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Abstract

Weeds contribute to biodiversity and a wide range of ecosystem functions. It is crucial to map
different weed species and analyze their physiological activities. Remote sensing techniques for
plant identification, especially hyperspectral imaging, are being developed using spectral
response patterns to vegetation for detection and species identification. A library of
hyperspectral images of 40 urban weed species in northeast China was established in this
study. A terrestrial hyperspectral camera was used to acquire 435 hyperspectral images. The
hyperspectral information for each weed species was extracted and analyzed. The spectral
characteristics and vegetation indices of different weeds revealed the differences between weed
species in the cities of northeast China and indirectly characterized the growth and
physiological activity levels of different species, but could not effectively distinguish different
species. Five methods—first derivative spectrum (FDS), second derivative spectrum (SDS),
standard normal variate (SNV), moving averages (MA), and Savitzky-Golay (SG) smoothing—
were used to pretreat the spectral curves to maximize the retention of spectral characteristics
while removing the influence of noise.We investigated the application of a convolutional neural
network (CNN) with terrestrial hyperspectral remote sensing to identify urban weeds in
northeast China. A CNN classification model was established to distinguish weeds from the
hyperspectral images and demonstrated a test accuracy of 95.32% to 98.15%. The accuracy of
the original spectrum was 97.45%; SNV had the best accuracy (98.15%) and SG was the least
accurate (95.32%). This provides a baseline for understanding the hyperspectral characteristics
of urban weed species and monitoring their growth. It also contributes to the development of a
hyperspectral imaging database with global applicability.

Introduction

Weeds play an important role in enriching biodiversity and ecosystem services, such as by
promoting biological evolution, improving the ecological environment, and maintaining
climate stability. Evidence for this has been gathered over a long time and is being increasingly
reported (Gage and Schwartz-Lazaro 2019; Guo et al. 2018; Korres et al. 2016). The benefits of
weeds vary according to their species, growth status, and habitat type. These factors are also
the fundamental criteria by which weeds reflect the biodiversity and quality of ecological
services (Bretagnolle and Gaba 2015). Therefore, the ability to map weeds and analyze their
physiological activity such as photosynthesis and respiration is very significant (Ferreira et al.
2016; Rozenberg et al. 2021). To monitor weeds’ physiological activity, data on their
biophysical circumstances must be gathered and updated. However, detecting weed
physiological activity and species types using traditional visual recognition technology can
be challenging (Adegbenjo et al. 2020; Prati et al. 2019). At the same time, many of the costs
associated with machine vision are too high, including the construction of complex systems
and expensive field surveys (Tzamali et al. 2006), and machine vision provides only limited
spectral information as it only records information using three broad bands (625 to 740, 570 to
585, and 492 to 577 nm) (Zhang et al. 2019b).

Remote sensing techniques can map the distribution of weeds and effectively monitor their
changes in complex urban environments (Segarra et al. 2020). Hyperspectral imaging
techniques, in particular, are evolving from spectral response models to allow species
identification and vegetation monitoring. Many studies have used hyperspectral data obtained
by satellite (Khaliq et al. 2019), airborne (Maes and Steppe 2019), and ground-based (Behmann
et al. 2018) cameras for species identification, vegetation monitoring, and crop classification
(Mariotto et al. 2014). However, many factors affect satellite-based detection accuracy, including
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altitude, atmospheric conditions, and the systematic errors related
to orbit angle and solar radiation pressure known to affect the
Chinese BeiDou Navigation Satellite System, geostationary orbit
satellites, and inclined geostationary orbit satellites (Guo et al.
2016). Although a variety of sensors can be used to improve
accuracy, space missions have limited availability, making it
difficult to obtain specific hyperspectral data (Zhong et al. 2019).
Airborne acquisition techniques, such as unmanned aerial vehicles
(UAVs), have the advantage of lower flight altitudes; however, they
do not produce accurate correction signals (Rossini et al. 2015).
Therefore, a ground-based hyperspectral technique has been
adopted by researchers to acquire high-spatial-resolution images
with minimal atmospheric effects (Katkovsky et al. 2018).

Databases of plant-specific information have been established,
providing important resources for various fields of research. The
International Water Management Institute provides a wetland
vegetation hyperspectral database that includes a broad-spectrum
database for coastal wetland vegetation communities under
different bioclimatic, soil, and disturbance conditions. This
facilitates the monitoring of detailed changes in wetland vegetation
structure and species composition (Zomer et al. 2009). Manjunath
et al. (2014) established a spectral database of Himalayan
vegetation species, including the spectra of leaves and branching
canopies of various vegetation types, and calculated 22 vegetation
indices such as the normalized difference vegetation index
(NDVI), simple ratio, and soil-adjusted vegetation index (SAVI).
At the same time, the biochemical parameters such as chlorophyll
a, chlorophyll b, and protein were measured using standard
methods, and the close correlation between them was studied. The
information provided in spectral libraries can be used to explore
the chemical composition, growth behavior, and ecological
environment of Himalayan vegetation (Yang et al. 2021).
Khdery and Yones (2021) established an innovative spectral
library of common wild plants on the northwest coast of Egypt. It
analyzed the characteristics of 27 wild vegetation species, such as
saltbush (Atriplex halimus L.) and thyme [Thymus capitatus (L.)
Hoffsgg. & Link], and strengthened the observation of wild
vegetation through remote sensing used to identify common wild
plant species. Although existing spectral libraries cover a wide
range of spectral information, there is limited information on the
spectral features of weed species in different cities. Many species
native to the middle temperate zones, such as musk thistle
(Carduus nutans L.) and sand cinquefoil (Potentilla supina L.), are
unlikely to be found in these spectral libraries. Northeast China is
renowned for its distinctive landscape features and has a mid-
temperate continental monsoon climate with a great diversity of
weed species. Most weeds grow in an intense urban environment
(Brunzel et al. 2009; Von der Lippe and Kowarik 2007) with long
winters and have short growth cycles. Therefore, this study
analyses the abundant weed species of northeast China to
contribute to the development of a hyperspectral imaging database.
This enriches studies on weed species in urban areas of northeast
China with hyperspectral data.

In light of this, the process of this study was: (1) a hyperspectral
library of urban weeds in northeast China was established,
including 435 hyperspectral images of 40 species and 23 families;
(2) the spectral profiles and vegetation indices were used to
indirectly characterize the growth and physiological activity of
weed species; (3) five different pretreatments (first derivative
spectrum [FDS], second derivative spectrum [SDS], standard
normal variate [SNV], moving averages [MA], and Savitzky-Golay
[SG] smoothing) were used to maximize the retention of spectral

features, combined with a convolutional neural network (CNN)
built to identify different weed species.

Materials and Methods

Study Area and Target Weed Selection

This study was conducted in Heilongjiang Province, northeast
China. The selected weed species (Figure 1) were located at seven
different sites: (1) Harbin City (44.067°N to 46.667° 0N, 125.7°E to
130.167°E), (2) Qiqihar (45°N to 48°N, 122°E to 126°E), (3)
Hegang City (47.067°N to 48.35°N, 129.65°E to 132.517°E), (4)
Shuangyashan City (46.333°N to 47.9°N, 130.9°E to 131.783°E),
(5) Daqing City (45.767°N to 46.917°N, 124.317°E to 125.2°E), (6)
Jiamusi City (45.933°N to 48.467°N, 129.483°E to 135.083°E), and
(7) Suihua City (45.05°N to 48.033°N, 124.217°E to 128.5°E).
To construct representative data sets and establish robust models
to characterize and identify common weeds in northeastern cities,
weed selection criteria included but were not limited to weed
species, size, similarity of appearance, proximity to roads, and
traffic flow on nearby roads.

Image Acquisition Plan

To obtain high-spatial-resolution data with minimal atmospheric
disturbance, a field acquisition method was adopted. A new,
portable, handheld hyperspectral camera, SPECIM IQ (model SN:
190–1100381, SPECIM, Spectral Imaging, Oulu, Finland), was
used to obtain hyperspectral images of weeds. This camera
integrates hyperspectral data acquisition, analysis, processing,
and visualization of the results. It weighs 1.3 kg and measures
207 × 91 × 74 mm (lens: 125.5 mm). The camera is supported by
Specim IQ Studio software and can be remotely connected via
universal serial bus or wireless fidelity for the remote control of all
camera functions except focusing. SPECIM IQ takes full hyper-
spectral images without the need for external movement. In the
optical and near-infrared wavelengths of the electromagnetic
spectrum (approximately (397 to 1,003 nm), the camera obtains
hyperspectral images containing a 204 spectral narrow band with a
spectral resolution of about 7 nm. The camera provides 512 × 512
pixels of spatial sampling, covering a field of view of 31° × 31°.
When the camera samples 1 m away from the target, it captures an
area of 0.55 × 0.55 m, and the peak signal-to-noise ratio is >400:1.

Tomaintain the accuracy of weed data sampling under different
time of day and weather conditions, a white reference board
was used for calibration (Wang et al. 2023). Irradiance fluctuations
brought on by atmospheric factors and changes in solar
illumination are the most important factor in field reflectance
measurements. Most reflectance measurements are still single
field-of-view measurements, so the time between the target and
reference measurements should be as short as possible to avoid any
potential atmospheric effects. This improvement is also necessary
because all weed samples and white reference frame measurements
must have the same lighting characteristics. Any change in distance
between the camera and weed samples and in-field light intensity
will affect the reflectance measurements. To ensure the accuracy
of the reflectance measurements of all samples, quick atmospheric
correction (QUAC) must be considered (Zhang et al. 2021).
QUAC aims to eliminate atmospheric, light, radiation, and surface
temperature effects on the spectral reflectance of samples to obtain
more accurate reflectance data. In addition, it does not need to
provide the specific location and time of sample measurement, and
it automatically collects spectral information on the samples and
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Figure 1. Descriptions and photos of selected weed species collected in in Heilongjiang Province, northeast China.
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Figure 1. (continued).
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other background materials in the image, so as to invert the true
reflectance of the samples. At present, QUAC supports a
hyperspectral range of 400 to 2,500 nm, which is suitable for
hyperspectral imaging in various complex environments and
bands.

We collected 435 hyperspectral images of 40 weed species. The
specific information on the collected weed samples and corre-
sponding pictures are shown in Figure 1. A detailed flowchart of
the hyperspectral image acquisition and data analysis processes is
shown in Figure 2.

Methods

For spectral processing, ENVI v. 5.3 software (Exelis Visual
Information Solutions, Boulder, CO, USA) was used to extract
spectral data from the hyperspectral images obtained by SPECIM
IQ. To improve the prediction accuracy and deal with the
inevitable negative impacts of environmental and system noise, the
981 to 1,003 nm band was eliminated, as it was heavily affected by
noise. Therefore, the band for our actual pretreatment and spectral
analysis is 397 to 981 nm. In addition, before the neural network
classification model was established, five methods (FDS, SDS,
SNV, MA, and SG) were used to preprocess the hyperspectral data.
The five pretreatment methods, kernel principal component
analysis (KPCA), and classification models were run in MATLAB
R2022a software (MathWorks, Natick, MA, USA); principal
component analysis (PCA) was run in IBM SPSS Statistics 27
software (International Business Machines, Armonk, NY, USA).

Smoothing

The SG smoothing and MA (smoothing window of five points)
techniques were adopted to reduce the influence of high-frequency
noise and baseline translation noise while retaining the unique

characteristics of the samples (Chen et al. 2012; Zhang et al. 2020).
SG is the most commonly used smoothing algorithm. It obtains a
best estimate of the spectral smoothing points by weighted filtering
and polynomial fitting of the data within a window of a certain
width. By changing the size of the window and the order of the
polynomial function, one can change the degree of SG smoothness
(Chen et al. 2011). On the other hand, the MA approach smooths
the window with an odd width and averages the data within the
window to remove noise. MA smooths single-sample data rather
than moving and scaling all sample data and can accurately
identify the noise in each segment of the spectrum and the unique
features of the spectral curve. In addition, to avoid the smoothed
spectral data being lower than the original data, the spectral data
were zeroed before data processing and then fit.

Differentiation

The core of this study is to distinguish the characteristics of various
weeds and improve the accuracy of the neural network, which is
often affected by baseline translation, smoothing background
interference, and spectral mixing and overlap (Cheoi et al. 2020;
Hu et al. 2019). The FDS and SDS of spectral reflectance data are
commonly used to avoid the influences of these factors (Yeow and
Leong 2005) and are widely used in vegetation detection. Previous
studies have reported that differential spectroscopy can further
improve the ability to identify vegetation using spectral data
(Qian et al. 2013), reflect the waveform changes caused by light
absorption by chlorophyll and other substances in plants, and
reveal the characteristics of the peak in the spectrum (Becker et al.
2005). Therefore, to highlight the subtle absorption features in
weed data, this study used FDS and SDS to preprocess the original
spectral data, so as to improve the classification accuracy of the
neural network.

Figure 2. Flowchart of the hyperspectral detection process used in this study.
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Standard Normal Variate Transformation

In this study, weed hyperspectral data were collected in a field
environment, which was easily affected by surface scattering and
optical path changes. To eliminate the influence of these factors
and reflect the spectral characteristics of weeds, SNV trans-
formation was used to pretreat the spectral data of weeds before
using the neural network classification model to identify them. The
difference between this algorithm and others is that SNV processes
one spectrum and can better extract the spectral characteristics of
weeds (Kachrimanis et al. 2007). The formula for SNV is as follows:

Ri;SNV ¼ Ri;k � RiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

ðRi;k�RiÞ2

m�1

s [1]

where Ri;SNV is the transformed spectrum, Ri ¼
Pm
k¼1

Ri;k

m ; i is the
number of spectral samples; k= 1, 2, 3, : : : , m, where k is
the number of wavelength points; andm = 1, 2, 3, : : : , n, where n is
the sample size.

Exploratory Data Analysis

Hyperspectral images contain an abundance of high-dimensional
data, so it is very difficult to conduct qualitative analysis of spectral
data directly, and it is difficult to mine the fine features in spectral
data. PCA is one of the most commonly used unsupervised
chemometric tools to explore hidden information in large amounts
of data (Zhang et al. 2013). It enables an overview of complex
multivariate data and has been widely adopted to process
hyperspectral imaging data (Bro and Smilde 2014). PCA converts
a group of possibly correlated variables into a group of linearly
uncorrelated variables through orthogonal transformation, which
are called principal components (PCs). After PCA, spectral data
usually generate several PCs to reveal the internal structure of
multiple variables, so as to retain and extract the original
spectral curve features as much as possible. In PCA, for m
hyperspectral weed samples x1; x2; � � � ; xmf g, each sample i
had n-dimensional characteristics Xi ¼ x1i; x2i; � � � ; xnið Þ. The
covariance matrix corresponding to each dimension feature
Xj ¼ xj1; xj2; � � � ; xjm

� �
, j ¼ 1; 2; � � � ;mð Þ has m eigenvalues �j

and eigenvector uj, and �j
1; uj1

� �
; �j

2; uj2
� �

; � � � ; �j
k; ujk

� �� �
can

be obtained by selecting the first k largest eigenvalues. For each
dimension feature, the new variable of m samples
xj1; xj2; � � � ; xjm

� �
after projection is yj1; yj2; � � � ; yjk

� �
. The

formula for calculating the new variable is as follows:

yj
1

yj2

..

.

yj
k

0
BBB@

1
CCCA ¼

xj1; xj2; � � � ; xjm
� � � uj1
xj1; xj2; � � � ; xjm
� � � uj2

..

.

xj1; xj2; � � � ; xjm
� � � ujk

0
BBB@

1
CCCA [2]

where x1i; x2i; � � � ; xnif g, i ¼ 1; 2; � � � ; kð Þ constitutes a PC, and the
wavelength of maximum uimax and minimum
uimin i ¼ 1; 2; � � � ; kð Þ represents the characteristic wavelength. In
this study, k = 3, that is, three principal components (PC1, PC2,
and PC3) are extracted.

KPCA

In this study, KPCA was used to visualize weed spectral data.
KPCA is similar in principle to PCA, but it aims to capture higher-
order statistics and deal with complex nonlinear features that are
widespread in hyperspectral images. It is a method of processing
nonlinear data using kernel mapping; the original data are mapped
to a high-dimensional space using a kernel function, and then the
corresponding linear operation is carried out in the space. Here, the
kernel is kðxi; xjÞ:

kðxi; xjÞ ¼ ϕðxiÞTϕðxjÞ [3]

where xi, xj ði; j ¼ 1; 2; 3; . . . ;mÞ represents the original data set;
ϕðxiÞ, ϕðxjÞ ði; j ¼ 1; 2; 3; . . . ;mÞ represents the high-dimensional
data set after themapping functionϕðxÞ; andm represents the total
amount of data.

After the original data are mapped to the high-dimensional
space, a dimensionality reduction operation is carried out on the
original data according to the eigenvalue�and eigenvectorvof the
covariance matrixM of the high-dimensional data set to determine
the PC. The formula is as follows:

Mv ¼ �v; subject to k vk2 ¼ 1 [4]

where M ¼
Cðx1; x1Þ Cðx1; x2Þ
Cðx2; x1Þ Cðx2; x2Þ

� � � Cðx1; xmÞ
� � � Cðx2; xmÞ

..

. ..
.

Cðxm; x1Þ Cðxm; x2Þ
. .
. ..

.

� � � Cðxm; xmÞ

0
BBB@

1
CCCA,

and Cðxi; xjÞ, ði; j ¼ 1; 2; 3; � � � ;mÞ represents the covariance of
ϕðxiÞ and ϕðxjÞ.

Because the classes in hyperspectral image data are usually very
close to gaussian distribution (Huber-Lerner et al. 2016), this study
adopts a gaussian kernel function for KPCA, and the formula is as
follows:

kðxi; xjÞ ¼ e�
kxi�xjk2

2σ2 [5]

where σ represents the standard deviation of xi and xj.

Vegetation Index

The vegetation index is an important index of vegetation growth.
Over the past 40 years, many spectral vegetation indices have been
developed, such as the simple vegetation index, differential
environmental vegetation index, normalized differential vegeta-
tion index (NDVI), greenness vegetation index, and soil-adjusted
vegetation index (SAVI) (Giovos et al. 2021). An ideal vegetation
index should contain information that maximizes the specific
physical characteristics of the plants (Ji et al. 2014). NDVI is the
most widely used vegetation index for estimating the physical and
growth status of vegetation (Abbas et al. 2021). It adopts the mid-
and near-infrared bands of the hyperspectral spectrum. The
formula is as follows:

NDVI ¼ �NIR � �RED
�NIR þ �RED

[6]

where�NIRrepresents the spectral value of the near-infrared band
and�REDstands for the infrared spectrum value.
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The NDVI is highly correlated with vegetation productivity,
plant cover, and amount of green vegetation (Pettorelli et al. 2005),
and it has a certain relationship with changes in vegetation quality
(Hamel et al. 2009). In addition, the NDVI is an indicator of
vegetation vigor. Its values range from −1 to þ1, while general
green vegetation values range from 0.2 to 0.8.

To minimize variations in camera angle and solar illumination
(Mottus and Rautiainen 2013), we also explored the suitability of
using the photochemical vegetation index (PRI) to study the
differences and associations between 20 weed species. The PRI is
based on spectral radiance derived from the normalization of
vegetation reflectance near wavelengths of 531 and 570 nm
(Equation 3) and is closely related to the photosynthetic intensity
of the canopy under nitrogen stress and the lutein cycle (Gamon
et al. 1992).

PRI ¼ �531 � �570
�531 þ �570

[7]

where �531 and �570 represent the spectral values at 531 and 570
nm, respectively.

CNN Classification for Weed Species Recognition

A CNN framework was established to train and validate hyper-
spectral weed data sets for weed classification. Neural networks are
a group of mathematical algorithmmodels that roughly mimic the
human brain. They are designed to process complex data and are
being used for an increasing number of functions, with
classification being the most important. A shallow CNN has
especially good generalization ability and image edge feature
recognition ability, and because of its simple structure, it does not
require a great deal of computing power (Yang et al. 2020). In this
study, a convolution neural network was established to identify
hyperspectral images of 40 weed species from 23 families in
northeast China. The network structure is shown in Figure 3. The
input is the spectral value (spectral curve or spectral band), and the
output is the species probability. The CNN consists of an input
layer, an output layer, two convolution layers, two pooling layers,
and a fully connected layer. The SoftMax function is applied to the
output layer to produce probabilities.

Each hyperspectral image had a pixel size of 512 × 512
(262,144), and each pixel had a spectral reflectance feature of 204
bands. It was unreasonable to train the CNN using all the pixels of

an entire image, as an image contains not only the target
weed samples with different growth states but also the background
regions and other weed spectral images. Therefore, before
the ENVI software was used to extract the spectral curve
from hyperspectral images, regions of interest (ROIs) (see
Supplementary Figure S1) of target weeds were selected (Tang
et al. 2017). An ROI mainly includes weed leaf regions to extract
representative target weed spectral curves while excluding the
influence of non-weed sample areas on spectral curves. To use the
CNN to identify and classify weeds, 20 ROIs were selected for each
image, each containing about 1,000 pixels. The neural network
consists of two parts: training and testing. In training, a training
data set was built with 7/10 sample data from all images. The
training data set’s samples each had an input vector and an output
vector. The input vector was the spectral curve, and the output
vector was the “one-hot coding” vector of the species. First of all,
the features of the spectral curve were extracted through the
convolution layer. To eliminate the adverse impacts of bad data on
the whole sample, batch normalization was adopted. A pooling
layer was adopted to reduce redundant data and retain key features.
Finally, the full-connection layer and SoftMax function were used
to classify and output the features. In testing, the remaining 3/10
weed sample data points were used for separate verification, and
the trainedmodel of the CNNwas verified. The CNN generated the
probability that a weed sample corresponded to a particular weed
species. For example, after neural network train and test, weed
pixel sample A had a 70% probability of being weed species A, a
20% probability of being weed sample B, and a 5% probability of
being weed sample C. So, each pixel was labeled with the name of
the species with the highest probability. This allowed each sampled
pixel in an image to be assigned to a certain species, with the image
as a whole being assigned to a particular species based on the
majority of sampled pixels.

Precision Evaluation

In this study, six performance evaluation indexes commonly used
in deep learning were used to verify the performance of the model
to judge the classification performance of various weeds, including:
train accuracy (TA), test accuracy (TEA), average accuracy (AA),
kappa coefficient (Kappa), producer’s accuracy (PA), and user’s
accuracy (UA). TA and TEA represent the ratio between the
correctly classified samples and the total number of samples in the
train set and the test set, respectively. AA represents the average of

Figure 3. Flowchart of the species classification framework modeled using a convolutional neural network.
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the ratio of the number of samples correctly predicted for all weed
species in the test set to the actual number of samples. Kappa is
often used to measure the degree of match between the predicted
sample and the actual sample (Zahisham et al. 2023). PA represents
the probability that a class is correctly identified, while UA
represents the probability that the classifier correctly classifies the
samples belonging to a particular category (Cao et al. 2019). The
formulas are as follows:

TA ¼
Pn
i¼1

xii

Pn
i¼1

Pn
j¼1

xij

[8]

TEA ¼
Pn
i¼1

yii

Pn
i¼1

Pn
j¼1

yij

[9]

AA ¼ 1
n

Xn
i¼1

yiiPn
j¼1

yij

[10]

Kappa ¼

Pn
i¼1

Pn
j¼1

yij �
Pn
i¼1

yii �
Pn
i¼1
i¼j

ðPn
i¼1

yij �
Pn
j¼1

yijÞ

ðPn
i¼1

Pn
j¼1

yijÞ
2
�Pn

i¼1
i¼j

ðPn
i¼1

yij �
Pn
j¼1

yijÞ
[11]

PAi ¼
yiiPn

j¼1
yij

[12]

UAj ¼
yjjPn

i¼1
yij

[13]

where n represents the total number of categories;
i ¼ 1; 2; 3; � � � ; n, represents the number of categories of real
samples; j ¼ 1; 2; 3; � � � ; n, represents the number of categories of
prediction samples; xij represents the number of samples in the
train set where the real class is class i, but the prediction class is
class j; xii represents the number of samples in the train set that are
both true and predicted to be of class i; yij represents the number of
samples of the prediction set where real class is class i, but the

prediction class is class j. yii represents the number of samples in
the prediction set that are both true and predicted to be of class i.
PAi represents PA of class i weeds, UAj represents the UA of class
j weeds.

Results and Discussion

Analysis of the Spectral Reflectance Curves of Different
Weeds

After weed sample data were collected in the field, the species of
weeds and the families to which they belong were determined.
ENVI software was used to extract and plot spectral reflectance
curves of the weeds, and PCA was performed in the wavelength
range of 397 to 981 nm.

The loading plot in Figure 4 shows the spectral characteristics of
various weeds. The first three PCs accounted for 99.7% of the total
sample variance, indicating that they represent most of the
information on weed types. According to the component score
coefficient matrix in Supplementary Table S1, among the three
PCs, PC1 was closely related to four weed species, namely, Indian
strawberry [Duchesnea indica (Andrews) Teschem.], stony stone-
crop [Hylotelephium spectabile (Boreau) H. Ohba], P. supina, and
Chinese violet (Viola philippica (Cav.). PC2 was mainly affected by
horseweed [Conyza canadensis (L.) Cronquist], H. spectabile,
woodland sage [Salvia ×sylvestris L. (pro sp.) [nemorosa ×
pratensis]; syn.: Salvia nemorosa L.], and white clover (Trifolium
repens L.), while PC3 mainly reflected the spectral characteristics
and related characteristic peaks of huo xiang [Agastache rugosa
(Fisch. & C.A. Mey.) Kuntze], H. spectabile, bai hua ma lin (Iris
lactea Pall.), and garden sorrel (Rumex acetosa L.). The peaks and
troughs in the figure provide the main characteristic wavelengths
of the weed spectrum. The loading diagram for PC1 shows that the
loading gradually increases from blue-violet light to infrared light
and peaks at 936 nm, indicating that weeds mainly absorb blue-
violet light and absorb little of longer wavelengths, especially in the
near-infrared region. The PC1, PC2, and PC3 loading diagrams
show obvious peaks and troughs at 554 nm, 678 nm, 763 nm, and
936 nm, as well as in nearby wavelength regions, and they show
different forms in different loading diagrams. In particular, the
PC3 loading pattern is more prominent, which shows that the
characteristics of A. rugosa, H. spectabile, I. lactea, and R. acetosa
are more special than other weeds at 554 nm, 678 nm, 763 nm, and
936 nm.

Figure 5 shows the mean spectra of various weeds after QUAC
and the spectral curves after various pretreatment methods,
including the true characteristics of weed samples after removing

Figure 4. The results of the principal component analysis in the wavelength range of 397–981 nm.
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radiation errors caused by atmospheric effects such as atmospheric
absorption and scattering. It can be seen that the spectral shapes of
the different weed samples are almost the same, indicating that
different weed species absorb similar light in different bands. This
may be due to the green color of weed leaves. As shown in Figure 5,
the characteristic wavelengths of various weeds appear at 551 nm,
678 nm, 760 nm, 935 nm, and nearby wavelength regions, which is
consistent with the PCA results and is mainly related to the
structure of the weeds’ leaf tissues (Oerke et al. 2016). In most
normal green plants, the pigments in the leaves are mainly
chlorophyll and carotenoid, with few to no other flavonoid
pigments. Chlorophyll mainly absorbs blue-violet and red light
and partially absorbs green light, so the overall color of the leaves
appears green. In addition, in the original spectral curve, there are
two absorption valleys in the bands of 397 to 504 nm and 678 nm,
while there is a small reflection peak near 551 nm. The 678-nm
band and its vicinity is one of the most commonly used bands for
discriminating crop classes and has proven to be important in the
study of crops (Cho et al. 2010; Eddy et al. 2014; Fassnacht et al.
2014; Mariotto et al. 2014). The FDS of the 721-nm band and

nearby areas is particularly significant, as it is located in the red
margin area of 680 to 780 nm and is closely related to chlorophyll
content and contains rich physiological information (such as
water content) (Farquhar et al. 1980). In addition, in the reflectance
curve, the infrared light band has high reflectance, which is
related to the fact that infrared light does not readily produce
photosynthesis. In the near-infrared region, the spectral reflectance
of most weed species shows a trend of gradual increase and
dynamic stability. The gradual declines in Carolina geranium
(Geranium carolinianum L.), H. spectabile, balloon-flower
[Platycodon grandiflorus (Jacq.) A. DC.], and other species are
speculated to be due to changes in leaf structure or the collapse of
mesophyll structure caused by abiotic stress (such as water-deficit
stress) (Li et al. 2022; Lou et al. 2022). This leads to increased
infrared light absorption by plants. Furthermore, reduced
fluorescence energy near the 760-nm wavelength may also be a
sign of a decline in the photosynthetic process. When solar energy
is absorbed by chlorophyll, it is used to fix carbon and dissipate
heat before emitting at a longer wavelength as chlorophyll
fluorescence (Krause and Weis 1991). On the other hand, there

Figure 5. Spectral curves for all weed species collected in in Heilongjiang Province, northeast China: (A) original andwith pretreatment, (B) Savitzky-Golay smoothing, (C) moving
averages, (D) first derivative spectrum, (E) second derivative spectrum, and (F) standard normal variate.
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is an absorption valley in the original spectral curve at 935 nm. This
sharp decline in spectral reflectance indicates that the reflectance of
the band with wavelengths>935 nm is not affected by the structure
of the leaf itself. The higher the proportion of water in plants, the
lower the spectral reflectance in the near-infrared ray (NIR) band
(780 to 1,300 nm) (Zhang et al. 2022). It is inferred that the
decrease in spectral reflectance at 935 nm may be caused by cell
fluid, the cell membrane, absorbed water, and carbon dioxide
emissions from the leaves (Qu et al. 2018).

Within a certain range, the higher the chlorophyll content, the
greater the efficiency of light energy conversion. At the same time,
chlorophyll mainly absorbs blue-violet and red light and absorbs
almost no green light. The green region reflectance, which
indicates the chlorophyll content, is the basis for inferring the
strength of photosynthesis. Of all the weed species, common
chickweed [Stellaria media (L.) Vill.] has the highest reflectivity in
the green area, with stickywilly (Galium spurium L.) second andH.
spectabile having the least. However, this does not directly reflect
the strength of photosynthesis, which is not only affected by

chlorophyll but also by other factors such as enzyme activity,
water, and leaf structure (Zhang et al. 2015; Zhang et al. 2019a).
The spectral curves of the weeds show that almost all the green and
infrared areas show high reflectance, while the blue-violet and
red-orange areas show low reflectance, which makes it difficult to
distinguish between species. Hence, further clustering and
visualization of the different weed species using PCA are needed.

KPCA

In this study, KPCA was used to extract six PCs from the high-
dimensional hyperspectral data to evaluate the relationship
between the original hyperspectral data samples. The results show
that the six PCs accounted for 98.83% of the total sample variance,
indicating that they represent most of the characteristic informa-
tion of the weed samples. Figure 6 shows the KPCA score plots of
the hyperspectral images of various weeds clustered under different
PC combinations. The PC1–PC2 score plot (Figure 6A) shows that
various types of weeds clustered in a certain range, but all weed

Figure 6. Hyperspectral images highlighting the classes clustered in the corresponding kernel principal component analysis (KPCA) score plots: (A) PC1–PC2, (B) PC2–PC6, (C)
PC3–PC4, and (D) PC3–PC5. See Figure 1 for full species names.
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clusters show differences. Meanwhile, PC2 and PC3 are linearly
correlated for most weeds. In the PC2–PC6 score plot (Figure 6B),
the clusters of lambsquarters (Chenopodium album L.), shepherd’s
purse [Capsella bursa-pastoris (L.) Medik.], D. indica, ground ivy
(Glechoma hederacea L.), lagopsis supina [Lagopsis supina (Steph.)
Ikonn.-Gal.], prostrate knotweed (Polygonum aviculare L.), and P.
grandiflorus are not well separated. The clusters of D. indica and L.
supina are mainly concentrated in the first and second quadrants,
while those of C. bursa-pastoris, G. hederacea, and P. grandiflorus
are clustered in the negative area of PC6. The PC3–PC4 score plot
(Figure 6C) shows the clustering separation among the categories
of C. bursa-pastoris, D. indica, G. hederacea, L. supina, S. media,
and V. philippica. The clusters of C. bursa-pastoris and L. supina
are mainly clustered in the first and second quadrants, which are
effectively distinguished from those of D. indica. In the PC3–PC5
score plot (Figure 6D), clusters are identified for the categories ofC.
album, narrowleaf hawksbeard (Crepis tectorum L.), D. indica, L.
supina, Java waterdropwort [Oenanthe javanica (Blume) DC.], S.
media, and V. philippica. In this case, their clusters are very close
and are not clearly separated. Based on the this information and

KPCA score maps, we can determine that all species of weeds show
differences. But the clusters of various weeds are concentrated in
the same areas, so it is not possible to distinguish all categories
clearly. It is possible to reduce the dimensions and visualize
the existing data. However, it is not possible to mine further
information from the KPCA about the growth status and health
status of the weeds, so it is necessary to analyze the existing spectral
characteristics from many aspects, such as the vegetation index.

Vegetation Index Analysis

Vegetation indices were used to study the differences in the growth
status and physiological activity of various weeds. Figure 7 shows
the changes in NDVI and PRI among different weed species. In
Figure 7A, the NDVI values reflect plant growth and physiological
conditions (Bai et al. 2019), indicating that the various weeds have
different growth levels. The NDVI of I. lactea is the highest,
followed by those of H. spectabile and fragrant plantain lily [Hosta
plantaginea (Lam.) Asch.], while those of C. bursa-pastoris and
celandine (Chelidonium majus L.) are the lowest, indicating that

Figure 7. Vegetation indices for all weeds collected in in Heilongjiang Province, northeast China: (A) normalized difference vegetation index (NDVI) and (B) photochemical
reaction index (PRI). For each species, themean vegetation index (represented by blue pentagons) is derived from all samples of a species (each image is represented by a different
color). The x-axis label shows the species names (see Figure 1 for the full names), and the y-axes represent NDVI or PRI.
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the physiological status of I. lactea was the highest. Capsella bursa-
pastoris andC.majuswere the weakest, whichmay be related to the
appearance and growth environment of these weeds. The NDVIs
of C. album, G. hederacea, urtica angustifolia (Urtica angustifolia
Fisch. ex Hornem.), urtica laetevirens (Urtica laetevirensMaxim.),
and V. philippica are similar, indicating that the growth of these
weeds was similar. In Figure 7B, the PRI indicates the lutein
content (Frechette et al. 2016). Compared with the NDVI in
Figure 7A, the PRI values are more stable, indicating that the lutein
content in the various weeds was extremely low. This may be
because the chlorophyll content of weeds increases sharply with
vigorous growth, while the rate of light utilization increases
gradually, thus inhibiting the secretion of lutein. It is worth noting
that in the PRI diagram of all weed species, the lutein ofD. indica is
the highest, which is speculated to be related to the regulation of
pigment regeneration and the size of the circulating pigment pool
(Xiao et al. 2018). However, due to the influences of environmental
and other factors in the process of data collection, enzyme activities
cannot be completely distinguished according to the vegetation
index, so it was necessary to use the CNN to classify the different
kinds of weeds.

CNN Classification of Weed Species

Tables 1 and 2 show the model TA, TEA, AA, Kappa, PA, and
UA of classification inference under the different pretreatment
methods. All models show very high accuracy in train and test. The
individual model has a TA of 100% and the TEA values range from
95.32% to 98.15%. The TEA values for all pretreatment methods
and original data were >95%, among which the TEA values for
SNV were the highest. Specifically, among all the pretreatment
methods, the accuracy using the FDS, SDS, and SNV methods was
higher than accuracy achieved using the original data, while the
accuracy using the two smoothing algorithms (MA and SG) was
lower, and the AA and kappa coefficients showed similar trends.
It should be noted that the overall classification accuracy generated
by SG was the lowest among the five pretreatment methods, being
2.13% lower than the original data, while the TEA of MA was
1.82% lower than the original data. The results show that the
smoothing algorithms can easily cause distortion in the process of
processing spectral data, especially SG. At the same time, it can be
seen that the precision of the differential spectrum is higher than
that of the original spectral data, indicating that the differential
spectrum can extract the features of weed spectral data very well.

Table 2 shows the PA (omission error) and UA (delegation
error) for species classification using CNNs. Most species have
high PA and UA (100%). However, the lower accuracy of some
species is consistent with a smaller sample size used for species
identification (Figure 1). This means that larger samples or more
samples per species could be considered in future studies. Another

option would be to use high-resolution hyperspectral images
obtained from UAVs. It is crucial to note that extracting 20,000
pixels from each sample of 435 images can cause autocorrelation
problems. However, the CNNmethod adopted in this study has the
ability to self-learn to discriminate between samples for classi-
fication. Meanwhile, increasing the sample size and amount of
input data can lead to higher accuracy. However, care should be
taken when identifying species using conventional classification
methods.

In this study, we combined data on the physiological activity of
weeds with hyperspectral characteristics of weeds and obtained
spectral data with low noise and effective information using
different pretreatment methods. This allowed 40 species of weeds
in an urban ecosystem to be distinguished. The results of the CNN
for species identification demonstrated that the spectral library
based on weed reflectance showed a good ability to identify weed
species. The TEA of the original spectral data of weeds was 97.45%,
in which SNV was used to obtain the largest TEA and Kappa
coefficients of 98.15% and 0.9810, respectively. The classification
results highlight the potential use of ground-based hyperspectral
camera data for vegetation research, particularly for weed
identification and the establishment of specific spectral libraries
for various vegetation and crop species. In recent years, researchers
have developed advanced techniques to improve the accuracy of
weed identification. Farooq et al. (2019) proposed a feature
extraction method, FCNN-SPLBP, using a multilayer fused
convolution neural network (FCNN) and a superpixel-based local
binary pattern (SPLBP). FCNN was used to extract textural
features from superpixels as input of a support vector machine for
weed classification. The recognition accuracy was 89.7%, and the
performance was better than that of CNN, LBP, FCNN, and
SPLBP. Tang et al. (2017) constructed a weed recognition model
based on K-means feature learning combined with CNNs. The
accuracy is 92.89%, 1.82% higher than that of the randomly
initialized CNN and 6.01% higher than that of the two-layer
network without fine tuning. Wei et al. (2014) used canonical
discriminant analysis and a partial least squares-discriminant
analysis (PLS-DA) model to identify broadleaf grass species with
an accuracy of 90.91%. It should be noted that broadleaf species are
easier to identify than narrow-leaved ones, because of more
uniform spectral data collection (Li et al. 2021). This study not only
distinguishes broadleaf grass species, but also identifies narrow-
leaved ones. The accuracy of weed identification using hyper-
spectral imaging technology and a CNN was 98.15%, which is
8.45% higher than identification using FCNN-SPLBP, and 5.26%
higher than identification using a weed recognition model based
on K-means feature learning combined with a CNN. It is 7.24%
higher than identification using canonical discriminant analysis
and a PLS-DA model. The results show that the convolutional
network classification model established in this study is superior to
other techniques for vegetation identification. It is worth noting
that shallow CNN has better classification performance than deep
neural networks, and it is easier to apply in practical situations due
to its simple structure and fast running speed (Han et al. 2020).

The PA, UA, and overall accuracy of each classification model
shows that the preprocessing method has a great influence on
species identification based on hyperspectral images. In this paper,
the three preprocessing methods based on the original data—FDS,
SDS, and SNV—obtained the highest predictive accuracy,
while the two smoothing algorithms were less accurate. The
results show that, compared with FDS, SDS, and SNV, the
smoothing algorithms were prone to distortion and not suitable for

Table 1. Overall accuracy of all species identification models.a

Model AA TA TEA Kappa

Original 97.58% 100.00% 97.45% 0.9738
FDS 98.05% 100.00% 98.05% 0.9800
SDS 97.90% 100.00% 97.88% 0.9782
SNV 98.16% 100.00% 98.15% 0.9810
MA 95.62% 100.00% 95.63% 0.9551
SG 95.40% 100.00% 95.32% 0.9519

aAbbreviations: AA, average accuracy; FDS, first derivative spectrum; Kappa, kappa
coefficient; MA, moving averages; SDS, second derivative spectrum; SG, Savitzky-Golay
smoothing; SNV, standard normal variate; TEA, test accuracy; TA, train accuracy.
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distinguishing weed species or challenging classification scenarios,
and the difference in spectral characteristics was not significant.
Other pretreatment methods can be used to improve the predictive
accuracy. On the other hand, the PA and UA were low for many
weeds, especially D. nemorosa, probably because it was the least-
sampled of all weeds. This indicates that increasing the number of
samples may improve the PA and UA for other species. Of all
species, C. canadensis was the easiest to identify, probably because
of its leaf structure (Li et al. 2021). It is important to note that
this species had the most samples collected overall. According to
the data obtained using the original spectrum, PCA, and the
differential spectrum, 554 nm, 678 nm, 763 nm and 936 nm and
their adjacent spectral bands are considered to be the most
prominent bands reflecting the characteristics of weeds. They can
indirectly reflect the physiological activity of weeds and could play
a key role in weed recognition.

In addition to the weeds’ species and physiological activity,
their spectral characteristics may also vary according to environ-
mental conditions. In urban ecosystems, different soil and climate

conditions can lead to different growth conditions and the
presence of different weed species (Carlesi et al. 2013;
Steponaviciene et al. 2021). For example, hyperspectral analysis
of 48 experimental plots of temperate species showed a significant
relationship between growth characteristics and spectral character-
istics at different soil nitrogen concentrations, with broadleaf
grasses being particularly responsive to nitrogen (Jabran and
Doğan 2020;Waheed et al. 2006). Another study showed that there
were significant differences in the canopy reflectance character-
istics of weeds in environments with different temperatures.
Higher temperatures increased the amplitude and variability of leaf
reflectance in the 480- to 670-nm region, while the opposite effect
occurred in the 720- to 810-nm region (Zhang and Slaughter
2011). As reported in a recent study, higher temperatures cause
plants to distribute more biomass to their stems, causing their
leaves to expand and promoting light capture and assimilation
(Zhang et al. 2014). In addition, the vegetation index may change
with the change of weed growth stage. A vegetation index shows
statistical differences in different weed phenological stages and

Table 2. Producer’s accuracy (omission error) and user’s accuracy (delegation error) using convolutional neural network classification to identify species collected in
Heilongjiang Province, northeast China.a

Species

PA UA

Original FDS SDS SNV MA SG Original FDS SDS SNV MA SG

Artemisia annua L. 0.96 0.96 1.00 1.00 0.96 1.00 0.95 1.00 0.98 0.98 0.98 0.98
Agrostis canina L. 1.00 0.98 0.98 0.96 0.96 0.96 1.00 0.96 0.96 0.98 0.94 0.96
Artemisia capillaris Thunb. 1.00 0.97 0.97 1.00 0.95 0.92 0.91 0.92 0.94 0.97 0.95 0.94
Arctium lappa L. 0.90 0.96 1.00 1.00 1.00 0.98 1.00 1.00 0.96 1.00 0.90 1.00
Agastache rugosa (Fisch. & C.A. Mey.) Kuntze 0.98 0.96 1.00 0.96 0.88 0.95 0.91 0.96 1.00 0.98 0.98 0.95
Chenopodium album L. 1.00 0.97 1.00 0.94 0.95 0.93 1.00 1.00 1.00 1.00 0.97 1.00
Cirsium arvense (L.) Scop. var. integrifolium

Wimm. & Grab.
1.00 0.94 0.93 0.96 0.82 0.76 1.00 0.94 0.93 0.98 0.86 0.84

Capsella bursa-pastoris (L.) Medik. 1.00 0.94 0.89 0.98 0.89 0.85 1.00 0.94 0.89 0.95 0.81 0.76
Conyza canadensis (L.) Cronquist 0.97 0.92 0.93 0.96 0.96 0.89 1.00 0.92 0.96 1.00 0.93 0.85
Chelidonium majus L. 1.00 1.00 0.98 0.98 0.92 0.98 1.00 0.97 0.96 1.00 0.97 0.96
Carduus nutans L. 0.86 1.00 1.00 1.00 0.95 0.95 0.95 0.98 0.93 0.98 0.87 0.95
Catolobus pendulus (L.) Al-Shehbaz 1.00 0.98 1.00 1.00 1.00 0.93 1.00 1.00 1.00 0.97 1.00 1.00
Crepis tectorum L. 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.97
Duchesnea indica (Andrews) Teschem. 1.00 0.98 0.95 0.95 0.88 0.84 1.00 0.98 0.95 0.95 0.93 0.95
Draba nemorosa L. 1.00 0.95 0.87 0.95 0.93 0.94 0.86 0.95 0.93 0.95 0.90 0.85
Fallopia multiflora (Thunb.) Haraldson 0.98 0.93 0.97 0.97 0.92 0.88 1.00 0.95 0.97 0.94 0.95 0.91
Geranium carolinianum L. 1.00 0.98 1.00 1.00 0.97 0.97 0.89 0.97 0.97 0.94 0.94 0.91
Glechoma hederacea L. 1.00 0.98 0.98 0.98 0.95 0.95 1.00 0.98 1.00 1.00 0.98 0.93
Galium spurium L. 1.00 1.00 0.98 0.98 0.95 0.97 1.00 0.98 1.00 1.00 0.98 0.97
Hosta plantaginea (Lam.) Asch. 0.92 1.00 1.00 0.98 1.00 0.98 0.95 0.98 0.98 0.97 0.92 0.95
Humulus scandens auct. non (Lour.) Merr. 1.00 0.99 1.00 0.97 0.96 0.96 0.97 0.99 1.00 1.00 0.99 0.99
Hylotelephium spectabile (Boreau) H. Ohba 1.00 0.98 1.00 1.00 0.94 0.98 1.00 0.98 1.00 0.98 1.00 0.96
Iris lactea Pall. 0.96 1.00 1.00 1.00 0.96 0.98 0.98 1.00 1.00 1.00 0.92 0.98
Lepidium apetalum Willd. 1.00 1.00 1.00 0.98 1.00 0.97 1.00 0.98 1.00 0.98 0.97 1.00
Lagopsis supina (Steph. ex Willd.) Ikonn.-Gal. 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Oenanthe javanica (Blume) DC. 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Polygonum aviculare L. 1.00 1.00 1.00 0.98 1.00 1.00 0.91 0.98 0.95 0.98 1.00 0.93
Plantago depressa Willd. 0.93 0.95 0.93 0.93 0.90 0.98 0.95 0.95 1.00 0.95 0.95 0.98
Platycodon grandiflorus (Jacq.) A. DC. 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.96
Persicaria lapathifolia (L.) Gray 1.00 1.00 1.00 0.96 0.96 0.98 1.00 1.00 0.96 1.00 1.00 1.00
Potentilla supina L. 0.91 1.00 0.99 0.99 0.97 0.99 0.97 0.97 0.97 0.97 0.99 1.00
Rumex acetosa L. 1.00 1.00 0.98 0.96 0.96 0.96 0.88 1.00 1.00 1.00 0.98 0.94
Stellaria media (L.) Vill. 0.97 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Salvia ×sylvestris L. (pro sp.) [nemorosa × pratensis] 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Taraxacum mongolicum Hand.-Mazz. 0.93 0.98 0.93 1.00 0.91 0.93 0.95 1.00 0.93 0.93 0.85 0.98
Trigonotis peduncularis (Trevir.) Benth.

ex Baker & S. Moore
0.97 0.97 0.95 0.97 0.98 1.00 0.95 0.98 0.98 0.98 0.92 0.97

Trifolium repens L. 0.92 0.97 0.98 1.00 0.97 0.94 1.00 1.00 1.00 1.00 1.00 0.98
Urtica angustifolia Fisch. ex Hornem. 1.00 1.00 1.00 1.00 0.98 0.97 1.00 1.00 1.00 1.00 0.98 1.00
Urtica laetevirens Maxim. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Viola philippica Cav. 0.96 0.99 0.97 0.99 0.96 1.00 0.99 0.99 1.00 0.97 0.96 0.96

aAbbreviations: FDS, first derivative spectrum; MA,moving averages; PA, producer’s accuracy; SDS, second derivative spectrum; SG, Savitzky-Golay smoothing; SNV, standard normal variate; UA,
user’s accuracy.
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provides a valuable reference for the differentiation of
weeds in different growth periods (Pena-Barragan et al.
2006). Due to the limitations of the conditions, the current
study did not consider the physiological activity of various
weeds in different growing environments and growth periods.
Future studies can close this gap by targeting different
growth stages of a few more common weed species that grow
in different environments.

This study investigated the application of hyperspectral images
to accurately classify urban weeds. The model generated can be
altered and updated to effectively change species composition,
community structure, and functional characteristics of weeds
through continuous detection and control to adapt to the process
of urbanization. It can be applied to identify relationships between
urbanization and ecological/environmental impacts and can be
used to support intensive urbanization while protecting the
ecological environment. It also can be used to identify invasive
plants and prevent them from adversely affecting native flora and
fauna, public health, and ecosystem services. In addition, the
results acquired from hyperspectral imagery give superior accuracy
(97.29%) when compared with results from studies that used
multispectral data in urban contexts (Hahn et al. 2021). Many
studies have shown that hyperspectroscopy improves the accuracy
of weed mapping by providing finer spectral resolution (Che’Ya
et al. 2021; Lauwers et al. 2020). In addition, Ferreira et al. (2016)
showed that when short-wave infrared (SWIR) bands are
combined with visible/near-infrared (VNIR) bands to map
vegetation, the accuracy is improved by 14% to 17%, while the
accuracy of hyperspectral data is 15% higher than that possible
with multispectral VNIR and SWIR images. Cho and Lee (2014)
also noted that SWIR offers an additional benefit for classifying
vegetation. Therefore, through the addition of hyperspectral SWIR
imaging, future investigations of urban weed species identification
could profit from this versatility.

In this study, hyperspectral images of 40 species of weeds from
23 families were obtained using terrestrial hyperspectral remote
sensing technology. A total of 435 hyperspectral images were
obtained. Various preprocessing methods (FDS, SDS, SNV,
MA, and SG) were used to maximize the retention of spectral
characteristics while removing the influence of noise. The spectral
profile, PCA, and spectral reflectance curves of all weed species in
different bands were analyzed, and the characteristic wavelengths
of weeds were obtained, including 554 nm, 678 nm, 763 nm, and
936 nm. These bands reflect the different physiological activities of
different weed species, such as A. rugosa, C. nutans, T. repens, and
other species. The differences in NDVI and PRI of different species
of weeds were analyzed. The results showed that the two vegetation
indexes had the same trend, but the wide-band vegetation index
was more beneficial for the detection and evaluation of vegetation
status than the narrow-band vegetation index. However, using a
vegetation index for high-precision vegetation monitoring is a
challenging task. Additionally, a framework for a CNN was
established to identify species from hyperspectral data. The results
show that the CNN method has high accuracy, and the
classification results of different pretreatment methods range
from 95.32% to 98.15%, in which SNVþCNN achieves the best
effect. The results of this study can be the basis for a
recommendation to develop a spectral library for monitoring
physiological activity and species identification of various weeds in
northeast China. It is also a representative study of mesotemperate
weed species with high diversity in an intense urban environment
with a plains topography.
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