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ABSTRACT

In this paper we explore the problem of economic capital allocations in the con-
text of non-negative multivariate (insurance) risks possessing a dependence
structure. We derive a general result and illustrate it with a number of useful
examples. One such example, for instance, develops explicit expressions for the
discussed economic capital decomposition rule when the underlying portfolio
consists of dependent compound Poisson risks.
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1. INTRODUCTION AND MOTIVATION

In recent years, an increasing number of financial conglomerates have adopted
economic (risk) capital frameworks. According to various authors (cf., e.g.,
Zaik et al., 1996) two central elements of such frameworks are: 1) holding
sufficient capitals to cover risks, and 2) allocating economic capitals to each
operating division or department.

At the international level, the immense importance of the aforementioned
subjects can be clearly seen, on the one hand, in the European Commission’s
plans to apply the Basel 11 Bank Capital Adequacy Accord to all banks and
investment firms in the European Union, and on the other, in the Commission’s
targets for the risk-based supervision of EU insurance companies, known as the
Solvency II project.

At the national level, regulators around the world are increasingly apply-
ing the principles of the risk-based approach to all financial institutions under
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their jurisdiction. In Israel, for instance, programs similar to the Basel II and
Solvency II projects have been developed and are gradually being implemented.

Although the phenomena discussed above are becoming mandatory in
nature in many countries, their practical utilization is far from straightforward.
The complexity involved is in general explained by the following three main cor-
nerstones of successful risk measurement (and therefore of the subsequent risk
management):

1. The multivariate probabilistic model possessing a convenient dependence
structure — to describe risks’ behavior.

2. The choice of appropriate risk functional — to translate the implications of
the model into risk parlance.

3. The (analytic) solutions for the latter in the framework of the former — to,
actually, measure risk numerically.

In this paper we address all of these three issues. Namely, we consider port-
folios of (insurance) risks following a multivariate dependent probabilistic
model. The aforementioned class of distributions is referred to as the multi-
variate Tweedie family (MTwF), and it seems to answer well such peculiarities
of the insurance industry demands as the non-negative support, unimodality,
positive skewness, and tolerance for large risks. As special cases, MTwF contains
e.g. the multivariate inverse Gaussian, multivariate gamma, multivariate stable,
and multivariate compound Poisson distributions in the sense that their uni-
variate margins are inverse Gaussian, gamma, positive stable, and compound
Poisson, respectively. Furthermore, MTwWF possesses a dependence structure,
which is reflected in its covariance structure and allows for efficient modeling
of multivariate portfolios of dependent risks (cf. Section 3 below for more
details).

Relating to the second cornerstone above, we build the economic capital
analysis developed herein on the popular tail conditional expectation (TCE)
risk measure and the allocation rule based on it. Literally speaking, the for-
mer provides the necessary economic capital for the whole financial institution,
whereas the latter resolves the problem of its subsequent allocation to various
departments (operating divisions, sources).

Specifically, let us denote by F and F = 1 — F the cumulative distribution
function (cdf) and the decumulative distribution function (ddf), respectively, of
a non-negative random variable (rv) X representing the risk. The tail conditional
expectation risk measure, which coincides with the expected shortfall (ES)
and the conditional Value-at-Risk (CVaR) under the assumption of continuous
distributions (cf., e.g., Hiirlimann 2003; McNeil, Frei, Embrechts, 2005, Lemma
2.16), is then formulated as

TCE,[X] = E[X|X > VaR,[X]] = mfy‘; [X]xdF(x), (1.1)
q q
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subject to F(VaRq[X]) >0, g€ (0,1) and

VaR,[X] = inf{x : F(x) = ¢}. (1.2)

Functional (1.1) possesses a number of appealing properties, which make it an
attractive risk measure (cf. Artzner et al., 1999; Acerbi and Tasche, 2002; Tasche
2002). Very briefly speaking, TCE is sub-additive, scale- and translation-invariant,
and satisfies first and second stochastic dominances (cf. Kaas ez al., 2001;
Denuit et al., 2005; Dhaene et al., 2006).

An alternative way to interpret equation (1.1) is to consider it a premium
calculation principle (pcp), where the safety loading is determined by VaR,[X]
and is therefore proportional to the probability g. When one chooses this way
of reasoning, one is in general interested in relatively small ¢ values, as distinct
from the more common situations in the banking sector, when TCE denotes
a risk measure, and thus ¢ is usually taken to be larger than 0.99 (cf. Furman
and Landsman, 2006a). It should also be emphasized that TCE is a particular
member of the class of distorted risk functionals and its generalization (cf. Den-
neberg, 1994; Wang, 1995, 1996; Wang et al., 1997; Hiirlimann, 2006), as well as
of the class of weighted pcp’s (cf. Furman and Zitikis, 2008a). For statistical
inferential results for the TCE risk measure, we refer to Brazauskas et al. (2008).

Another useful observation about TCE, made by Denault (2001) and Panjer
and Jia (2001), implies that it can provide a natural decomposition of the total
economic capital to its various constituents. Indeed, due to the additivity prop-
erty of the expectation operator, one obtains that the ‘risk contribution’ of the
k-th business line to the total risk S = X; + X, + - + X, of the conglomerate
is formulated as

TCE,[X,|S] = E[X;|S > VaR,[S]] (1.3)

(cf. Hiirlimann, 2004 for an alternative to 1.3; and Furman and Zitikis, 2008b
for generalizations).

It should be noted that a significant number of risk measures other than TCE
have been proposed, starting with the arguably oldest Value-at-Risk (cf. Leavens,
1945), and up to the distorted risk measures (cf. Denneberg, 1994; Wang, 1995,
1996; Wang et al., 1997). In addition, Furman and Landsman (2006b) proposed
some tail variance-based risk measures, which on the one hand generalize equa-
tion (1.1), and on the other provide a tail-based counterpart to the classical vari-
ance and standard deviation pcp’s. In general, the debate on which risk mea-
sure to apply in a given situation at hand is far from being over yet; however,
this quite designing issue is far beyond the purposes of the herein discussion.

The main concerns of this paper are 1.) to suggest a new multivariate depen-
dent family of distributions answering well such peculiarities of the insurance
industry as non-negative support, unimodality and positive skewness, and
2.) to attempt evaluating (1.3) analytically, given this multivariate family. We note
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that Panjer and Jia (2001), Landsman and Valdez (2003), Cai and Li (2005)
and Chiragiev and Landsman (2007) considered problems similar to our sec-
ond point in the context of the multivariate normal, multivariate elliptical,
multivariate phase type and multivariate Pareto distributions, correspondingly.
Vernic (2006) evaluated equations (1.1) and (1.3) for multivariate skew-normal
distributions, and Dhaene et al., (2008) have recently derived closed form
approximations for the TCE based allocation for sums that involve lognormal
risks. In the present paper, we evaluate (1.1) and (1.3) in the general context
of the herein proposed multivariate Tweedie family, and we then illustrate our
results by assuming the multivariate dependent compound Poisson distribution,
which is an important particular case of MTwF.

We further proceed as follows: Section 2 discusses in detail some existing
general results for non-negative independent risks. In spite of the restricting
assumption of independence, these results allow for a valuable insight into the
more interesting dependent problems. Then Section 3 introduces the multi-
variate Tweedie distributions and the particular case of interest in this paper:
the multivariate compound Poisson family. Section 4 develops general expres-
sions for equations (1.1) and (1.3) in the context of MTwF, and Section 5 illus-
trates the obtained results with some examples. Section 6 concludes the paper
and discusses its main contributions.

2. TCE AND THE ECONOMIC CAPITAL ALLOCATION
FOR NON-NEGATIVE INDEPENDENT RISKS

In this section we review some known results which are of interest. Unless other-
wise stated, the results discussed here appear in Furman and Landsman (2005).

Let the non-negative rv X have a finite expectation E[X] < occ. The TCE
risk measure of X turns out to be proportional to the expectation of X, as can
be seen from the following note.

Note 2.1. Let X* ~ Fy denote the associated with X rv with cdf

E[XI(X <x)] 1

FX*(X) = E[X] = E[X] f(;xl‘dF(Z),

where 1(4) is the indicator function of the set 4. Then the tail conditional expec-
tation risk measure of the risk X can be formulated as

Fy(VaR,[X])

q

@.1)

Representation (2.1) seems to be not only attractive but also useful. For instance,
noting that X is stochastically greater than X, i.e., P(X*>x) = P(X > x)
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(cf., e.g., Patil and Rao, 1978), representation (2.1) immediately implies that
TCE,[X] > E[X], with equality only if X*£ X, where “£” stands for equality
in distribution.

Another useful consequence of equation (2.1) is the appealing easiness of cal-
culating TCE for such important rv’s as gamma, Pareto, lognormal, Weibull, beta
with continuous supports, and Poisson, binomial, negative binomial, loga-
rithmic series, and hypergeometric with discrete supports. All these rv’s are form-
invariant with respect to their weighted counterparts (cf., e.g., Patil and Ord, 1976),
and hence TCE straightforwardly follows using Tables 1 and 2 in loc. cite (cf.
Furman and Zitikis, 2008a,c for a more detailed discussion of the usefulness of
the associated rv X * and its applications in actuarial science and finance). For the
sake of completeness, we refer to Landsman and Valdez (2005) for an alternative
representation of TCE in the class of exponential dispersion models (EDMs)
that involves generalized hazard functions appropriately defined in this paper.

Let us further consider non-negative 1ndependent rv’s X; possessing cdf’s F. X,
Also, denote the aggregate risk by S= X, + X, ++ X, - F and its associated
counterpart by S* Clearly, TCE of S is

Fg(VaR,[S])

TORIST = Bk sy

2.2)

We are now in a position to consider the more general equation (1.3).

Lemma 2.1. The risk contribution of X; to S is formulated in terms of TCE as

FS X;+X; (VaR [S])
F(VaR,[S])

TCE,[X;|S] = E[X]] (2.3)

where X" is the independent associated counterpart of X;.

In light of the latter expression, we are in general interested in the convolu-
tions S— X; + X" In some particular situations, these convolutions turn out to
strongly 51mp11fy Indeed, given some non-negative rv ¢; 1ndependent on X;, and
if the associated counterpart of the latter rv can be rewritten as X;* X + ¢,
equation (2.3) reduces to

Fg, ¢ (Var,[S])
F(VaR,[S])

TCE,[X;|S] = E[X]] (2.4)
To elucidate formula (2.4), we consider the two following examples.

Example 2.1. Let X}, j=1, ..., n be mutually independent rv’s distributed gamma

with the shape and rate pammelers equal to y; and «, respectively, i.e., X; -
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Ga(y;, oy). In such a case, for y =y, +y,+ - +y,, & = max(ay, a, ..., a,) and
setting without loss of generality c; = &, expression (2.3) can be rewritten as

TCE,[X/|S] = - G(VaR,[S]; 7 + K +1.@)
gl Q; G(VaRq[S];y+K, &)

; 2.5)

where G(-;y,0) = 1= G(-; y, ) denotes the ddf of some gamma distributed rv
with the shape and rate parameters equal to y and a, respectively, and K is a
specific discrete rv.

Formula (2.5) readily follows after noticing that in this case X;* -~ Ga(y; + 1, o),
and therefore it can be represented by the convolution of two independent gamma
rv's with common rate oy and shapes equal to y; and 1. Therefore, representation
(2.4) holds in this special case, where {; —~ Ga(1,q;), and S is the convolution of
n independent gamma rv’s with shapes y; and rates a;.

In our second example, equation (2.4) is satisfied again. Moreover, the rv ¢; is
equal to 1 over its whole domain, i.e., P({;=1)=1.

Example 2.2. Let X;, j=1, ..., n be mutually independent rv’g distributed Pois-
son with )7-, e, X;— Poisson(/lj). Then it can be shown that X;* =X+ 1, and there-
fore, for A=Ay + J,+ -+ 4, we have that

Po(VaR,[S]-1; 1)
7 Po(VaR,[S]; %)

TCE,[X;|S] = 7 (2.6)

where Po(-; 1) =1— Po(-; 1) denotes the ddf of a Poisson rv parameterized by A.

It can be then noted that the contribution of X; to S is stipulated in this spe-
cial case by the expectations E[X;] = 4; only. Consequently, and due to equation
(2.1), the relative contribution is

1CE,[X,|s] _ E[x]
TCE,[S]T ~ E[S]’

Q2.7)

which is surprisingly very simple. We note that (2.7) does not hold in general (cf.,
e.g, Example 2.1 above).

To conclude, it should be noted that, although X, ..., X, are independent,
this is not the case for the pair X; and S which is certainly dependent. In light of
this, Note 2.1 and Lemma 2.1 may prove to be of high practical importance.
Other valuable applications of the aforementioned results are demonstrated
in Section 4 below.
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In the next section we depart from the assumption of independence, and
we introduce the multivariate Tweedie family of distributions along with its
member which is of particular interest in this paper, the multivariate com-
pound Poisson distribution.

3. MULTIVARIATE TWEEDIE DISTRIBUTIONS

Exponential dispersion models play a prominent role in statistics and actuarial
science. This can be explained by the high level of generality that EDMs enable
in the context of statistical inference for such widely popular distribution func-
tions as normal, gamma, inverse Gaussian, stable, and many others. The
specificity characterizing statistical modeling of actuarial subjects is that the
underlying distributions mostly have non-negative supports and many EDMs
possess this important phenomenon.

Although univariate EDMs are considerably rich and widely applied, in the
multivariate context the case is very different. Unfortunately, the so-called natural
multivariate EDMs are not as rich as the univariate ones. Namely, they do not
include important multivariate distributions whose univariate margins are, say,
inverse Gaussian, gamma or compound Poisson. Moreover, the only valuable con-
tinuous member of such a natural multivariate extension of the univariate EDMs
is the multivariate normal distribution (cf. Bildicar and Patil, 1968 for more details).

To overcome the aforementioned penury, we suggest a new multivariate
Tweedie? family of distributions. We use an extended version of the bivariate
reduction method of Mardia (1970), which is further formulated in a quite gen-
eral form and referred to as the multivariate reduction technique (cf., e.g., Joe,
1997; Hiirlimann, 2007a; Furman, 2008; and references therein).

To briefly follow our main reasoning, let Y = (Y, Y, ...,Y,)” be a random
vector consisting of (n + 1) mutually independent additive Tweedie rv’s, i.e.,
Y, -~ Tw, (0, 4;), i=0,1, ..., n, possessing, under certain conditions, probability
distribution functions (pdf’s) or the probability mass functions (pmf’s) of the form

f(x) = h(x; ) exp(Ox — 4K,(0)), (3.1)
where, fora = (p-2)/(p-1),

e’ p=1

K, (0) = { ~log(~0) p=2 . (3.2)
(-1 a
[¢2 )<(a0—])) ) p 75 152

and 0 € ©, such that the domain ©, is the largest interval for which x,(0) is
finite (cf. Jorgensen, 1997 for details).

2 EDMs are classified by their unit variance functions V(). EDMs having power form variance func-
tion V(u)=u’, p € (—,0] U [1, ) are called Tweedie EDMs (cf., e.g., Jorgensen, 1997).
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Also, let
0
w 0
0
0 10
A=|2 00 1 .. 0] (3.3)
0
2000 1

Theorem 3.1. Let X = AY. Then the j-th univariate marginal distribution of X is

Tw, (0, Ao + 2;), p=1
%Yo"'Yi:’Yjw Tw, (0, 20+ 4), p=2

7 :
7w, (0, 20() + 2} p #1.2

where a = (p—2)/(p—1).

The theorem ensures that MTwF possesses univariate margins belonging to uni-
variate Tweedie EDMs, and it establishes these marginal distributions explicitly.
The multivariate Tweedie family of distributions can now be naturally defined.

Definition 3.1. The joint distribution of X = AY, denoted by X —~ Tw, (0, 7). is
the n-variate additive® Tweedie distribution. Here, 0 € ® C R" is the n-variate

vector of canonical parameters where @ is the Cartesian product of the domains
® CcR.

It can be shown that MTwF is obtained as a solution of a generalized Cauchy’s
functional equation. More precisely, given the aforementioned setup, every
univariate margin X; of the n-variate random vector X is an EDM if and only
if the corresponding function x(x) is the solution of the following functional
equation:

k(xy) = k(x)f(y) + g(y).

In view of the above, the multivariate Tweedie family is the only possible multi-
variate extension of EDMs, given matrix (3.3) and Definition 3.1.

3 Tweedie EDMs can be formulated in both the additive and reproductive forms. Thus, discussing
one form only does not imply any restrictions on the produced results.
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FIGURE 3.2: Bivariate gamma with dependent univariate marginal distributions.
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Choosing an appropriate p parameter, we instantly arrive at, say, the multivari-
ate Poisson (p = 1), multivariate gamma (p = 2), multivariate inverse Gaussian
(p = 3), and multivariate compound Poisson (p € (1,2)) distributions. It should
be emphasized that even more flexibility in modeling (insurance) risks can be
obtained by considering multivariate Tweedie distributions corresponding to
the non-integer p parameters.

Figures 3.1, 3.2, 3.3 and 3.4 compare some bivariate members of MTwF
with independent and dependent univariate marginal distributions. It can be
clearly observed that in the framework of the proposed family dependent risks
are riskier than the independent ones.

3.1. The multivariate Tweedie compound Poisson distribution

We now consider T, (0, l) when p is in the interval (1,2) (in what follows, it
is denoted by Tw, . 2)(0 7). This case relates to the multivariate compound
Poisson distributions with gamma severities, and is further referred to as the
multivariate Tweedie compound Poisson distribution. It is important in, say,
the insurance industry due to the fact that it allows for randomness both in
claims’ frequencies and amounts.

Let Ny, Ny, ..., N, denote a sequence of mutually independent Poisson rv’s,
such that, for i=0,1,...,n, N; -~ Poisson(4,;x,(0)). Also, for k=0,1, ..., let
Y, - Ga(0,-a), be mutually independent and identically distributed gamma
rv’s independent of N;, where 6, <0 and a=(p-2)/(p-1).

Denote by

ZZ;]Yi,kﬁ Ni>0
0, N =0

the Tweedie compound Poisson rv, which can also be written as Y, —~ 7wy 5, (0, 4,).
Then, the pdf of Y; can be formulated as

Jr(») = h(y: 2;) exp(Oy — 4;1,(0)),

with
=, (#5,(-7))
oy P\ 77
W3 2) = 2 Syl
for y >0, and
Jr,(0) = P(Y;=0) = P(N=0) = exp(~4;x,(0)),
otherwise.
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We now have the required random vector Y = (Y, Y), ..., Y,,)T and, considering

common ¢ parameters and applying Definition 3.1, we arrive at the resulting

multivariate compound Poisson distribution, that is X -~ 7w, 1 5(0, /1) where

0 is a vector of 0’s and 4 = (Ag+ Ay, A+ Ags.... Ao+ 4,)" (cf. Theorem 3.1).
Also, we have that the aggregate risk is given by

n No n j
S=ZXJ-=nZYO’k+ZZ ko 3.4)
j=1 k=1 Jj=lk=

and thus, the distribution of S is not a Tweedie compound Poisson. Indeed,
1) after setting 0,/0;=n and 4;=0 in Theorem 3.1, we obtain that

No
nYy=n Yo, — Twg,, <H/n, iona),
k=1

and 2) the distribution of the double sum in equation (3.4) is

N

] n J
Z Z Yj,k - TW(1,2)(0,)L),

-1 j=1k=1

=~
>~

where 1= 4, + 1, + - + 4,. In light of this, the distribution of S is a compound
Poisson with Poisson parameter A = A,n®+ A and the corresponding severity
distribution possessing the cdf

F(s) = % Gon®G(s: 0ln, — ) + 2G(s: 0. — ).

We conclude this section with other useful properties of Tweedie compound
Poisson rv’s:

* The expectation of X is E[X;] = (4, + 4)) Kp(ﬁ)aﬁ’l.
* The variance of X is Var[X;] = (4o + 4;) ,(0)(a — Dab>

* The correlation between X; and X, i#j is Corr[X;, X;] = 2

/()vo +2)( %0+ 2)

4. TCE AND THE RELATED CAPITAL-AT-RISK DECOMPOSITION RULE

We have so far considered two of the three pillars of the so-called advanced
risk measurement, i.e., the multivariate probabilistic model and the risk func-
tional to measure the degree of riskiness it implies (cf., e.g., Denuit et al., 2005
for the definition of ‘riskiness’). In the two following theorems we evaluate
equations (1.1) and (1.3) in the general framework of MTwF. Namely, we first
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derive the economic capital required for the overall risk S, and we establish the
amount of capital to be set aside due to its part X, thereafter.

Recall that we denote by S = X, + X, + - + X, the aggregate risk of the finan-
cial conglomerate, which, according to Definition 3.1, is generally written as

S =nY, + Z Y, 4.1)
j=1

. a0
subject to i = 21| 0—0
J

Theorem 4.1. Let X -~ Tw, (0, Z) be an MTwF random vector. The tail conditional
expectation risk measure for S is then formulated as

IE‘S*’?Y()*(’?YO)*(VaR‘I[S]) +E IE‘S*Y*Y*U/CZR‘I [S])
F(VaR,[S]) F(VaR,[S])

TCE,[S] = nE[Y,] , (4.2)

where Y = Zr;:l Y,, and Y* denotes the associated counterpart of Y.

Proof. Follows from the additive property of the expectation operator and
Lemma 2.1. O

Theorem 4.2. Let X -~ Tiw, (0, 71) be an MTwF random vector. Then the economic

capital allocation based on TCE is

ﬁS -nYy+ (;7Y0)* (VaRq [S]) + E[Y ] FS Y+ Y/* (VaR‘I [S])
F(VaR,[S]) 7 F(VaR,[S])

TCE,[X,[s] = G-E[Y,] -
’ (4.3)

Proof. First note that

TCE,| X;|S] = Z—;’E[YO]S > VaR,[S]] + E[Y;|S > VaR,[S]|

according to the additive property of conditional expectations.

Although the expression for the first term of the right hand side of the
above equation does not follow from Lemma 2.1 directly, it can be derived in
a similar fashion, i.e.,

E[Y,|S > VaR,[S]] = E[Y,] - E[Y,1(S < VaR,[S])]

VaR,[S]/
E[Y;] _-/0 ”ufYO(u) FS_”YO(VaRq[S] - ﬂu) du

F(VaR,[S]) ’
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which after the change of variables 7 =#u and noticing that fy (1) = 1f,y,(?),
yields

VaR,[S]
Sy (O sy, (VaR,[S] - t)dt

F(VaR,[S])
VaR,[S]
E[Y] =E[1%] [ 5 Sy (0 Fs_yy, (VaR,[S] = 1) di
F(VaR,[S])
B[] (1= [ Ey (VaR 18] = ) dF )
F(VaR,[S])

ﬁS - Yo+ (nYy)" (VaRq [S])
F(VaR,[S])

E[Y] - [

E[Y,|S > VaR,[S]] =

4.4)

= E[Y,]

The expression for E[Y;| S > VaR,[S]] follows directly from Lemma 2.1 and can
be formulated as

ﬁs ~Y+Y; (VaRq [S])
F(VaR,[S]) °

E[Y,|S>VaR,[S]] = E[Y,] 4.5)

which completes the proof. O

In what follows we shall illustrate Theorems 4.1 and 4.2 by an example where
the underlying random vector follows Tweedie compound Poisson distributions.

5. ECONOMIC CAPITALS AND MULTIVARIATE TWEEDIE COMPOUND
POISSON DISTRIBUTIONS

In the previous section and in Section 2, we pointed out that closure under the
‘associated transform’ essentially simplifies calculations of TCE and the eco-
nomic capital decomposition rule based on it. We further show that, although
the aforementioned closure does not hold in the context of Tweedie compound
Poisson rv’s, a convenient representation of the associated counterpart can still
be found.

Let ST 5)(0, 1) be the univariate Tweedie compound Poisson rv. We estab-
lish the second part of the above statement as Lemma 5.1, while the first part
follows from

= (=0 )‘m” (/llc (9) ol
Ss+(s) = % = exp(0s — MP(H))kZ:‘.l Sr(_ska 1) (lz - 1))! ’
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which is of the form

h(s;7,0) exp(Ox — (D)),

and therefore S* is not a Tweedie compound Poisson. In fact, it is not an EDM
either, since /(+) is dependent on 6.

Lemma 5.1. Let S— Tw 5 (0,2) and S* be its associated counterpart. Then S* a
S+ & where &~ Tw, (0, —a—1).

Proof. Let twy(-; 0, — ) denote the pdf of Tweedie rv with p =2 (gamma dis-
tribution), and N be Poisson rv having pdf tw,(-; 4). Then, we can rewrite the
density of S* as

N ) N e o
fs*(s) = Xe y,,(H)( (ll;—l))! e’ SF(Eka)+ 1)

k=1

1
Ms

tw (k - 1; ik, (0)) Ctw, (85 0, —ka + 1)

=~
I

1l
Ms

wy (k - 1; ik, (0)) “(twy (550, =(k = D)) o twy (550, —a + 1))

=~
I

where ° stands for convolution.

Further, conditioning on N + 1 =k, we arrive at

k@=§hdbﬁwmwmbhﬁm

which completes the proof. O
We can now formulate the TCE risk measure of S as follows

Theorem 5.1. Let S~ Tw (0, 1), then we have that
Fg,:(VaR,[S
TCE,[S] = Jx,(0) 5 M
0 F(VaRr,[S])
Proof. Follows from Lemmas 2.1 and 5.1. O

Another way to prove Theorem 5.1 is by the law of total (iterated) expectations.
Namely, we obtain that

TCE,[S] = E[S|S > VaR,[S]] = E[E[S|S > VaR,[S]|N]] .
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Then the right-most side of the equation above is written as

G(VaR,[S]; —na +1,0
E[E[S|S > VaR,[S]|N =n]] = "% ( q[l]_qa )

and consequently

o : e, (0))
TCE,[S] = 1_ > 70‘ (VaR,[S]; —ka +1, e)e—m,xo)(pk_(!))
e s k-1
_ Lk, (0) a /oo i K (=0)7% le—zx,,(e) (}°Kp(‘9)) dx
=g 0 Jyr [S] = F(—ka+1) (k=1)!

air,(0) Fg:(VaR,[S])  aix,(0) Fs..(VaR,[S])

0 l-¢q 0 l-¢ ’

which confirms Theorem 5.1.
We further consider multivariate dependent Tweedie compound Poisson
distributions.

Corollary 5.1. Let X - Tw, 1 ,,(0, I) be a Tweedie compound Poisson random
vector, and S be the sum of its univariate marginal constituents. Then the tail
conditional expectation risk measure and the economic capital allocation derived
from it are formulated correspondingly as

nigig (0 Fg,,e(VaR,[S]) L Man (O Fs.:(VaR,[S])

TCE,[S] = 0 F(VaR,[S]) 0 F(VaR,[S])
and
TCE,| XS] = Aorc (@ a Fsp,:(VaR,[S]) . Aikq0(@)a Fs,(VaR,[S])

0 F(VaR,[S]) 0 F(VaR,[S])

where A= A+ A+ -+ A, and &~ Tw, (0, —a—1).
Proof. Follows from Theorems 4.1 and 4.2 and Lemma 5.1. O

We also note that in this case, the additivity of the allocation rule can be easily
observed from the two latter formulas.
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6. CONCLUDING COMMENTS

Multivariate dependent probabilistic models having convenient dependence
structures, suitable risk functionals, and the ability to evaluate the latter in
the framework of the former are three main pillars of the successful risk mea-
surement, which is a natural precursor of the even more demanding process
of managing financial risks.

It must be emphasized that every one of the above mentioned concepts
bears its own specific challenge making the whole process far from straight-
forward. For instance, there generally exist a considerable number of methods
of multivariate modeling univariate margins which are followed by adding a
dependence structure. However, the insurance and finance industries dictate
specific laws that must be obeyed. Namely, mostly only multivariate models
defined on R}, preserving unimodality and positive skewness, can serve as
appropriate candidates for model insurance losses. These peculiarities discard,
for instance, the elliptical family of multivariate distributions, although it is
quite useful in general finance. Also, there is a trade-off between, on the one
hand, the approximation level provided by the model and on the other, its
analytic complexity. The present popular copula multivariate structures, for
example, lead to some essential analytic complications in both inference and
risk measurement. Consequently, one has to impose an additional restriction
of tractability on the choice of the multivariate cdf and its dependence struc-
ture. This often leads to rejecting more complicated models, although they
might have described insurance losses well.

The choice of a suitable risk measure is not obvious either. As it has been
already stressed, a significant number of risk measures of various kinds exist
nowadays, the earliest of which would seem to be the Value-at-Risk and the
latest — the distorted risk measures, the measures based on the tail variance and
weighted pcp’s. Several axiomatic approaches to risk measurement have also
been developed. The debate over what risk measure to apply is still far from
being over.

Needless to say, the necessary evaluation of the chosen risk measure in the
context of the multivariate probability distribution describing risks is also
rather challenging. Indeed, abandoning, say, the independence assumption
makes the model more realistic but at the same time much less tractable ana-
lytically. The advanced nature of today’s most popular risk measures along
with the formally unpleasant probability distribution functions of the models
also lead to a highly challenging problem.

In this paper we have made an attempt to resolve the complications above,
when the underlying probabilistic model is the multivariate Tweedie family
proposed herein, and the risk measure is the well-known tail conditional expec-
tation. Moreover, the more complicated issue of the consequent allocation of
the economic capital to its various constituents has also been considered in the
general framework of the aforementioned set-up.
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