population-average value of FST. For a
locus with sample allele frequencies p̃iu for the uth of
m alleles in the ith of r sampled populations, and
averages p̄u of the p̃iu’s over populations,

F̂ST=
1

(rx1)(mx1)
g
r

i=1
g
m

u=1

(~ppiuxp̄u)
2

p̄u
:

This estimate divided by the true value has a
chi-square distribution with (mx1)(rx1) degrees of
freedom. For SNPs, m=2 and the df are 1 or 2 when
data from two or three populations are used. In either
case the distribution peaks at FST=0 and has a very
long tail to the right. The variances are substantial
and it may be difficult to conclude significantly dif-
ferent values at different loci. The degrees of freedom
are summed over the loci when multiple loci are used
for estimation of FST, the chi-square distribution
tends to normality and the variances are reduced. The
possibility of declaring significant differences is offset
by these differences now referring to regions larger
than a single SNP.

(a) Principal component (PC) analysis

An alternative approach to characterizing population
structure is to reduce the high dimensionality of the
number of SNPs to a small number of PCs. These
refer to the matrix with dimensions equal to the total
number of individuals in the study and with elements
being multiples of estimates of one plus the inbreeding

F
S

T

Position(mb)

Fig. 3. Population-specific values of FST (Weir & Hill, 2002) for CHB, JPT and YRI samples in the HapMap III data for
markers on chromosome 19. Each value is based on a window of 100 SNPs, and there is a 20 SNP overlap between
adjacent windows.
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coefficient of the individuals on the diagonal and the
coancestry coefficients of pairs of individuals off the
diagonal. When individuals are plotted in two di-
mensions for pairs of the first few PCs they tend to
cluster in populations (Novembre et al., 2008) in ways
that often bear striking resemblances to geographic
maps of population locations. A novel finding of
such analyses is that chromosomal regions with low
recombination, such as polymorphic inversions, are
revealed in samples from the same population. Tian
et al. (2008) reported the clustering into three groups
of a sample of European-ancestry individuals corres-
ponding to the genotypes of a cluster of highly cor-
related SNPs in chromosomal region 8p23, a region
that contains a polymorphic inversion. Laurie et al.
(2010) report a process of searching systematically for
such genomic features by looking for regions where
SNPs are highly correlated with one of the first few
PCs. An illustration of their approach is shown in
Fig. 4, using data from PLCO and the companion
EAGLE (Environment and Genetics in Lung Cancer
Etiology) study (Landi et al. 2008).

PC analysis was performed with unrelated PLCO
and EAGLE study subjects. PC3 showed a remark-
able separation of both studies into three clusters.
This distinct clustering by a PC that accounts for only
0.06% of the variance suggests the strong influence of
one polymorphism. To investigate this possibility,
the correlation between each PC and the genotypic
scores of each SNP was computed (The GENEVA
Consortium, 2008). This was done ignoring study and
also for each study separately in order to find SNPs

that influence the separation within each study group
(rather than between the studies). The results for both
studies are similar to one another and to the overall
correlation (ignoring study), so attention is restricted
now to the overall correlation results.

The correlation between each SNP and each of the
first three PCs revealed two distinct clusters of SNPs
with high correlations. PC1 is highly correlated with
SNPs on chromosome 2 in a region containing the
LCT gene, which is a well-known marker of the
north–south European cline (Bersaglieri, 2004). PC3
is highly correlated with a cluster on chromosome 8.
A previously documented inversion in 8p23 most
likely accounts for this cluster of SNPs, which are in
strong linkage disequilibrium. The genotypes of the
most highly correlated SNP in this region (rs2409798)
largely define the three clusters of samples separated
by PC3. These highly localized features underlying
some PCs may limit their usefulness in detecting and
controlling for population structure. In fact, they may
even be counterproductive when used as covariates in
association testing for traits affected by SNPs in those
chromosomal regions. Therefore, SNPs in the two
regions were removed (to make SNP set B) and the
PCs recalculated and compared with the full set of
autosomal SNPs (set A). Figure 4 shows the effects of
removing the SNP clusters on chromosomes 2 and 8
in calculating the PCs for set B. The very prominent
cluster of SNPs having high correlation with PC3 in
set A is no longer evident, as expected. However, the
cluster of chromosome 2 SNPs in the LCT region is
evident in both sets A and B, even though those SNPs

Fig. 4. Correlations of SNPs on chromosomes 2 and 8 with the first and third PCs for the PLCO and EAGLE data
(Prorok et al., 2000; Landi et al., 2008). Set A is when all SNPs were used to calculate the PCs, set B was when the SNPs
in the LCT gene or the chromosome 8 inversion were omitted before calculating the principal components. The vertical
dashed red lines mark LCT on chromosome 2 and the 8p23 inversion on chromosome 8.

B. S. Weir and C. C. Laurie 468

https://doi.org/10.1017/S0016672310000637 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672310000637


were not used in the calculation of PCs for set B,
contrary to naı̈ve expectation. The same result is ob-
tained when all SNPs on chromosome 2 are removed
from the PC calculation. It seems likely that the LCT
region is correlated with multiple SNPs on other
chromosomes that all contribute to the north–south
European cline.

4. Discussion

Allelic associations are quantities of primary interest
to population geneticists. They can be regarded as
being purely descriptive, as in measures of departure
from HWE, or they may be interpreted as indicators
of chromosomal proximity when they refer to the
relationship between genetic markers and disease
genes (Weir, 2008). Although there is still an issue of
making inferences about evolutionary mechanisms on
the basis of statistics calculated from data collected at
a single time point, there is no doubt that the genome
era has provided a wealth of data for estimating
association measures and for demonstrating the vari-
ation of associations along the genome within indi-
viduals, among individuals and among populations.

This review has shown the impact of dense sets
of SNP markers on associations at single loci and
averaged over chromosomes. One of the striking ob-
servations is that any measure of association varies
greatly over the genome. If the association of interest
was that between a genetic marker and an individual’s
disease status then a small number of genomic regions
with significant associations would offer hope of
developing a small number of targeted therapies,
although the report of Allen et al. (2010) of 180
significant associations with height suggests that
complex traits are affected by many genes. If the as-
sociation under study refers to departures from HWE
or to population structure, however, then variation
over the genome might not be expected as the
whole genome has been subjected to the same set of
population size and mating structure parameters.
Differences might well reflect differential effects of
natural selection, as is thought likely for the LCT gene
on chromosome 2 (Bersaglieri et al., 2004), but this
review has used the example of relationship measures
to point out that Mendelian or genetic sampling and
linkage can lead to substantial variation in measures
of association. Genome-era data are making very
concrete these theoretical predictions.

This review has not addressed the substantial
current activity in association mapping. Whereas de-
partures from HWE are measured by the association
between pairs of alleles at single locus, association
mapping seeks evidence for an association between an
observed marker allele and an allele at an unobserved
trait gene. There is population genetic theory and
substantial empirical evidence that such associations

will decrease with distance on a chromosome between
the two genes. Current SNP-based association studies
are therefore indirect, in the sense they seek markers
that are associated (in linkage disequilibrium with)
with trait genes. The expectation of whole-genome
DNA sequence studies (The 1000 Genomes Consor-
tium, 2010) is that the causal variants themselves will
be observed and the associations will be direct.

The change in the scale of genetic data over the
past 50 years has been dramatic and has led to new
understanding of genomic structure and evolutionary
processes. We can expect no less over the next
50 years.
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