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Abstract This paper provides mathematical analysis of optical tomography in a situation when the
examined object, for example the human brain, is strongly scattering with non-scattering inclusions.
Light propagation in biological tissue is often modelled by the diffusion approximation of the radiative
transfer equation. To be justified, the diffusion approximation demands that the medium is strongly
scattering. Naturally, this is not true for non-scattering inclusions, for which some other model is needed.
This is found through geometrical optics. Combination of the two models leads to an elliptic partial
differential equation with boundary conditions on the outer boundary as well as on the boundaries of
the non-scattering regions. The well-posedness of this forward problem is the main concern of this work.
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1. Introduction

Over the past decade or so the scientific world has shown a growing interest in the research
field known as biomedical optics. The development of a diagnostic imaging modality based
on near-infrared (NIR) radiation has been considered to be one of the most important
goals, and probably to be one of the most challenging. The progress towards optical
tomography has, however, suffered from the lack of suitable instrumentation and an
inadequate analytical treatment of the reconstruction problem. The aim of this work is
to help solve the latter difficulty by modelling optical tomography mathematically in the
presence of weakly scattering regions.

NIR tomography research has focused on a few possible low-cost clinical applications.
The most important lines of research are, arguably, screening for breast cancer and
the development of a cerebral imaging modality for mapping structure and function
in newborn infants, and possibly adults too. The latter imaging problem is, in a way,
the more difficult one, since it involves stronger absorption and scattering [1]. Further,
the job is not made any easier by the non-scattering inclusions filled with cerebrospinal
fluid—the main concern of this text.
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In optical tomography a physical body is illuminated with a flux of NIR photons and
the outcoming flux is measured on the surface of the body. The idea is to reconstruct
the optical properties inside the body by using the measured pairs of input and output
fluxes. In order to have any success in the ill-posed reconstruction process, an appropriate
model of photon transport inside the body is needed: the model should be in accordance
with the experimental results and it should lead to a well-posed direct problem.

The models of photon transport used when modelling the optical imaging problem are
usually derived under the assumption that the medium in question is strongly scattering,
which means that for the medium, scattering is more characteristic than absorption.
This kind of assumption is valid for many tissues [1], for example the human breast and
brain, but not at all for cavities filled with weakly scattering spinal fluid. Actually, all
attempts to solve the inverse problem for the optical properties inside the examined object
are doomed if no alternative model of photon transport is used for weakly scattering
regions [5].

In this text we examine the radiosity-diffusion model [5], which is a combination of
the diffusion approximation of the radiative transfer equation for strong scattering and
geometrical optics for non-scattering regions. The aim is to prove that this model induces
a well-defined direct problem. For other aspects of optical tomography, such as recon-
struction methods and technical, physical and medical details, we refer to the excellent
papers [1], [7], [2] and [5].

The text is organized as follows. Section 2 introduces the physical concepts, the
radiosity-diffusion model and formulates the classical direct problem. In § 3 we exam-
ine with care an integral operator that is needed for sewing together the strongly and
non-scattering regions. The mathematical bases of this text can be found in this section.
Finally, § 4 formulates the weak direct problem and proves the existence of a unique
solution.

2. Approximating light propagation

Propagation of electromagnetic radiation in a medium is governed by Maxwell’s equa-
tions. Particularly, this holds for the case of interest here: namely, NIR light travelling
through some biological tissue. However, since the wavelength of NIR light is small com-
pared with the characteristic distances of human tissue, the exact models are totally
useless for us. Therefore, we will model light propagation by using the radiative transfer
equation, also known as the Boltzmann equation, and its diffusion approximation. We will
handle the strongly scattering and the non-scattering regions separately.

2.1. The radiative transfer equation

Let Ω ⊂ R
n, n = 2 or n = 3, be a bounded body with a C2-boundary and connected

complement. We consider radiation in the body Ω. The first concept we introduce is the
radiation flux density. Let θ̂ ∈ Sn−1 be a direction vector. The radiation flux density at
x ∈ Ω at time t ∈ R through the infinitesimal solid angle ds in direction θ̂ is written as

dJ(x, t, θ̂) = I(x, t, θ̂)θ̂ ds(θ̂),
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where the amplitude I(x, t, θ̂) is called the radiance. In the framework of the transport
theory, this scalar function satisfies the radiative transfer equation

1
c
It(x, t, θ̂) + θ̂ · ∇I(x, t, θ̂) + (µa(x) + µs(x))I(x, t, θ̂)

− µs(x)
∫

Sn−1
f(x, θ̂, ω̂)I(x, t, ω̂) ds(ω̂) = q(x, t, θ̂), (2.1)

where c is the speed of light (assumed to be constant), the positive scalar functions µa

and µs are the scattering and absorption coefficients, respectively, and q denotes the
source term, which is assumed to vanish in this discussion. The kernel f is the scattering
phase function, satisfying the following three conditions:∫

Sn−1
f(x, θ̂, ω̂) ds(θ̂) =

∫
Sn−1

f(x, θ̂, ω̂) ds(ω̂) = 1, (2.2)

f(x, θ̂, ω̂) � 0, x ∈ R
n, θ̂, ω̂ ∈ Sn−1, (2.3)

f(x, θ̂, ω̂) = f(x,−ω̂, −θ̂), θ̂, ω̂ ∈ Sn−1. (2.4)

Note that due to (2.2) and (2.3), for fixed x, f may be regarded as a probability distribu-
tion on Sn−1 with respect to either of the variables θ̂ and ω̂. For more transport theory
consult, for example, [3].

To end this subsection, we introduce some concepts that turn out to be useful to us
later. Given the radiation flux density, the flux through an infinitesimal oriented surface
patch n̂ dS is obtained by integrating the flux density over all radiation directions:

dΦ(x, t) =
(∫

Sn−1
dJ (x, t, θ̂)

)
· n̂ dS

=
(∫

Sn−1
I(x, t, θ̂)θ̂ ds(θ̂)

)
· n̂ dS

= J(x, t) · n̂ dS, (2.5)

where the vector field J is the energy current density. We also define the scalar function

ϕ(x, t) =
∫

Sn−1
I(x, t, θ̂) ds(θ̂),

called the energy fluency, which will turn out to be our most important playmate.

2.2. Strong scattering

Being an integrodifferential equation, the radiative transfer equation, as discussed
above, leads easily to numerical problems of prohibitive size if no simplifications are
made. The commonly used simplification is called the diffusion approximation, which
has been shown to be justified for materials that are much more scattering than absorb-
ing [5]—brain tissue for example.

We begin by introducing a projection operator that forms the heart of the diffusion
approximation.

https://doi.org/10.1017/S0013091501000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000360


260 N. Hyvönen

Definition 2.1. Let θ̂ = (θ1, . . . , θn) ∈ Sn−1 be our variable and let

H1 = span{1, θ1, . . . , θn} ⊂ L2(Sn−1).

We define P to be the orthogonal projection mapping L2(Sn−1) onto H1.

Note that the definition above makes sense since H1 is clearly a closed subspace of
L2(Sn−1), and thus the orthogonal projection is well defined [12]. Definition 2.1 is usually
extended by letting Pn be the orthogonal projection operator that maps L2(Sn−1) onto
spherical harmonics of order n; since linear polynomials are always harmonic, P1 = P .

Next we write the radiative transfer equation in a simpler form

BI = 0,

where B is the linear integrodifferential operator induced by (2.1), and define what we
mean by the diffusion approximation as follows.

Definition 2.2. The diffusion approximation of the radiative transfer equation (2.1)
is defined as

PBPI = 0. (2.6)

The diffusion approximation, as it is given in Definition 2.2, is of course very abstract.
With a little work [8], however, equation (2.6) can be written out explicitly. The following
lemma presents the resulting equation.

Lemma 2.3. The explicit form of the diffusion approximation is(
1
c
ϕt + µaϕ + ∇ · J

)
+ n

(
1
c
Jt +

1
n

∇ϕ + (µa + µs(I − B))J
)

· θ̂ = 0, (2.7)

where I ∈ R
n×n is the identity matrix and B(x) ∈ R

n×n is given by components as

Bjk =
n

|Sn−1|

∫
Sn−1

∫
Sn−1

θjωkf(x, θ̂, ω̂) ds(θ̂) ds(ω̂). (2.8)

In order to handle equation (2.7) efficiently, some information on matrix B is needed.
Hence we state a lemma that is a straightforward consequence of properties (2.2), (2.3)
and (2.4).

Lemma 2.4. The real matrix B(x) ∈ R
n×n, introduced in Lemma 2.3, is symmetric

and its spectrum is a subset of [−1, 1] ⊂ R. Particularly, it holds that

|B(x)| � 1, x ∈ Ω.

From Lemma 2.3, one sees that the diffusion approximation leads to a coupled system
of equations, one being the part independent of θ̂, the other one being the multiplier of
θ̂. In effect, ϕ and J should satisfy the system

1
c
ϕt = −∇ · J − µaϕ,

1
c
Jt = − 1

n
∇ϕ − (µa + (I − B)µs)J .
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In this text we are interested in the case where the input field is modulated with a fixed
harmonic frequency, i.e.

I(x, t, θ̂) = e−iωtÎ(x, θ̂).

Denoting the wavenumber by k = ω/c, the diffusion approximation yields a new pair of
equations

ikϕ = ∇ · J + µaϕ, (2.9)

ikJ =
1
n

∇ϕ + (µa + (I − B)µs)J , (2.10)

where, for simplicity, we have denoted the time-harmonic amplitudes of ϕ and J by the
same symbols. By solving equation (2.10) for J and substituting into (2.9), we get the
equation

∇ · K∇ϕ + (ik − µa)ϕ = 0, (2.11)

where
K = (1/n)(−ikI + µaI + (I − B)µs)−1. (2.12)

It turns out that K really exists if some physically reasonable conditions are posed on
the coefficients µa and µs. The properties of the matrix K are discussed in more detail
in § 4.

Next we aim to describe the boundary conditions of the regions with strong scattering.
Consider a diffusive region Ωs ⊂ Ω with a C2-boundary ∂Ωs. We will denote the exterior
unit normal vector at x ∈ ∂Ωs by n̂(x). The following simple lemma gives us all the
information we need. The proof is again omitted [8].

Lemma 2.5. Within the diffusion approximation, the total flux inwards (−) and
outwards (+) at x ∈ ∂Ωs is given by

Φ± = ±γϕ + 1
2 n̂ · J , (2.13)

where the dimension-dependent constant γ is

γ =
Γ (n/2)√

π(n − 1)Γ ((n − 1)/2)
. (2.14)

In particular, in dimensions n = 2, 3 we have

γ2 = 1/π, γ3 = 1
4 .

The expression for the fluxes Φ± above differs slightly from the one given in most
references. Because the diffusion approximation is only an approximation, one cannot
really say which convention is the correct one. The expression given in Lemma 2.5 is,
however, carefully conducted from the mathematical model described by Definition 2.2
[8], and so it is one possible choice.

Denoting once again the time-harmonic amplitudes by the same symbols and solving
(2.10) for J , we conclude that for the time-harmonic case the boundary conditions read

Φ± = ±γϕ − 1
2 n̂ · K∇ϕ, (2.15)

where the matrix K is defined by (2.12).
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Figure 1. Light propagation in Ωn.

2.3. Non-scattering regions

In weakly scattering regions the diffusion approximation is no more valid [5] and so we
will have to come up with something new. Let Ωn ⊂ Ω be a non-scattering region with
a C2-boundary. Because in a non-scattering region all the radiation is in the forward
direction, we easily see that in Ωn equation (2.1) yields the relation

(1/c)It(x, t, θ̂) + θ̂ · ∇I(x, t, θ̂) + µ̃aI(x, t, θ̂) = 0,

where µ̃a is the absorption coefficient that is assumed to be constant in Ωn. Since we are
still interested mainly in the time-harmonic case, I(x, t, θ̂) = Î(x, θ̂)e−iwt, we have

(µ̃a − ik)Î + θ̂ · ∇Î = 0,

yielding an attenuated plane wave solution

Î ∼ e−(µ̃a−ik)θ̂·x.

Figure 1 illustrates the situation. Let x ∈ ∂Ωn be a boundary point of the non-
scattering region. We are looking for an approximate expression for the photon flux
from Ωn at x. Let us denote by n̂ = n̂(x) the unit normal vector of ∂Ωn pointing into
Ωn, and let θ̂ denote a direction vector with θ̂ · n̂(x) < 0. Consider the photon flux at
x coming from the direction −θ̂. Let y(θ̂) ∈ ∂Ωn denote the first boundary point where
the line emanating from x into direction −θ̂ hits the boundary ∂Ωn. Since the radiation
propagates with no scattering, we know that the radiation from this direction originates
from y(θ̂). Hence, the contribution to the radiation flux density at x, originating from
direction −θ̂, is

dJ(x, θ̂) = θ̂Î(y, θ̂)e−(µ̃a−ik)θ̂·(x−y) ds(θ̂).

In accordance with (2.5), at x the total flux out of the non-scattering region is obtained
as an integral

Φ−(x) =
∫

{θ̂·n̂(x)<0}
n̂(x) · dJ(x, θ̂).
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We want to express this formula as an integral over the boundary ∂Ωn. By elementary
geometry, we observe that the surface element dS(y) of ∂Ωn and the element ds(θ̂) of
the unit sphere are related through

θ̂ · n̂(y) dS(y) = |x − y|n−1 ds(θ̂), θ̂ =
x − y

|x − y| .

To relate the value Î(y, θ̂) to the flux quantities, we assume that the total flux into the
non-scattering region distributes uniformly to all directions, i.e. Î(y, θ̂) = Î0(y) does not
depend on θ̂; this kind of assumption seems pretty reasonable when one observes it from
the diffusion approximation’s point of view. Thus,

Φ+(y) =
∫

{θ̂·n̂(y)>0}
(n̂(y) · θ̂)Î0(y) ds(θ̂)

=
|Sn−2|
n − 1

Î0(y).

Substituting the obtained results, we get the formula

Φ−(x) =
n − 1
|Sn−2|

∫
∂Ωn

v(x, y)
(n̂(x) · (x − y))(n̂(y) · (x − y))

|x − y|n+1 e−(µ̃a−ik)|x−y|Φ+(y) dS(y)

= GΦ+(x), (2.16)

where v(x, y) is a visibility function,

v(x, y) =

{
1, if tx + (1 − t)y ∈ Ωn for 0 < t < 1,

0, otherwise.
(2.17)

Thus we have obtained a relation between inward and outward fluxes on the boundary
of the non-scattering region, which is exactly what we were looking for.

2.4. Formulation of the direct problem

We have now gathered enough information on the strong scattering, the non-scattering
regions and the boundary conditions to be able to formulate the direct problem in the
strongly scattering region. Let us assume that our open domain Ω consists of the open
non-scattering region Ωn and the strongly scattering region Ωs = Ω \ Ω̄n. All the bound-
aries are assumed to be of the class C2 and Ωn is assumed to lie strictly inside Ω, meaning
that dist(∂Ωn, ∂Ω) > 0. It is also assumed that no reflection of light occurs on the bound-
aries ∂Ω and ∂Ωn. The purpose of this last restriction is to keep things simple in order
to be able to concentrate on the more important questions. It should not be too difficult,
however, to extend the results of this work to situations in which reflection of light is
allowed.
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From now on we will consider only the time-harmonic case. Let Φin denote the known
input flux from the outside source on the boundary ∂Ω. According to equation (2.15),
in the framework of the diffusion approximation, the time-harmonic amplitude of the
energy fluency ϕ must satisfy the ‘outer’ boundary condition

Φin = −(γϕ + 1
2 n̂ · K∇ϕ)|∂Ω .

On the other hand, we know that equation (2.15) is also valid on the boundary ∂Ωn.
Thus, using relation (2.16), we get

−(γϕ + 1
2 n̂ · K∇ϕ)|∂Ωn

= G(γϕ − 1
2 n̂ · K∇ϕ)|∂Ωn ,

which is equivalent to the ‘inner’ boundary condition

ϕ|∂Ωn = − 1
2γ

(I + G)−1(I − G)(n̂ · K∇ϕ)|∂Ωn .

We may now state the forward problem as follows.

Definition 2.6. Let Ω and Ωn be as described above. The forward problem in the
strongly scattering region is to find a function ϕ satisfying

∇ · K∇ϕ + (ik − µa)ϕ = 0 (2.18)

in Ω \ Ω̄n, with the boundary conditions

Φin = −(γϕ + 1
2 n̂ · K∇ϕ)|∂Ω (2.19)

and

ϕ|∂Ωn = − 1
2γ

(I + G)−1(I − G)(n̂ · K∇ϕ)|∂Ωn . (2.20)

The well-posedness of this problem is the main concern of our work. It turns out that
under physically reasonable conditions the weak problem corresponding to the classical
one introduced in Definition 2.6 has a unique solution. However, before the weak forward
problem can be formulated and the unique existence of the solution can be proved, we
need to know more about the behaviour of the boundary integral operator G.

3. Operators G and I ± G

Our goal in the next two sections is to formulate the weak problem corresponding to
the direct problem introduced in Definition 2.6 and to prove that there exists a unique
solution for it. However, since we have too little information about the operator G, we
are forced to leave the actual playing with the weak problem to the next section and to
concentrate now on the integral operators in hand. Sometimes, for the sake of motivation,
it would be advisable, however, to sneak ahead and have a look at the stuff in § 4.
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3.1. On the operator G
We start this section by making our notation a little simpler.

Definition 3.1. We define kernels h0(x, y) and h(x, y) as follows:

h0(x, y) =
n − 1
|Sn−2|v(x, y)

(n̂(x) · (x − y))(n̂(y) · (x − y))
|x − y|n+1 ,

where v(x, y) is the visibility function given in (2.17), and

h(x, y) = h0(x, y)e−(µ̃a−ik)|x−y|.

Next we want to say something about the function spaces on which G operates. The
following lemma gives us useful and intuitively acceptable information that lets us proceed
a bit further.

Lemma 3.2. Let D ⊂ R
n be a bounded region with a C2-boundary ∂D. Then

|n̂(x) · (x − y)| < L|x − y|2 for all x, y ∈ ∂D,

where L is some positive constant.

Proof. For proof consult [4]. �

Corollary 3.3. The kernel h (and h0) belongs to space L2(∂Ωn × ∂Ωn).

Proof. Using Lemma 3.2 one easily sees that

|h(x, y)| � |h0(x, y)|

� Cn

|x − y|n−3 ,

which clearly proves the statement for n = 2 and n = 3. �

It is a straightforward consequence of Corollary 3.3 and the Schwarz inequality that
the operator G belongs to L(L2(∂Ωn)). This kind of weak result is not, however, by itself
satisfactory for our purposes and so we state something stronger, and omit the proof.

Theorem 3.4. G : L2(∂Ωn) → L2(∂Ωn) is a compact linear operator for which

‖G‖L(L2(∂Ωn)) � ‖h‖L2(∂Ωn)×L2(∂Ωn). (3.1)

Proof. See [11]. �

Next we investigate the kernel h0 in more detail.

Lemma 3.5. For kernel h0 it is true that∫
∂Ωn

h0(x, y) dS(x) =
∫

∂Ωn

h0(x, y) dS(y) = −1.
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Proof. The first equality is apparent because of the symmetry of h0. The second
equality is easily proved by proceeding in the opposite direction to the one we followed
in § 2: we use the relation between elements dS(y) and ds(θ̂), namely

θ̂ · n̂(y) dS(y) = |x − y|n−1 ds(θ̂), θ̂ =
x − y

|x − y| ,

change the integration to be over directions rather than the boundary ∂Ωn and we are
already there:

∫
∂Ωn

h0(x, y) dS(y) =
n − 1
|Sn−2|

∫
∂Ωn

v(x, y)
(n̂(x) · (x − y))(n̂(y) · (x − y))

|x − y|n+1 dS(y)

=
n − 1
|Sn−2|

∫
{θ̂·n̂(x)<0}

n̂(x) · θ̂ ds(θ̂)

= −1.

�

One should note that the above result tells us the following: if the non-scattering
region Ωn is also non-absorbing, meaning that µ̃a = 0, a unit input flux of direct current
(k = 0) on the boundary ∂Ωn should, according to our model, result in a unit output
flux of direct current on ∂Ωn.

Despite the interesting note we made above, we will assume from now on that µ̃a > 0.
From the physical point of view, this kind of assumption sounds reasonable, and from
the mathematical point of view, it keeps us out of trouble when proving the existence of
the inverse operators. We end the discussion on the basic properties of the operator G
with a neat norm estimate.

Lemma 3.6. The operator G belongs to space L(L1(∂Ωn)), with the norm estimate

‖G‖L(L1(∂Ωn)) < 1.

Proof. Let u ∈ L1(∂Ωn). Then it holds that

‖Gu‖L1(∂Ωn) =
∫

∂Ωn

∣∣∣∣
∫

∂Ωn

h(x, y)u(y) dS(y)
∣∣∣∣ dS(x)

<

∫
∂Ωn

∫
∂Ωn

|h0(x, y)| |u(y)| dS(y) dS(x)

=
∫

∂Ωn

|u(y)|
∫

∂Ωn

|h0(x, y)| dS(x) dS(y)

= ‖u‖L1(∂Ωn),

where we used Fubini’s Theorem, Lemma 3.5 and the fact that h0 � 0 (draw a picture).
�
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Note that the above result actually proves that the inverse operators (I ± G)−1 ∈
L1(∂Ωn) exist. Together with the Fredholm alternative, Lemma 3.6 could also be used
to prove the existence of the operators (I ±G)−1 ∈ L2(∂Ωn). However, since we obtain a
result that is a little bit stronger as a byproduct of spectral analysis in the next subsection,
we postpone the more profound considerations of this matter.

3.2. Some spectral analysis

Since G : L2(∂Ωn) → L2(∂Ωn) is compact, spectral analysis provides an efficient way
of gathering information on its behaviour. The following easy variant of the well-known
theorem concerning the canonical form of compact operators [10] forms the basis of our
work.

Theorem 3.7. Let H be a Hilbert space and let T : H → H be linear and compact.
Assume that N (T ) and N (T ∗) are isomorphic. Then there exists orthonormal bases {φk}
and {ψk} of H consisting of the eigenfunctions of T ∗T and T T ∗, respectively, with the
properties

T φk = λkψk, T ∗ψk = λkφk, for all k ∈ N. (3.2)

Further, if µk ∈ R
+ is the eigenvalue of T ∗T corresponding to φk, then λk = µ

1/2
k .

The next lemma translates Theorem 3.7 into a more suitable form.

Lemma 3.8. Let H be a Hilbert space and let T : H → H be a compact linear
operator for which

T ∗φ = T φ̄ for all φ ∈ H. (3.3)

For T there exists an orthonormal basis {φk} of H such that

T φk = λkφ̄k, T ∗φ̄k = λ̄kφk, for all k ∈ N, (3.4)

where |λk| = µ1/2 for some eigenvalue µ of T ∗T .

Proof. First of all, note that in this case an isomorphism between N (T ) and N (T ∗)
is provided by complex conjugation.

Let {φk} and {λ2
k} be sets of orthonormal eigenfunctions and eigenvalues corresponding

to the compact self-adjoint operator T ∗T , respectively. Thus, we may write

T ∗T φk = λ2
kφk. (3.5)

Taking the complex conjugate of both sides and keeping (3.3) in mind we get

T T ∗φ̄k = λ2
kφ̄k,

and so it is clear that {φ̄k} is an orthonormal set of the eigenfunctions of T T ∗, forming
a basis of H, with the corresponding eigenvalues {λ2

k}.
It is easy to see that the eigenfunctions of T ∗T corresponding to the zero eigen-

value satisfy equations (3.4). Hence, let φk1 , . . . , φkN
∈ {φk} be the eigenfunctions cor-

responding to the eigenvalue λ2
k > 0. From what was stated above and Theorem 3.7 it
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is quite clear that T maps the subspace M = span{φk1 , . . . , φkN
} onto the subspace

M̄ = span{φ̄k1 , . . . , φ̄kN
}. Because M and M̄ are finite dimensional, we know that the

restriction of T to M, namely T |M, may be represented in matrix form with respect to
the bases {φk1 , . . . , φkN

} and {φ̄k1 , . . . , φ̄kN
}. Hence, we can write

T |Mφkl
= λk

N∑
j=1

tjlφ̄kj
, l = 1, . . . , N,

where T = (tjl) is the matrix corresponding to T |M. Taking complex conjugates and
keeping (3.3) in mind, we get

T ∗|M̄φ̄kl
= λk

N∑
j=1

t̄jlφkj , l = 1, . . . , N.

Thus, T ∗|M̄ has the matrix representation T̄ = (t̄jl). Now it follows easily from equa-
tion (3.3) that T is symmetric, and so equation (3.5) tells us that

1
λ2

k

THT =
1
λ2

k

T̄ T = I,

which means that (1/λk)T is unitary and therefore has orthonormal eigenvectors {v1, . . . ,

vN} that span C
N . Since (1/λk)T is unitary, the corresponding eigenvalues {ν1, . . . , νN}

are, naturally, of magnitude one.
Now we form a new set of functions, namely {φ̃k1 , . . . , φ̃kN

}, by

φ̃kl
= [φk1 , . . . , φkN

]vl, l = 1, . . . N.

One can easily see that these new functions are still orthonormal because vectors {v1, . . . ,

vN} are. In addition, it holds that

T φ̃kl
= λkl

¯̃
φkl

,

where λkl
= νlλk, since {v1, . . . , vN} are eigenvectors of T .

Finally, if we repeat the same procedure for all λk and combine the new eigenfunctions
and eigenvalues, we have arrived with an orthonormal basis of H that has just the qualities
we were looking for. �

Note that since G is a compact integral operator with a symmetric kernel, it satisfies
the assumptions of the previous lemma, which will be used in the next subsection when
we state and prove an important positiveness result. Next we will, however, finish the
postponed analysis of the existence of (I ± G)−1 ∈ L2(∂Ωn).

Lemma 3.9. The eigenvalues of the positive self-adjoint operator G∗G ∈ L(L2(∂Ωn))
lie in the closed interval [0, ρ2], where ρ = ‖G‖L(L1(∂Ωn)) < 1.
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Proof. Let µ ∈ R
+ be an eigenvalue of G∗G and let φ ∈ L2(∂Ωn) be the corresponding

eigenfunction. Then, from the definition of the norm, we get

µ‖φ‖L1(∂Ωn) = ‖G∗Gφ‖L1(∂Ωn)

� ‖G‖2
L(L1(∂Ωn))‖φ‖L1(∂Ωn) < ∞,

since L2(∂Ωn) ⊂ L1(∂Ωn). Thus

µ � ‖G‖2
L(L1(∂Ωn)) < 1,

according to Lemma 3.6. �

Theorem 3.10. The operators I ± G : L2(∂Ωn) → L2(∂Ωn) have bounded inverses
(I ± G)−1 ∈ L(L2(∂Ωn)). Further, it holds that

(I ± G)−1 =
∞∑

k=0

(∓G)k.

Proof. Let {µk} be the eigenvalues of G∗G. It is an easy consequence of Theorem 3.7
that

‖G‖L(L2(∂Ωn)) � sup
k∈N

√
µk � ρ, (3.6)

where ρ < 1 is the constant introduced in Lemma 3.9. Now the claim follows from
elementary functional analysis [9]. �

It is interesting to notice that the standard norm estimate (3.1) is, actually, much
worse than (3.6).

3.3. A positiveness result

Finally, we are about to prove the main result of this section. In the next section, this
result will be a real aid when we set out to prove the existence of the weak solution of
the problem introduced in Definition 2.6. First, however, we need a little lemma.

Lemma 3.11. For G let {φk} be the orthonormal set introduced in Lemma 3.8 and
let {λk} be the corresponding set of singular values. Then the set {φk − λkφ̄k} forms a
basis of L2(∂Ωn).

Proof. Let u ∈ L2(∂Ωn). Since {φk} forms an orthonormal basis for L2(∂Ωn) and by
Theorem 3.10 (I − G)−1 exists, we may write

(I − G)−1u =
∞∑

k=1

((I − G)−1u, φk)φk.

Thus, by operating with I − G, we get

u =
∞∑

k=1

((I − G)−1u, φk)(φk − λkφ̄k),

where we used Lemma 3.8.
Furthermore, {φk − λkφ̄k} is a linearly independent set, since I − G is injective. �
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Theorem 3.12. The operator (I − G)−1(I + G) is positive definite in the real part,
meaning that for any u ∈ L2(∂Ωn), u 
= 0,

Re((I − G)−1(I + G)u, u) > 0.

Proof. Again, let {φk} be the orthonormal set introduced in Lemma 3.8 and let {λk}
be the corresponding set of singular values. With trivial algebraic manipulation, one sees
that

(I + G)(φk − λkφ̄k) = φk − λkGφ̄k = (I − G)(φk + λkφ̄k).

Hence,

(I − G)−1(I + G)(φk − λkφ̄k) = (φk + λkφ̄k). (3.7)

Let u ∈ L2(∂Ωn). Since {φk − λkφ̄k} forms a basis of L2(∂Ωn), u may be presented in
the form

u =
∞∑

k=1

ck(φk − λkφ̄k),

where, according to the proof of Lemma 3.12, ck = ((I − G)−1u, φk). With the help of
(3.7), we can now write

((I − G)−1(I + G)u, u) =
( ∞∑

k=1

ck(φk + λkφ̄k),
∞∑

j=1

cj(φj − λj φ̄j)
)

=
∞∑

k=1

(ck(φk + λkφ̄k), ck(φk − λkφ̄k))

+
∞∑

k=1

∑
j �=k

(ck(φk + λkφ̄k), cj(φj − λj φ̄j)). (3.8)

To start with, let us have a closer look at the first sum in (3.8):

∞∑
k=1

(ck(φk + λkφ̄k), ck(φk − λkφ̄k))

=
∞∑

k=1

|ck|2(‖φk‖2 − |λk|2‖φ̄k‖2 + λk(φ̄k, φk) − λ̄k(φk, φ̄k))

=
∞∑

k=1

|ck|2(1 − |λk|2) + 2i
∞∑

k=1

|ck|2 Im(λk(φ̄k, φk)). (3.9)
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Next we shall attack the second term of (3.8):

∞∑
k=1

∑
j �=k

(ck(φk + λkφ̄k), cj(φj − λj φ̄j)) =
∞∑

k=1

∑
j �=k

ck c̄j(λk(φ̄k, φj) − λ̄j(φk, φ̄j))

=
∞∑

k=1

∑
j>k

(ck c̄j(λk(φ̄k, φj) − λ̄j(φk, φ̄j))

+ cj c̄k(λj(φ̄j , φk) − λ̄k(φj , φ̄k)))

= 2i
∞∑

k=1

∑
j>k

Im(ck c̄j(λk(φ̄k, φj) − λ̄j(φk, φ̄j))).

(3.10)

Combining (3.9) and (3.10), we obtain

((I − G)−1(I + G)u, u) =
∞∑

k=1

|ck|2(1 − |λk|2) + iC,

where C is a real constant. Finally, Lemmas 3.8 and 3.9 tell us that 1 − |λk|2 > 0 for
every k > 0, which concludes the proof. �

Note that the proof of Lemma 3.12 can be presented without the information provided
by Lemma 3.8. However, Lemma 3.8 is interesting by itself and it provides useful insight
into the actual shape of operator G.

4. The weak problem

In this section we will formulate the weak direct problem corresponding to the classical
one, introduced in Definition 2.6, and prove that there exists a unique solution for it.

If ϕ satisfies equation (2.18) in Ω \ Ω̄n, it also satisfies∫
Ω\Ω̄n

∇ · K∇ϕv̄ dx +
∫

Ω\Ω̄n

(ik − µa)ϕv̄ dx = 0

for every smooth v. Using the product rule, we can write this as∫
Ω\Ω̄n

∇ · (K∇ϕv̄) dx −
∫

Ω\Ω̄n

K∇ϕ · ∇v̄ dx +
∫

Ω\Ω̄n

(ik − µa)ϕv̄ dx = 0,

which, on the other hand, is equivalent to

∫
∂Ω

n̂ · (K∇ϕv̄) dS +
∫

∂Ωn

n̂ · (K∇ϕv̄) dS −
∫

Ω\Ω̄n

K∇ϕ · ∇v̄ dx

+
∫

Ω\Ω̄n

(ik − µa)ϕv̄ dx = 0 (4.1)
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due to the divergence theorem of Gauss. Note that n̂ is the unit normal vector pointing
out of Ω \ Ω̄n. Next we use the boundary conditions (2.19) and (2.20), change our matrix
notation, and rewrite (4.1) as

∫
Ω\Ω̄n

∇ϕTKT∇v̄ dx +
∫

Ω\Ω̄n

(µa − ik)ϕv̄ dx + 2γ

∫
∂Ω

ϕv̄ dS

+ 2γ

∫
∂Ωn

(I − G)−1(I + G)ϕv̄ dS = −2
∫

∂Ω

Φinv̄ dS. (4.2)

As we can see, equation (4.2) makes sense even when both ϕ and v have only one weak
derivative that belongs to L2(Ω \ Ω̄n). The input flux coming from some outer source, Φin,
may be even less smooth—it seems to be enough that Φin ∈ L2(∂Ω). These observations
make the following definition reasonable.

Definition 4.1. Let Φin belong to L2(∂Ω) and suppose that 0 < ca < µa < Ca and
0 < µs < Cs are measurable real functions. The direct weak problem in the strongly
scattering region Ω \ Ω̄n is to find the function ϕ ∈ H1(Ω \ Ω̄n) satisfying equation (4.2)
for every v ∈ H1(Ω \ Ω̄n).

4.1. An existence and uniqueness result

To make Definition 4.1 permissible, we will have to prove that there really exists a
unique solution ϕ ∈ H1(Ω \ Ω̄n) to equation (4.2). We start our battle by rewriting (4.2)
as

B(ϕ, v) := B1(ϕ, v) + B2(ϕ, v) + B3(ϕ, v) + B4(ϕ, v) = f(v), v ∈ H1(Ω \ Ω̄n), (4.3)

where B1 corresponds to the first term in (4.2) and so on.
Our plan is to prove the unique existence of the solution by means of the well-known

Lax–Milgram Lemma [13]. Hence, our task is to prove that the sesquilinear functional
B is bounded and coercive, and that the functional f is bounded. We will start with a
little lemma concerning the matrix K and after that tackle the boundedness of B.

Lemma 4.2. The matrix K(x) ∈ C
n×n defined in (2.12) is symmetric and has real

orthonormal eigenvectors {w1(x), . . . , wn(x)}, for which the corresponding eigenvalues
{λ1(x), . . . , λn(x)} are strictly positive in the real part, meaning in this case that Re λj �
cλ > 0 for all j = 1, . . . , n. Furthermore, |K(x)| � (1/nca) for all x ∈ Ω \ Ω̄n.

Proof. According to Lemma 2.4, the symmetric matrix I − B(x) ∈ R
n×n has posi-

tive eigenvalues 0 � λ0
j (x) � 2, j = 1, . . . , n, for which the corresponding eigenvectors

{w1(x), . . . , wn(x)} ⊂ R
n may be chosen orthonormal. Thus, the matrix

K−1(x) = n((µa(x) − ik)I + (I − B(x))µs(x))

has the same eigenvectors as I − B(x) with the corresponding eigenvalues

n(µs(x)λ0
j (x) + µa(x) − ik), j = 1, . . . , n.
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In addition, K−1 is symmetric. Hence, K(x) is symmetric, and the orthonormal vectors
{w1(x), . . . , wn(x)} are also eigenvectors of K(x) with the corresponding eigenvalues

λj(x) := ξj(x) + iηj(x)

=
1

n((µs(x)λ0
j (x) + µa(x))2 + k2)

(µs(x)λ0
j (x) + µa(x) + ik). (4.4)

Since 0 < µs < Cs, ca < µa < Ca and 0 � λ0
j (x) � 2, the positiveness of the real part

follows easily. On the other hand, equation (4.4) tells us that for every j = 1, . . . , n,

|λj(x)| � 1
nµa(x)

� 1
nca

,

from which the result follows, since |K(x)| = maxj{|λj(x)|}. �

Lemma 4.3. The sesquilinear form B : H1(Ω \ Ω̄n) × H1(Ω \ Ω̄n) → C, defined by
equations (4.2) and (4.3), is bounded.

Proof. Let u, v ∈ H1(Ω \ Ω̄n). First, we tackle B1:

|B1(u, v)| � sup
x∈Ω\Ω̄n

{|K(x)|}
(∫

Ω\Ω̄n

|∇u|2 dx

)1/2(∫
Ω\Ω̄n

|∇v|2 dx

)1/2

� 1
nca

‖u‖H1(Ω\Ω̄n)‖v‖H1(Ω\Ω̄n),

where we used the Schwarz inequality and Lemma 4.2. Next, we use the same weaponry
on B2:

|B2(u, v)| � sup
Ω\Ω̄n

{|µa(x) − ik|}
(∫

Ω\Ω̄n

|u|2 dx

)1/2(∫
Ω\Ω̄n

|v|2 dx

)1/2

� (C2
a + k2)1/2‖u‖H1(Ω\Ω̄n)‖v‖H1(Ω\Ω̄n).

Then there is B3, which we can attack with the help of the trace theorem [6] and, of
course, the Schwarz inequality:

|B3(u, v)| � 2γ

(∫
∂Ω

|u|2 dx

)1/2(∫
∂Ω

|v|2 dx

)1/2

� C‖u‖H1(Ω\Ω̄n)‖v‖H1(Ω\Ω̄n).

Using the Schwarz inequality, the boundedness of the operators I +G and (I −G)−1 and
the trace theorem, it follows easily for B4 that

|B4(u, v)| � 2γ‖(I − G)−1‖L(L2(∂Ωn))‖I + G‖L(L2(∂Ωn))‖u‖L2(∂Ωn)‖v‖L2(∂Ωn)

� C‖u‖H1(Ω\Ω̄n)‖v‖H1(Ω\Ω̄n).

Finally, the boundedness of the whole functional B follows from the triangle inequality.
�
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Next, we will prove the coercivity property of B.

Lemma 4.4. The sesquilinear form B : H1(Ω \ Ω̄n) × H1(Ω \ Ω̄n) → C, defined by
equations (4.2) and (4.3), is coercive.

Proof. Let u ∈ H1(Ω \ Ω̄n). First of all, notice that

|B(u, u)| � Re(B1(u, u) + B2(u, u) + B3(u, u) + B4(u, u)). (4.5)

We begin by proving that the real part of B1(u, u)+B2(u, u) is coercive by itself. Notice
that for almost every fixed x ∈ Ω \ Ω̄n we can give ∇u(x) as a linear combination of the
eigenvectors of K(x) introduced in Lemma 4.2:

∇u(x) =
n∑

j=1

cj(x)wj(x).

Thus, for a fixed x it holds almost everywhere that

∇uT(x)K(x)∇ū(x) =
n∑

j=1

cj(x)w(x)Tj
n∑

k=1

λk(x)c̄k(x)wk(x)

=
n∑

j=1

λj(x)|cj(x)|2,

where we used the orthonormality of wj(x), j = 1, . . . , n. Hence, almost everywhere

Re ∇uT(x)K(x)∇u(x) =
n∑

j=1

ξj(x)|cj(x)|2

� min
1�l�n

ξl(x)
n∑

j=1

|cj(x)|2

= min
1�l�n

ξl(x)|∇u(x)|2,

where we used the notation of Lemma 4.2. By using the symmetry of K and Lemma 4.2,
it follows that

Re B1(u, u) � inf
{1,...,n}×Ω\Ω̄n

{ξl(x)}
∫

Ω\Ω̄n

|∇u|2 dx

� cλ‖|∇u|‖2
L2(Ω\Ω̄n). (4.6)

On the other hand, we can estimate B2 in the following way:

Re B2(u, u) � inf
x∈Ω\Ω̄n

{µa(x)}
∫

Ω\Ω̄n

|u|2 dx

� ca‖u‖2
L2(Ω\Ω̄n). (4.7)
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Combining (4.6) and (4.7), we get

Re(B1(u, u) + B2(u, u)) � c‖u‖2
H1(Ω\Ω̄n),

and so our first goal is achieved.
To complete the proof, we will show that the two remaining terms in (4.5) are positive

in their real parts. Actually, this task is straightforward, since

Re B3(u, u) = 2γ‖u‖2
L2(∂Ω) � 0,

and the fact that ReB4(u, u) � 0 is stated in Lemma 3.12. �

To give the finishing touch, we will prove that f is a continuous functional.

Lemma 4.5. The linear functional f : H1(Ω \ Ω̄n) → C, defined by equations (4.2)
and (4.3), is continuous.

Proof. Let u ∈ H1(Ω \ Ω̄n). It holds that

|f(u)| � 2‖Φin‖L2(∂Ω)‖u‖L2(∂Ω)

� C‖Φin‖L2(∂Ω)‖u‖H1(Ω\Ω̄n), (4.8)

where we, again, used the Schwarz inequality and the trace theorem. �

Finally, we are able to state the main result of this work. We are not content with the
existence and uniqueness result but also say something about the continuous dependence
of the solution on the boundary data.

Theorem 4.6. The direct weak problem in the strongly scattering region, as intro-
duced in Definition 4.1, has a unique solution ϕ ∈ H1(Ω \ Ω̄n). In addition, the solution
depends continuously on the boundary data Φin, meaning that

‖ϕ‖H1(Ω\Ω̄n) � C‖Φin‖L2(∂Ω).

Proof. As mentioned earlier, the existence and uniqueness result is a straight conse-
quence of the Lax–Milgram Lemma and Lemmas 4.3, 4.4 and 4.5. On the other hand,
the continuous dependence follows by using the coercivity of B and inequality (4.8):

‖ϕ‖2
H1(Ω\Ω̄n) � C|B(ϕ, ϕ)|

= C|f(ϕ)|
� C ′‖Φin‖L2(∂Ω)‖ϕ‖H1(Ω\Ω̄n),

and so, dividing by ‖ϕ‖H1(Ω\Ω̄n), we get the desired result. �
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