FORBIDDEN SUBCATEGORIES
 OF NON-POLYNOMIAL GROWTH TAME SIMPLY CONNECTED ALGEBRAS

J. A. DE LA PEÑA AND A. SKOWROŃSKI

Abstract

Let k be an algebraically closed field and $A=k Q / I$ be a basic finite dimensional k-algebra such that Q is a connected quiver without oriented cycles. Assume that A is strongly simply connected, that is, for every convex subcategory B of A the first Hochschild cohomology $H^{1}(B, B)$ vanishes. The algebra A is sincere if it admits an indecomposable module having all simples as composition factors. We study the structure of strongly simply connected sincere algebras of tame representation type. We show that a sincere, tame, strongly connected algebra A which contains a convex subcategory which is either representation-infinite tilted of type $\tilde{E}_{p}, p=6,7,8$, or a tubular algebra, is of polynomial growth.

The class of finite dimensional algebras over an algebraically closed field k may be divided into two disjoint classes: First, there are tame algebras for which the indecomposable modules occur, in each dimension, in a finite number of discrete and oneparameter families. Second, there are wild algebras whose representation theory is at least as complicated as the study of finite dimensional vector spaces together with two non-commuting endomorphisms, for which the classification of indecomposable up to isomorphism is a well-known unsolved problem. We are interested in the classification of tame simply connected algebras and their representations. Our interest in this problem is motivated by the fact that often a convenient way to determine whether a given algebra A is tame (and to compute its representations) consists in finding a simply connected cover of a suitable degeneration of A. It is known to be the case for all representation-finite algebras [5, 7], and it is expected to be true for tame algebras (for some special cases see [$9,11,20]$). It is also expected that a simply connected algebra A is tame it and only if the Tits form q_{A} of A is weakly non-negative, and, if this is the case, the one-parameter families correspond to the generic positive null vectors, see [14]. Following [1], by a simply connected algebra A, we mean a basic triangular algebra such that, for any presentation $A \xrightarrow{\sim} k Q / I$ of A as a bound quiver algebra, the fundamental group $\Pi_{1}(Q, I)$ of (Q, I) is trivial, or equivalently A does not admit proper Galois coverings. The class of simply connected algebras consists of algebras of finite global dimension, and includes the tilted algebras of Euclidean types $\tilde{\mathbf{D}}_{n}, n \geq 4, \tilde{\mathbf{E}}_{p}, p=6,7,8$, and Ringel's tubular algebras [18]. We consider here the simply connected algebras for which every convex subcategory is also simply connected, and call them strongly simply connected algebras. It is known [21] that a triangular algebra A is strongly simply connected if and only if,
(c) Canadian Mathematical Society 1995.
for every convex subcategory C of A, the first Hochschild cohomology group $H^{1}(C, C)$ vanishes.

The representation theory of strongly simply connected algebras is best understood in case A is of polynomial growth (see [15,22,23]), that is, there is a natural number m such that the indecomposable A-modules occur, in each dimension d, in a finite number of discrete and at most d^{m} one-parameter families. But the knowledge of non-polynomial growth tame (strongly) simply connected algebras is rather poor. In the study of indecomposable modules over such algebras we may restrict to the sincere algebras, that is, algebras which admit indecomposable finite dimensional modules having all simple modules as composition factors. Our main result gives crucial information on the structure of non-polynomial growth, tame, sincere, strongly simply connected algebras.

THEOREM. Let A be a sincere, tame, strongly simply connected algebra which contains a convex subcategory which is either representation-infinite tilted of type $\tilde{\mathbf{E}}_{p}, p=$ $6,7,8$, or a tubular algebra. Then A is either tilted algebra or a coil algebra. In particular A is of polynomial growth.

We have the following direct consequence:
Corollary. Let a be a sincere, non-polynomial growth tame strongly simply connected algebra. Then every minimal representation-infinite convex subcategory of A is a concealed algebra of type $\tilde{\mathbf{D}}_{m}, m \geq 4$.

The paper is organized as follows. In a preliminary Section 1, we shall recall some concepts and results necessary for the proof of our main result. Section 2 consists of some preparatory lemmas on strongly simply connected algebras. We devote Section 3 to coil enlargements of algebras and their tame one-point extensions. In Sections 4 and 5 we present two essential parts of the proof of the above theorem, related respectively with tilted and coil algebras. In Section 6 we prove the theorem and present some of its consequences.

Both authors gratefully acknowledge support from the Polish Scientific Grant KBN No. 1222/2/91. The first author also acknowledges support from the Consejo Nacional de Ciencia y Tecnología, México.

1. Preliminaries.

1.1. Notation. Throughout this article, k will denote a fixed algebraically closed field. By an algebra A is meant a finite dimensional associative k-algebra with an identity, assumed moreover to be basic and connected: In this case, it is known that there exists a connected bound quiver $\left(Q_{A}, I\right)$ and an isomorphism $A \xrightarrow{\sim} k Q_{A} / I$. Equivalently, $A=$ $k Q_{A} / I$ can be considered as a k-category, of which the object class is the set of the vertices of Q_{A}, and the set $A(x, y)$ of morphisms from x to y is the quotient of the k-vector space $k Q_{A}(x, y)$ of all linear combinations of paths in Q_{A} from x to y by the subspace $I(x, y)=$ $I \cap k Q_{A}(x, y)$, see [10]. A full subcategory C of A is said to be convex if any path in Q_{A} with source and target in C lies entirely in Q_{C}. If Q_{A} has no oriented cycle, A is said to be triangular.

By an A-module we mean a finitely generated right A-module, and we denote by $\bmod A$ their category. Then ind A is the full subcategory of $\bmod A$ formed by the indecomposable modules. A path in $\bmod A$ is a sequence $M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{t}$ of non-zero non-isomorphisms between indecomposable A-modules. If $M_{t} \cong M_{0}$, such a path is said to be a cycle. An indecomposable A-module M is said to be directing if it does not lie on any cycle in $\bmod A$. For each vertex i of Q_{A}, we shall denote by e_{i} the corresponding primitive idempotent of A, by $S_{A}(i)$ the simple module $e_{i} A / e_{i} \operatorname{rad} A$, by $P_{A}(i)$ the projective cover of $S_{A}(i)$, and by $I_{A}(i)$ the injective envelope of $S_{A}(i)$. For an A-module M, its support $\operatorname{Supp} M$ is the full subcategory of A consisting of all objects $i \in Q_{A}$ such that $\operatorname{Hom}_{A}\left(P_{A}(i), M\right) \neq 0$. A module M is called sincere if $\operatorname{Supp} M=A$. Finally, an algebra A having an indecomposable sincere module is said to be sincere.

We shall denote by Γ_{A} the Auslander-Reiten quiver of A whose vertices are the isomorphism classes of indecomposable A-modules, arrows are the irreducible maps and whose translations τ_{A}, τ_{A}^{-}are the Auslander-Reiten translations $D \operatorname{Tr}, \operatorname{Tr} D$, respectively. We shall agree to identify the vertices of Γ_{A} with the corresponding indecomposable A-modules.

Finally, by a component of Γ_{A} we mean a connected component. For a background on Auslander-Reiten theory we refer to [10, 17].
1.2. One-point extensions of algebras. Let B be an algebra and M be a B-module. The one-point extension of B by M is the algebra

$$
B[M]=\left[\begin{array}{cc}
k & M \\
0 & B
\end{array}\right]
$$

with the usual addition and multiplication of matrices. The quiver $Q_{B[M]}$ of $B[M]$ contains the quiver Q_{B} as a full convex subquiver and there is an additional (extension) vertex which is a source. We may identify the $B[M]$-modules with the triples (V, X, φ) where V is a finite dimensional k-vector space, X a B-module, and $\varphi: V \rightarrow \operatorname{Hom}_{B}(M, X)$ a k linear map. A $B[M]$-linear map $(V, X, \varphi) \rightarrow\left(V^{\prime}, X^{\prime}, \varphi^{\prime}\right)$ is thus a pair (f, g) where $f: V \rightarrow$ V^{\prime} is a k-linear map and $g: X \rightarrow X^{\prime}$ is a B-linear map such that $\varphi^{\prime} f=\operatorname{Hom}_{B}(M, g) \varphi$. With $\bmod B[M]$ one associates a vector space category $\operatorname{Hom}_{B}(M, \bmod B)$ in the following sense.

A vector space category \mathbf{K} is a Krull-Schmidt k-category together with a faithful functor $|-|: \mathbf{K} \rightarrow \bmod k$. The subspace category $\mathcal{U}(\mathbf{K})$ of \mathbf{K} is defined as follows: its objects are triples (V, Y, φ) where V is a finite dimensional k-vector space, Y an object of \mathbf{K}, and $\varphi: V \rightarrow|X|$ a k-linear map. A morphism $(V, Y, \varphi) \rightarrow\left(V^{\prime}, Y^{\prime}, \varphi^{\prime}\right)$ in $\mathcal{U}(\mathbf{K})$ is a pair (f, h) where $f: V \rightarrow V^{\prime}$ is a k-linear map and $h: Y \rightarrow Y^{\prime}$ is a morphism in \mathbf{K} such that $\varphi^{\prime} f=|h| \varphi$. Then $\operatorname{Hom}_{B}(M, \bmod B)$ is the vector space category whose objects are of the form $\operatorname{Hom}_{B}(M, X)$ with X in $\bmod B$, and morphisms are of the form $\operatorname{Hom}_{B}(M, g): \operatorname{Hom}_{B}(M, X) \rightarrow \operatorname{Hom}_{B}\left(M, X^{\prime}\right)$ with $g: X \rightarrow X^{\prime}$ a morphism in $\bmod B$. Then $\left|\operatorname{Hom}_{B}(M, X)\right|$ is the underlying k-vector space of $\operatorname{Hom}_{B}(M, X)$. We have then the reduction functor $\phi_{M}^{B}: \bmod B[M] \rightarrow \mathcal{U}\left(\operatorname{Hom}_{B}(M, \bmod B)\right)$ which assigns to each $B[M]$-module (V, X, φ) the $\operatorname{object}\left(V, \operatorname{Hom}_{B}(M, X), \varphi\right)$ and to each $B[M]$-homomorphism
$(f, g):(V, X, \varphi) \rightarrow\left(V^{\prime}, X^{\prime}, \varphi^{\prime}\right)$ the morphism $\left(f, \operatorname{Hom}_{B}(M, g)\right)$. It is well-known (see [19, (17.3)]) that ϕ_{M}^{B} is full, dense and induces a representation equivalence between the full subcategory of $\bmod B[M]$ consisting of modules having no direct summands of the form $(0, X, 0)$ and the category $\mathcal{U}\left(\operatorname{Hom}_{B}(M, \bmod B)\right)$.

A vector space category \mathbf{K} is said to be linear if $\operatorname{dim}_{k}|X| \leq 1$ for every object X. A linear vector space category is of tame representation type if and only if it does not contain as a full subposet one of the posets of the following Nazarova's list:

See [17].
1.3. Splitting lemma. The following lemma gives some necessary conditions for an algebra A to be sincere.

Lemma. Let A be a triangular algebra and $B=B_{0}, B_{1}, \ldots, B_{s}=A$ a family of convex subcategories of A such that, for each $0 \leq i<s$, either $B_{i+1}=B_{i}\left[M_{i}\right]$ or $B_{i+1}=\left[M_{i}\right] B_{i}$ for some indecomposable B_{i}-module M_{i}. Assume moreover that ind B admits a splitting ind $B=\mathcal{P} \vee \mathcal{I}$ where \mathcal{P} and \mathcal{I} are full subcategories of ind B, and the following conditions are satisfied:

1) $\operatorname{Hom}_{B}(\mathcal{I}, \mathcal{P})=0$
2) For each i such that $B_{i+1}=B_{i}\left[M_{i}\right],\left.M_{i}\right|_{B}$ belongs to add \mathcal{I}
3) For each i such that $B_{i+1}=\left[M_{i}\right] B_{i},\left.M_{i}\right|_{B}$ belongs to add \mathcal{P}.
4) There are i and j such that $M_{i} \in \mathcal{I}$ and $M_{j} \in \mathcal{P}$.

Then A is not sincere.
Proof. We know that Q_{A} has no oriented cycle and Q_{B} is a convex subquiver of Q_{A}. Denote by x_{1}, \ldots, x_{r} (resp. y_{1}, \ldots, y_{t}) the set of all vertices in Q_{A} being sources (resp. targets) of arrows with target (resp. source) in Q_{B}. Observe that, by (4), both sets are not empty. For each i, denote by B_{i}^{+}(resp. B_{i}^{-}) the maximal convex subcategory of B_{i} which does not contain y_{1}, \ldots, y_{t} (resp. x_{1}, \ldots, x_{r}). Moreover, let $\mathcal{P}_{i}\left(\right.$ resp. \mathcal{I}_{i}) be the full subcategory of ind B_{i}^{-}(resp. of ind B_{i}^{+}) consisting of modules X such that $\left.X\right|_{B} \in \operatorname{add} \mathcal{P}$
(resp. $\left.X\right|_{B} \in \operatorname{add} \mathcal{I}$). We claim that, for each $0 \leq i \leq s$, we have ind $B_{i}=\mathcal{P}_{i} \vee \mathcal{I}_{i}$ and $\operatorname{Hom}_{B_{i}}\left(\mathcal{J}_{i}, \mathcal{P}_{i}\right)=0$. It is obvious for $i=0$. Assume that it is true for some $0 \leq i<s$. Consider the case $B_{i+1}=B_{i}\left[M_{i}\right]$. By our assumption, we know that M_{i} belongs to \mathcal{P}_{i} or \mathcal{I}_{i}. If $M_{i} \in \mathcal{P}_{i}$ then $M_{i} \in \operatorname{ind} B_{i}^{-}$and $\left.M_{i}\right|_{B}=0$, by (2). Similarly, if $M_{i} \in \mathcal{I}_{i}$ then $M_{i} \in$ ind B_{i}^{+} and $\left.M_{i}\right|_{B} \in$ add \mathcal{I}. Take now an arbitrary module $Z=(V, X, \varphi)$ in ind B_{i+1}. We have three cases to consider: Suppose first that $Z=(k, 0,0)$. Then $Z \in \mathcal{P}_{i+1}$, if $M_{i} \in \mathcal{P}_{i}$, or $Z \in \mathcal{I}_{i+1}$, if $M_{i} \in \mathcal{I}_{i}$. Let now $V=0$. Then $Y \in \operatorname{ind} B_{i}=\mathcal{P}_{i} \vee \mathcal{I}_{i}$, and hence Y belongs to $\mathcal{P}_{i} \subseteq \mathcal{P}_{i+1}$ or to $\mathcal{I}_{i} \subseteq \mathcal{I}_{i+1}$. Assume now that $\varphi \neq 0$. Let $X=X_{1} \oplus \cdots \oplus X_{s}$ be a decomposition of X into a direct sum of indecomposable B_{i}-modules. Since Z is in ind B_{i+1} and $\varphi \neq 0$, we get that $\operatorname{Hom}_{B_{i}}\left(M_{i}, X_{j}\right) \neq 0$ for any $1 \leq j \leq s$. If $M_{i} \in \mathcal{P}_{i}$, then since $\left.M_{i}\right|_{B}=0$, $M_{i} \in \operatorname{ind} B_{i}^{-}$and ind $B_{i}=\mathscr{P}_{i} \vee \mathcal{I}_{i}$, we get that the modules X_{1}, \ldots, X_{s} belong to \mathscr{P}_{i}, and hence $Z=(V, X, \varphi)$ belongs to \mathscr{P}_{i+1}. Finally, if $M_{i} \in \mathcal{I}_{i}$ then, since $\left.M_{i}\right|_{B} \in$ add $\mathcal{I}, M_{i} \in$ ind B_{i}^{+}, ind $B_{i}=\mathcal{P}_{i} \vee \mathcal{I}_{i}$ and $\operatorname{Hom}_{B_{i}}\left(\mathcal{J}_{i}, \mathcal{P}_{i}\right)=0$, we get that the modules X_{1}, \ldots, X_{s} belong to \mathcal{I}_{i} and hence $Z=(V, X, \varphi)$ belongs to \mathcal{I}_{i+1}. This proves that ind $B_{i+1}=\mathscr{P}_{i+1} \vee \mathcal{I}_{i+1}$. Moreover, if $Y \in \mathscr{P}_{i+1}$ and $Z \in \mathcal{I}_{i+1}$, then $\operatorname{Hom}_{B_{i+1}}(Z, Y)=\operatorname{Hom}_{B}\left(\left.Z\right|_{B},\left.Y\right|_{B}\right)=0$ because $\operatorname{Hom}_{B}(\mathcal{I}, \mathcal{P})=0$. Thus $\operatorname{Hom}_{B}\left(\mathcal{I}_{i+1}, \mathcal{P}_{i+1}\right)=0$. The proof in the case $B_{i+1}=\left[M_{i}\right] B_{i}$ is similar.

Therefore, ind $A=\mathcal{P}_{s} \vee \mathcal{I}_{s}, \operatorname{Hom}_{A}\left(\mathcal{J}_{s}, \mathcal{P}_{s}\right)=0$, and by (4), $B \neq B_{s}^{+}$and $B \neq B_{s}^{-}$. Since \mathcal{P}_{s} consists of B_{s}^{+}-modules and \mathcal{I}_{s} of B_{s}^{-}-modules, we conclude that A is not sincere.
1.4. Tame algebras. Let A be an algebra and $k[X]$ be the polynomial algebra in one variable. Then A is said to be tame if, for any dimension d, there is a finite number of $k[X]-A$-bimodules $M_{i}, 1 \leq i \leq n_{d}$, which are finitely generated and free as left $k[X]$ modules and such that all but a finite number of isomorphism classes of indecomposable A-modules of dimension d are of the form $k[X] /(X-\lambda) \otimes_{k[X]} M_{i}$ for some $\lambda \in k$ and some i. Let $\mu_{A}(d)$ be the least number of $k[X]-A$-bimodules M_{i} satisfying the above condition. Then A is said to be of polynomial growth (resp. domestic) if there is a natural number m such that $\mu_{A}(d) \leq d^{m}$ (resp. $\mu_{A}(d) \leq m$) for any $d \geq 1$. Observe that, from the validity of the second Brauer-Thrall conjecture, A is representation-finite if and only if $\mu_{A}(d)=0$ for any $d \geq 1$.
1.5. Tilted algebras. Let $H=k \Delta$ be a hereditary algebra and T a (multiplicity-free) tilting H-module, that is, $\operatorname{Ext}_{A}^{1}(T, T)=0$ and T is a direct sum of n pairwise non-isomorphic indecomposable H-modules, where n is the number of vertices of Δ. Then $B=\operatorname{End}_{A}(T)$ is called a tilted algebra of type Δ. If Δ is one of the Euclidean quivers $\tilde{\mathbf{A}}_{p}, \tilde{\mathbf{D}}_{q}, \tilde{\mathbf{E}}_{6}, \tilde{\mathbf{E}}_{7}$, or $\tilde{\mathbf{E}}_{8}$ and T is preprojective (direct sum of modules lying in the τ_{H}^{-}orbits of projective modules), then $C=\operatorname{End}_{H}(T)$ is called tame concealed. In this case, Γ_{C} consists of a preprojective component \mathcal{P} containing all projective modules, a preinjective component \mathcal{I} containing all injective modules, and a family $\mathcal{T}_{\lambda}, \lambda \in \mathbf{P}_{1}(k)$, of stable tubes, forming the class of indecomposable regular C-modules, see [18]. We note also that by [12] every tame tilted algebra is domestic.
1.6. Tubular extensions of tame concealed algebras. Consider the following infinite tree

bound by all possible relations of the form $\alpha \beta$. A branch is the k-category given by a finite connected full bound subquiver of the above tree containing the root b. Let now C be a tame concealed algebra and $\mathcal{T}_{\lambda}, \lambda \in \mathbf{P}_{1}(k)$, its family of stable tubes. Take a sequence $E=\left(E_{1}, \ldots, E_{s}\right)$ of pairwise non-isomorphic C-modules which are simple among the regular modules, and a family $K=\left(K_{1}, \ldots, K_{s}\right)$ of branches, say with the roots b_{1}, \ldots, b_{s}, respectively. The tubular extension $\Lambda=C[E, K]$ of C by E and K is the category whose set of objects is the disjoint sum of the sets of objects of C, K_{1}, \ldots, K_{s}. The morphism sets are such that $\Lambda(x, y)=C(x, y)$ if $x, y \in C ; \Lambda(x, y)=K_{i}(x, y)$ if $x, y \in K_{i}, \Lambda(x, y)=0$ if $y \in K_{j}$ and $x \in C \cup K_{i}, i \neq j ; \Lambda(x, y)=E_{i}(y) \otimes_{k} K_{i}\left(x, b_{i}\right)$ if $x \in K_{i}, y \in C$. Let r_{λ} denote the rank of the tube $\mathcal{T}_{\lambda}, \lambda \in \mathbf{P}_{1}(k)$. The tubular type $n_{\Lambda}=$ $\left(n_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$ is defined by $n_{\lambda}=r_{\lambda}+\sum_{E_{i} \in \mathcal{I}_{\lambda}}\left|K_{i}\right|$. Since almost all n_{λ} are equal to 1 , we shall write, instead of $\left(n_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$, the (finite) sequence containing at least two n_{λ}, including all those which are larger than 1 , arranged in non-decreasing order. A tubular extension Λ of C is called domestic (resp. tubular) if its tubular type is one of the following: (p, q), $1 \leq p \leq q,(2,2, r), 2 \leq r,(2,3,3),(2,3,4)$ or $(2,3,5)($ resp. $(3,3,3),(2,4,4),(2,3,6)$ or $(2,2,2,2)$). Dually, one defines a tubular coextension of C. It was shown in [18, (4.9)] that B is a representation-infinite tilted algebra of Euclidean type with a complete slice in its preinjective (resp. preprojective) component if and only if B is a domestic tubular extension (resp. coextension) of a tame concealed algebra. A tubular (resp. cotubular) algebra is a tubular extension (resp. coextension) Λ of C with n_{Λ} tubular. By [18, (5.2)], any tubular algebra is cotubular and conversely. We know (see [13, (2.1)]) that for, a tubular extension Λ of C the following conditions are equivalent: (a) Λ is tame; (b) Λ
is of polynomial growth (c) n_{Λ} is domestic or tubular. Moreover, Λ is domestic if and only if n_{\wedge} is domestic.

We shall now describe the Auslander-Reiten quiver of a tame tubular extension or coextension of C. Let B be tubular extensions of C, then

$$
\Gamma_{B}=\mathcal{P}_{0}^{B} \vee \mathcal{T}_{0}^{B} \vee \mathcal{I}_{0}^{B}
$$

where \mathcal{P}_{0}^{B} denotes the preprojective component of $\Gamma_{C}, \mathcal{T}_{0}^{B}$ is a $\mathbf{P}_{1}(k)$-family of (ray) tubes obtained from the corresponding tubes in Γ_{C} by successive ray insertions, and \mathcal{I}_{0}^{B} denotes the remaining components of Γ_{B}. The ordering from the left to the right indicates that there are non-zero morphisms only from any of these classes to itself and from the classes to its right. All projective indecomposable B-modules belong to $P_{0}^{B} \vee \mathcal{T}_{0}^{B}$. Similarly, if B is a tubular coextension of C, then

$$
\Gamma_{B}=\mathscr{P}_{\infty}^{B} \vee \mathcal{T}_{\infty}^{B} \vee g_{\infty}^{B}
$$

where g_{∞}^{B} denotes the preinjective component of $\Gamma_{C}, \mathcal{T}_{\infty}^{B}$ is a $\mathbf{P}_{1}(k)$-family of (coray) tubes obtained from the corresponding tubes in Γ_{C} by successive coray insertions, and P_{∞}^{B} denotes the remaining components of Γ_{B}. All injective indecomposable B-modules belong to $\mathcal{T}_{\infty}^{B} \vee \mathcal{I}_{\infty}^{B}$. If B is a domestic tubular extension (resp. coextension) of C, then g_{0}^{B} (resp. \mathcal{P}_{∞}^{B}) is the preinjective (resp. preprojective) component of Γ_{B} and contains a complete slice [18, (4.9)]. If B is tubular then B is also a tubular coextension of a tame concealed algebra C^{\prime} and

$$
\begin{aligned}
& \boldsymbol{g}_{0}^{B}=\left(\bigvee_{q \in \mathbf{Q}^{+}} \mathcal{T}_{q}^{B}\right) \vee \mathcal{T}_{\infty}^{B} \vee \mathcal{I}_{\infty}^{B} \\
& \mathcal{P}_{\infty}^{B}=\mathcal{P}_{0}^{B} \vee \mathcal{T}_{0}^{B} \vee\left(\underset{q \in \mathbf{Q}^{+}}{\bigvee} \mathcal{T}_{q}^{B}\right)
\end{aligned}
$$

where \mathbf{Q}^{+}is the set of positive rationals and each \mathcal{T}_{q}^{B} is a $\mathbf{P}_{1}(k)$-family of stable tubes [18, (5.2)].

We shall need the following facts.
Proposition. Let B be a tame tubular extension of a tame concealed algebra C, and M be an indecomposable B-module. Then, with the above notation, the following holds:
i) If $B[M]$ is tame then M does not belong to $\mathscr{P}_{0}^{B}=\mathscr{P}_{0}^{C}$.
ii) If B is tubular and $B[M]$ is tame, then M belongs to $\mathcal{T}_{\infty}^{B} \vee \mathcal{I}_{\infty}^{B}$
iii) If B is tubular and $[M] B$ is tame, then M belongs to $\mathscr{P}_{0}^{B} \vee \mathcal{T}_{0}^{B}$.
iv) If B is tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8, M \in \mathcal{I}_{0}^{B}$, and $[M] B$ tame, then $[M] B$ is a tubular extension of C.
v) If B is tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8, M \notin g_{0}^{B}$, and $B[M]$ tame, then M lies on the mouth of a tube in \mathcal{T}_{0}^{B} and $B[M]$ is a tubular extensions of C.

Proof. (i): see [17, (3.5)] and [2, (3.1)].
(ii) and (iii): see [2, (3.2)].
(iv) and (v): take verbatim the proofs of Lemmas 3.3, 3.4 and 3.5 in [2], using the tameness of $[M] B$ (resp. of $B[M]$) and the fact that, by [17, (3.5)], every one-point extension of a hereditary algebra of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$, by an indecomposable regular module of regular length at least 2 , is wild.

2. Strongly simply connected algebras.

2.1. Let A be a triangular algebra and $Q=Q_{A}$. For each vertex x of Q, denote by $Q(x)$ the subquiver of Q obtained by deleting all those vertices of Q being a source of a path in Q with target x (including the trivial path from x to x). Following [6], A is said to have the separation property if, for each vertex x of Q, the radical $\operatorname{rad} P_{A}(x)$ of the projective A module $P_{A}(x)$ at x is a direct sum of pairwise non-isomorphic indecomposable modules whose supports are contained in pairwise different connected components of $Q(x)$. It is known [21] that every algebra A with the separation property is simply connected in the sense of [1], that is, for any presentation $A \xrightarrow{\sim} K Q / I$ of A as a bound quiver algebra, the fundamental group $\Pi_{1}(Q, I)$ of (Q, I) is trivial. It was shown in [21] that every convex subcategory of A has the separation property if and only it every convex subcategory of A is simply connected. If this is the case, A is said to be strongly simply connected. Observe that the opposite algebra to a strongly simply connected algebra is also strongly simply connected. The class of strongly simply connected algebras contains all representation-finite simply connected algebras, algebras whose ordinary quiver is a tree, and all tilted algebras of Euclidean type (resp. tubular algebras) which do not contain convex hereditary subcategories of type $\tilde{\mathbf{A}}_{n}$.
2.2. Proposition. Let B be a convex subcategory of a strongly simply connected algebra A. Then there is a sequence $B=\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{t}=A$ of convex subcategories of A such that, for each $0 \leq i<t, \Lambda_{i+1}$ is a one-point extension or coextension of Λ_{i} by an indecomposable Λ_{i}-module.

Proof. Let $Q=Q_{A}$ (resp. $Q^{\prime}=Q_{B}$) be the quiver of A (resp. $B=\Lambda_{0}$), then Q^{\prime} is a convex full subquiver of Q. Without loss of generality, there is a source x_{0} of Q not in Q^{\prime}. Consider the indecomposable decomposition $\operatorname{rad} P_{A}\left(x_{0}\right)=\oplus_{i=1}^{s} R_{i}$ such that $\operatorname{supp} R_{i}$ is contained in the connected component Δ_{i} of $Q\left(x_{0}\right)$. Then $\Delta_{i} \neq \Delta_{j}$ for $i \neq j$. Let D_{i} be the convex subcategory of A with objects Δ_{i}. Since Q^{\prime} is connected we may assume it is contained in Δ_{1}. Therefore B is a convex subcategory of D_{1}.

If $s=1$, then $A=D_{1}\left[R_{1}\right]$ and by induction we obtain the result. Assume that $s>1$. Choose a sink y_{0} in Δ_{2} and consider the indecomposable decomposition $I_{A}\left(y_{0}\right) / S_{A}\left(y_{0}\right)=$ $\oplus_{j=1}^{t} C_{j}$ such that $\operatorname{supp} C_{j}$ is contained in the connected component Δ_{j}^{\prime} of the quiver obtained from Q by deleting y_{0}. Then $\Delta_{i}^{\prime} \neq \Delta_{j}^{\prime}$ for $i \neq j$. Let D_{j}^{\prime} be the convex subcategory of A with objects Δ_{j}^{\prime}. We may assume that $Q^{\prime}\left(\right.$ and $\left.x_{0}\right)$ is contained in Δ_{1}^{\prime}. If $t=1$, then $A=\left[C_{1}\right] D_{1}^{\prime}$ and we obtain the result by induction. Otherwise, $t>1$ and we may choose a source x_{1} in Δ_{2}^{\prime}. Since x_{0} is in Δ_{1}^{\prime}, then $x_{0} \neq x_{1}$. We repeat the above construction obtaining either $A=E_{1}\left[M_{1}\right]$ (or $\left[N_{1}\right] E_{1}^{\prime}$) for a convex subcategory E_{1} (or E_{1}^{\prime}) of A and an
indecomposable module M_{1} (or N_{1}), or a source x_{2} different to x_{0} and x_{1}. This process can only be repeated finitely many times. Thus the result.
2.3. The following technical result will be useful; we will encounter situations such as the one described below in Section 5.

Lemma. Let A be a strongly simply connected algebra. Let B be a convex subcategory of A satisfying the following, (1) ind B admits a splitting ind $B=\mathcal{P} \vee I$, where \mathcal{P} and I are full subcategories of ind B with $\operatorname{Hom}_{B}(I, \mathcal{P})=0$; (2)there is a vertex x_{0} of Q_{A} not in Q_{B} such that $\left.\operatorname{rad} P_{A}\left(x_{0}\right)\right|_{B}$ has a direct summand N in \mathcal{P}; and for any successor y of x_{0} not in $Q_{B},\left.\operatorname{rad} P_{A}(y)\right|_{B} \in \operatorname{add}(I)$. Then there exists an indecomposable B-module R such that $B[R]$ is a convex subcategory of A and $\operatorname{Hom}_{A}(R, N) \neq 0$. In particular, R is in P.

Proof. We denote $M=\operatorname{rad} P_{A}\left(x_{0}\right)$.
Let D be the convex subcategory of A formed by the vertices of B and those vertices of Q_{A} which are successors of x_{0} and predecessors of some vertex in Q_{B}. Then D is strongly simply connected and by (2.2) there is a sequence of convex subcategories $B=B_{0} \subset$ $B_{1} \subset \cdots \subset B_{s} \subset B_{s+1}=D$ of A such that $B_{i+1}=B_{i}\left[M_{i}\right]$ for some indecomposable $B_{i}-$ module M_{i}. Moreover, observe that $M_{s}=\left.M\right|_{D}$ and $\left.\operatorname{rad} P_{A}\left(x_{0}\right)\right|_{B}=\operatorname{rad} P_{D}\left(x_{0}\right) \mid B$. Assume that $s \geq 1$.
$\operatorname{By}(2),\left.M_{i}\right|_{B} \in \operatorname{add}(I)$ for $i=0, \ldots, s-1$. Therefore we may proceed as in the splitting lemma (1.3), to construct full subcategories \mathcal{P}_{i} and I_{i} of ind B_{i} such that ind $B_{i}=\mathcal{P}_{i} \vee I_{i}$ and $\operatorname{Hom}_{B_{i}}\left(I_{i}, \mathcal{P}_{i}\right)=0, i=0, \ldots, s$. Let y_{i} be the extension vertex of B_{i} from B_{i-1}, that is, $\operatorname{rad} P_{B_{i}}\left(y_{i}\right)=M_{i-1}$. By definition, $P_{B_{i}}\left(y_{i}\right)$ belongs to I_{i}. Hence every indecomposable B_{i}-module X with $\operatorname{Hom}_{A}\left(P_{B_{i}}\left(y_{i}\right), X\right) \neq 0$ belongs to I_{i}. In the last step $y_{s+1}=x_{0}$ and $\operatorname{Hom}_{A}\left(P_{B_{s}}\left(y_{s}\right), M_{s}\right) \neq 0$. Therefore M_{s} belongs to I_{s} and the restriction $\left.M_{s}\right|_{B} \in \operatorname{add}(I)$ which contradicts (2). This shows that $s=0$ and $D=B[R]$ with $R=M_{1}$ an indecomposable B-module. Finally, there is an isomorphism $\left.P_{D}\left(x_{0}\right) \rightarrow P_{A}\left(x_{0}\right)\right|_{D}$, which implies that $\operatorname{Hom}_{A}(R, N) \neq 0$.
2.4. Lemma. Let A be a strongly simply connected algebra. Let B be a convex subcategory of A satisfying the following (l) ind B admits a splitting ind $B=\mathcal{P} \vee \mathcal{C} \vee I$, where \mathcal{P}, \mathcal{C}, I are full subcategories of ind B with $\operatorname{Hom}_{B}(\mathcal{C} \vee I, \mathcal{P})=0=\operatorname{Hom}_{B}(I, \mathcal{C})$; (2)there is a vertex x_{0} not in Q_{B} such that $\left.\operatorname{rad} P_{A}\left(x_{0}\right)\right|_{B}$ has a direct summand N with $\operatorname{Hom}_{B}(N, C) \neq 0$; for any proper successory of x_{0} not in Q_{B}, if $\operatorname{Hom}_{B}\left(\left.\operatorname{rad} P_{A}(y)\right|_{B}, \mathcal{C} \vee I\right)$ $\neq 0$, then $\left.\operatorname{rad} P_{A}(y)\right|_{B} \in \operatorname{add}(I)$. Then there exists an indecomposable B-module R such that $B[R]$ is a convex subcategory of A and $R \in \mathcal{P} \vee \mathcal{C}$.

Proof. Let $M=\operatorname{rad} P_{A}\left(x_{0}\right)$. Let D be the convex subcategory of A formed by the vertices Q_{B} and those vertices which are successors of x_{0} and predecessors of some vertex in Q_{B}. Consider a sequence of convex subcategories of $A, B=B_{0} \subset B_{1} \subset \cdots \subset B_{s} \subset$ $B_{s+1}=D$ such that $B_{i+1}=B_{i}\left[M_{i}\right]$ for some indecomposable B_{i}-module M_{i}. Observe that $M_{s}=\left.M\right|_{D}$.

We construct full subcategories $\mathcal{P}_{i}, \mathcal{C}_{i}, I_{i}$ of ind B_{i} such that ind $B_{i}=\mathcal{P}_{i} \vee \mathcal{C}_{i} \vee I_{i}$ and $\operatorname{Hom}_{B_{i}}\left(\mathcal{C}_{i} \vee I_{i}, \mathcal{P}_{i}\right)=0=\operatorname{Hom}_{B_{i}}\left(I_{i}, \mathcal{C}_{i}\right), i=0, \ldots, s$. Let y_{i} be the extension vertex of B_{i} from B_{i-1}, that is, $\operatorname{rad} P_{B_{i}}\left(y_{i}\right)=M_{i}$. Assume that for $i \leq j \leq s-1$, the categories $\mathcal{P}_{i}, \mathcal{C}_{i}, I_{i}$ are defined and $\mathcal{C}_{i}=\mathcal{C}$. Moreover, if $M_{i} \in \mathcal{P}_{i}$, then $\operatorname{Hom}_{B_{i}}\left(M_{i}, \mathcal{C}_{i} \vee I_{i}\right)=0$. We prove that the same is satisfied by B_{j+1} (and by M_{j+1} in case $j+1<s$).

If $M_{j} \in \mathcal{P}_{j}$, then $\operatorname{Hom}_{B_{j}}\left(M_{j}, \mathcal{C}_{j} \vee I_{j}\right)=0$. We define \mathscr{P}_{j+1} as the full subcategory of ind B_{j+1} whose objects are of the form $X=\left(V, X_{0}, \gamma: V \rightarrow \operatorname{Hom}_{B_{j}}\left(M_{j}, X_{0}\right)\right)$ with $X_{0} \in \operatorname{add}\left(\mathscr{P}_{j}\right)$. Observe that for any indecomposable $X=\left(V, X_{0}, \gamma\right)$ with $V \neq 0, X \in \mathscr{P}_{j+1}$. Set $\mathcal{C}_{j+1}=\mathcal{C}$ and $I_{j+1}=I_{j}$. Then ind $B_{j+1}=\mathcal{P}_{j+1} \vee \mathcal{C}_{j+1} \vee I_{j+1}$ is the desired splitting. If $M_{j} \in \mathcal{C}_{j} \vee I_{j}$, then $M_{j} \in I_{j}$ (by (2), because $\mathcal{C}_{j}=\mathcal{C}$). We define I_{j+1} as the full subcategory of ind B_{j+1} with objects of the form $X=\left(V, X_{0}, \gamma\right)$ with $X_{0} \in \operatorname{add}\left(I_{j}\right)$. Set $\mathcal{P}_{j+1}=\mathcal{P}_{j}, C_{j+1}=C$. Then ind $B_{j+1}=\mathscr{P}_{j+1} \vee \mathcal{C}_{j+1} \vee I_{j+1}$ is the desired splitting.

If $j+1<s$ and $M_{j+1} \in \mathscr{P}_{j+1}$, it is of the form $M_{j+1}=(V, L, \gamma)$ with $L \in \operatorname{add}\left(\mathscr{P}_{j}\right)$. Assume $\operatorname{Hom}_{B_{j+1}}\left(M_{j+1}, C_{j+1} \vee I_{j+1}\right) \neq 0$. Since $I_{j+1}=I_{j}$, there is some $Y_{j} \in \mathcal{C}_{j} \vee I_{j}$ such that $\operatorname{Hom}_{B_{j}}\left(L, Y_{j}\right) \neq 0$. Then either $\mathcal{P}_{j}=\mathcal{P}_{j-1}$ or $I_{j}=I_{j-1}$, in any case we get $Y_{j-1} \in \mathcal{C}_{j-1} \vee$ I_{j-1} such that $\operatorname{Hom}_{B_{j}}\left(L, Y_{j-1}\right) \neq 0$. Continuing this way, we get that $\operatorname{Hom}_{B}\left(\left.M_{j+1}\right|_{B}, Y\right) \neq 0$ for some module $Y \in \mathcal{C} \vee I$, a contradiction. Hence $\operatorname{Hom}_{B_{j+1}}\left(M_{j+1}, C_{j+1} \vee I_{j+1}\right)=0$.

At the final step, we get $y_{s+1}=x_{0}$ and $M_{s}=\left.M\right|_{D}$. If $s \geq 1$, there is some $0 \leq i \leq s$, such that $\operatorname{Hom}_{A}\left(P_{B_{i}}\left(y_{i}\right), M_{s}\right) \neq 0$. Since M_{s} is an indecomposable B_{s}-module such that $\operatorname{Hom}_{B}\left(\left.M_{s}\right|_{B}, \mathcal{C}\right) \neq 0$, then $M_{s} \in \mathcal{P}_{s} \vee \mathcal{C}$. Therefore $M_{i} \in \mathcal{P}_{s}$. Let y_{m} be a maximal vertex in Q_{D} not in Q_{B}, such that y_{m} is a successor of y_{i}. Then there is a chain of non-zero maps $P_{D}\left(y_{m}\right) \rightarrow \cdots \rightarrow P_{D}\left(y_{i}\right)$ and the radical $R=\operatorname{rad} P_{D}\left(y_{m}\right)$ is an indecomposable B-module in P. This shows that there is a convex subcategory $B[R]$ of A with R in \mathcal{P}. In case $s=0$, then $R=\operatorname{rad} P_{D}\left(x_{0}\right)$ is indecomposable in $\mathcal{P} \vee C$ and $B[R]$ is a convex subcategory of A.
3. Coil enlargements of algebras. We recall in this section the notions of admissible operations, coils, and coil enlargements of algebras, playing an essential role in the proof of our main theorem. For more details on these concepts we refer the reader to [2 , 3, 4].
3.1. Let A be a algebra and Γ be a component in Γ_{A}. For an indecomposable module X in Γ, called the pivot, three types of admissible operations are defined, yielding in each case a modified algebra A^{\prime} of A, and a modified component Γ^{\prime} of Γ :
ad 1) If the support of $\left.\operatorname{Hom}_{A}(X,-)\right|_{\Gamma}$ is of the form:

$$
X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

we set $A^{\prime}=(A \times D)[X \oplus Y]$, where D is the full $t \times t$ lower triangular matrix algebra, and Y is the unique projective-injective indecomposable D-module. In this case, Γ^{\prime} is obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(k, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 0$, $1 \leq j \leq t$, and $X_{i}^{\prime}=\left(k, X_{i}, 1\right)$ for $i \geq 1$, where $Y_{j}, 1 \leq j \leq t$, denote the indecomposable injective D-modules. If $t=0$, we set $A^{\prime}=A[X]$, and the rectangle reduces to the ray formed by modules of the form X_{i}^{\prime}.
ad 2) If the support of $\left.\operatorname{Hom}_{A}(X,-)\right|_{\Gamma}$ is of the form:

$$
Y_{t} \leftarrow \cdots \leftarrow Y_{1} \leftarrow X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

with $t \geq 1$ (so that X is injective), we set $A^{\prime}=A[X]$. In this case, Γ^{\prime} is obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(k, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 1$, $1 \leq j \leq t$, and $X_{i}^{\prime}=\left(k, X_{i}, 1\right)$, for $i \geq 0$.
ad 3) If the support of $\left.\operatorname{Hom}_{A}(X,-)\right|_{\Gamma}$ is of the form
with $t \geq 2$ (so that X_{t-1} is injective), we set $A^{\prime}=A[X]$. In this case, Γ^{\prime} is obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(k, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 1$, $1 \leq j \leq i$, and $X_{i}^{\prime}=\left(k, X_{i}, 1\right)$ for $i \geq 0$.

It was shown in [3] that the component of $\Gamma_{A^{\prime}}$ containing X is Γ^{\prime}. The dual coextension operations ad 1^{*}), ad 2^{*}) and ad 3^{*}) are also called admissible. We say that X is a pivoting module (resp. copivoting module) if X can be used as pivot for an admissible operation of type ad 1), ad 2) or ad 3) (resp. ad 1^{*}), ad 2^{*}) or ad 3^{*})).
3.2. The above admissible operations can be regarded as operations on translation quivers rather than on Auslander-Reiten components (see [2, (2.1)]).

Following [2,3] a translation quiver Γ is called a coil if there exists a sequence of translation quivers $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}=\Gamma$ such that Γ_{0} is a stable tube and for each $0 \leq i<$ m, Γ_{i+1} is obtained from Γ_{i} by an admissible operation.

Given a coil Γ, the full convex subquiver Γ^{γ} formed by all non-directing vertices in Γ is again a coil (see [3]).
3.3. Let C be a tame concealed algebra and $\mathcal{T}=\left(\mathcal{T}_{\lambda}\right)_{\lambda \in \mathbf{P}_{(}(k)}$ the family of all stable tubes in Γ_{C}. Following [4], an algebra B is said to be a coil enlargement of C if there is a finite sequence of algebras $C=B_{0}, B_{1}, \ldots, B_{m}=B$ such that for each $0 \leq j<m$, B_{j+1} is obtained from B_{j} by an admissible operation with the pivot in a stable tube of \mathcal{T} or in a component of $\Gamma_{B_{j}}$, obtained from a stable tube of \mathcal{T} by means of the sequence of admissible operations done so far. Observe that, for each $\lambda \in \mathbf{P}_{1}(k)$, all modules of \mathcal{T}_{λ} are contained in one component, say \mathcal{C}_{λ}, of Γ_{B} which is a coil. It follows that coil enlargements of C using only the operations of type ad 1) (resp. of type ad $\left.1^{*}\right)$) are just tubular extensions (resp. tubular coextensions) of C in the sense of (1.6). By a coil algebra we mean a tame coil enlargement of a tame concealed algebra. We have the following facts proved in [4, (3.5), (4.1)].

Proposition. Let B be a coil enlargement of a tame concealed algebra C. Then, in the above notation, the following holds:
i) There exists a unique maximal tubular extension B^{+}of C which is a convex subcategory of B such that B is obtained from B^{+}by a sequence of admissible operations of types ad 1^{*}), ad 2^{*}) or $\operatorname{ad} 3^{*}$).
ii) There is a unique maximal tubular coextension B^{-}of C which is a convex subcategory of B such that B is obtained from B^{-}by a sequence of admissible operations of types ad 1), ad 2) or ad 3).
iii) $\Gamma_{B}=P_{\infty}^{B^{-}} \vee \mathcal{C} \vee I_{0}^{B^{+}}$(see (1.6)) where $\mathcal{C}=\left(\mathcal{C}_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(K)}$, is the family of coils obtained from the tubular family $\mathcal{T}=\left(\mathcal{T}_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$, by the corresponding admissible operations. Moreover \mathcal{C} weakly separates $\mathcal{P}_{\infty}^{B^{-}}$from $I_{0}^{B^{+}}$, that is, every map from $\mathcal{P}_{\infty}^{B^{-}}$to $I_{0}^{B^{+}}$factors through $\operatorname{add}(\mathcal{C})$.
iv) B is tame if and only if B^{-}and B^{+}are tame.
3.4. We shall need also the following proposition:

Proposition. Let B be a coil enlargement of a tame concealed algebra C of type $\tilde{\mathbf{D}}_{m}, m \geq 4$, or $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Assume that X is an indecomposable B-module lying in a coil Γ of Γ_{B} such that $\Lambda=[X] B$ is tame and $\operatorname{Hom}_{B}(Z, X) \neq 0$ for some non-directing module Z in Γ. Then
i) B^{-}is a tilted algebra of Euclidean type $\tilde{\mathbf{D}}_{n}, n \geq m$, or $\tilde{\mathbf{E}}_{q}, 6 \leq p \leq q \leq 8$, with a complete slice in the preprojective component.
ii) M is either copivoting or B^{-}is of type $\tilde{\mathbf{D}}_{n}$ and the support of $\left.\operatorname{Hom}_{B}(-, X)\right|_{\Gamma}$ contains the k-linear category of one of the following posets

In case (2), there are at least 4 projective indecomposable B^{+}-modules which are not C-modules. Moreover, there exists an indecomposable B^{-}-module Y lying in the preprojective component of $\Gamma_{B^{-}}$such that $\operatorname{dim}_{k} \operatorname{Hom}_{B}(Y, X)=2$.

Proof. Since $\operatorname{Hom}_{B}(Z, X) \neq 0$ for some non-directing module Y of Γ, we conclude that Γ admits an infinite sectional path

$$
\Sigma: \cdots \rightarrow X_{i} \rightarrow X_{i-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}=X
$$

Put $F=B^{-}$. We know from Proposition 3.3 that B is obtained from F (resp. Γ is obtained from a coray tube \mathcal{T} in $\left.\Gamma_{F}\right)$ by a sequence of admissible operations of type $(\operatorname{ad} 1),(\operatorname{ad} 2)$
or (ad 3). Clearly, in the notation of (1.6), \mathcal{T} belongs to the family \mathcal{T}_{∞}^{F}. Observe also that infinitely many modules X_{i} belong to \mathcal{T} and, if s is the minimal index i with this property, then $N=X_{s}$ is the restriction of X to F. In particular, the one-point coextension $[N] F$ is a convex subcategory of $\Lambda=[X] B$. Since Λ is tame and N belongs to \mathcal{T}_{∞}^{F}, we get by Proposition 1.6, that F is not tubular. Therefore, F is a tilted algebra of Euclidean type $\tilde{\mathbf{D}}_{n}$ or $\tilde{\mathbf{E}}_{q}$ (see (1.6)) with a complete slice in its preprojective component \mathcal{P}_{∞}^{F}. Let Δ be a slice in P_{∞}^{F} and U the direct sum of modules in Δ. Then U is a tilting module $H=\operatorname{End}_{F}(U)$ is a hereditary algebra of type Δ, and $M=\operatorname{Hom}_{F}(U, N)$ is an indecomposable module lying in the stable tube \mathcal{T}^{\prime} of Γ_{H} containing all modules $\operatorname{Hom}_{F}(U, Y)$ with Y from \mathcal{T}. Moreover, since $[N] F$ is tame, $[M] H$ is also tame. Suppose now that X is not copivoting. We have two cases to consider. Assume first that supp $\left.\operatorname{Hom}_{B}(-, X)\right|_{\Gamma}$ contains all modules lying on an infinite sectional path which is parallel to Σ. Then the support of $\left.\operatorname{Hom}_{R}(-, N)\right|_{\mathcal{T}}$ contains the k-linear category of a subquiver

of \mathcal{T}. In this case, $M=\operatorname{Hom}_{F}(U, N)$ does not lie on the mouth of \mathcal{T}^{\prime}, and then, by [17, (3.5)], we get that $\Delta=\tilde{\mathbf{D}}_{n}$. Hence $F=B^{-}$is of type $\tilde{\mathbf{D}}_{n}$ and suppHom ${ }_{B}(-, X)$ contains a k-linear subcategory given by a poset of type (1). Suppose now that all nondirecting modules from supp $\left.\operatorname{Hom}_{B}(-, X)\right|_{\Gamma}$ lie on Σ. Then, since X is not copivoting by the structure of Γ we infer that $\left.\operatorname{supp} \operatorname{Hom}_{B}(-, X)\right|_{\Gamma}$ contains a k-linear category of a poset of type (2). We claim that, in this case, F is also of type $\tilde{\mathbf{D}}_{n}$. Indeed, if F is of type $\tilde{\mathbf{E}}_{p}$, then $\operatorname{Hom}_{B}(\bmod B, X)$ contains a full subcategory given by a poset

$$
\begin{array}{lccc}
& & & \operatorname{Hom}_{B}\left(Z_{5}, X\right) \\
& & & \downarrow \\
\operatorname{Hom}_{B}\left(Z_{1}, X\right) & \operatorname{Hom}_{B}\left(Z_{2}, X\right) & \operatorname{Hom}_{B}\left(Z_{3}, X\right) & \operatorname{Hom}_{B}\left(Z_{4}, X\right)
\end{array}
$$

of type $(1,1,1,2)$, where Z_{1}, Z_{2} are from Γ and Z_{3}, Z_{4}, Z_{5} from \mathscr{P}_{∞}^{F}. But then $[X] B$ is not tame, a contradiction. Hence, $F=B^{-}$is of type $\tilde{\mathbf{D}}_{n}$. Moreover in both cases, by [17, (3.5)], there exists Y in P_{∞}^{F} such that $\operatorname{dim}_{k} \operatorname{Hom}_{F}(Y, N)=2$, and hence $\operatorname{dim}_{k} \operatorname{Hom}_{B}(Y, X) \geq 2$, because there is a monomorphism $N \rightarrow X$. Since $\Lambda=[X] B$ is tame, we get that $\operatorname{dim}_{k} \operatorname{Hom}_{B}(Y, X)=2$. This finishes our proof.

We end this section with two typical examples of coil enlargements of concealed algebras which will occur in this paper.
3.5. Let Λ be the bound quiver algebra $k Q / I$, where Q is the quiver

and I is the ideal in $k Q$ generated by $\nu \rho, \delta \psi \rho, \gamma \beta \alpha-\varphi \psi$ and $\varphi \psi \rho-\sigma \xi \eta$. Let $C=k \Delta$ by the hereditary (hence concealed) algebra of type $\tilde{\mathbf{E}}_{6}$ given by the subquiver Δ of Q consisting of the vertices $1,2, \ldots, 7$. Then, by $[8$, Tables $], \Gamma_{C}$ admits a tube \mathcal{T}_{0} containing the simple regular C-module X having the space k at the vertices $1,4,6$ and 7 , and 0 in the remaining vertices of Δ. Consider now the bound quiver algebra $D=k Q^{\prime} / I^{\prime}$ where Q^{\prime} is the subquiver of Q given by the vertices $1,2, \ldots, 9,10$, and I^{\prime} the ideal in $k Q$ generated by $\nu \rho$ and $\delta \psi \rho$. Then D is a cotubular, hence also tubular, algebra of type ($2,3,6$). Moreover, the (coray) tube \mathcal{T}_{0}^{\prime} of Γ_{D} containing all modules of \mathcal{T}_{0} and the injective D-modules $I_{D}(8)$, $I_{D}(9)$ and $I_{D}(10)$ is of the form

where the vertical dotted lines have to be identified in order to obtain a tube. Then $\Lambda=$ $D[Y]$ is a coil enlargement of C obtained from D by the operation of type ad 2) with the pivot Y. Moreover, the coil \mathcal{C}_{0} of Γ_{Λ} containing Y is of the form

Observe that $\Lambda^{-}=D$ and Λ^{+}is a tubular algebra of type $(2,3,6)$ given by the bound subquiver of (Q, I) formed by all vertices except 8 . Moreover, Λ is obtained from Λ^{+}by one admissible operation of type ad 2^{*}) creating the vertex 8 . Further, Λ is strongly simply connected and of polynomial growth, by Proposition 3.3 and the polynomial growth of tubular algebras. It is also easy to see that the coil \mathcal{C}_{0} contains infinitely many sincere indecomposable modules.

Consider now the one-point extensions $R=D[Y]$ of D by the indecomposable module Z having k at the vertices $1,4,6,7,8$ and 9 , and 0 in the remaining ones. Then Z is the pivot for an admissible operation of type ad 3), and hence R is a coil enlargement of C. Observe that R is the bound quiver algebra $K \Omega / J$ where Ω is the quiver

and J is the ideal in $K \Omega$ generated by $\nu \rho, \delta \psi \rho, \gamma \beta \alpha-\varphi \psi$ and $\varphi \psi \rho-\sigma \eta$. Moreover, the coil \mathcal{C}_{0}^{\prime} of Γ_{Λ} containing Z is of form

In this case, $R^{-}=D$ and R^{+}is a tubular algebra of type $(2,3,6)$ given by the bound subquiver of (Q, I) formed by all vertices except 8 . Moreover, R is obtained from R^{+} by one admissible operation of type ad 3^{*}) creating the vertex 8 . Finally, R is strongly simply connected of polynomial growth, and the coil \mathcal{C}_{0}^{\prime} contains infinitely many sincere indecomposable modules.
4. The tilted case. We will divide the proof of our main theorem in two parts. In this section we study a particular situation corresponding to the tilted case.

Proposition 4.1. Let a be a tame, sincere, strongly simply connected algebra. Let B be a convex subcategory of A satisfying the following conditions:
(i) B is representation-infinite tilted algebra of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$ having a complete slice in its preinjective component;
(ii) A admits no convex subcategory of the form $[N] B$ for some indecomposable B module N;
(iii) for any convex subcategory $B[M]$ of A, M is an indecomposable preinjective B module.
Then A is a tilted algebra.
4.1. For the proof of (4.1) we need the following observation:

Lemma. Let K be a tilted algebra of type \mathbf{A}_{t}. Let $U_{1} \rightarrow \cdots \rightarrow U_{t}$ be a slice in Γ_{K}. Consider an indecomposable K-module M such that $\operatorname{Hom}_{K}\left(M, U_{j}\right) \neq 0$ for some j. Then one of the following happens,
(a) $K[M]$ is a tilted algebra of type \mathbf{A}_{t+1} and there is a slice $U_{1} \rightarrow U_{2}^{\prime} \rightarrow \cdots \rightarrow U_{t+1}^{\prime}$ in $\Gamma_{K[M]}$ starting at U_{1};
(b) there are indecomposable modules Y_{1}, Y_{2} over $K[M]$ with trivial endomorphism rings, $\operatorname{Hom}_{K[M]}\left(Y_{1}, Y_{2}\right)=0=\operatorname{Hom}_{K[M]}\left(Y_{2}, Y_{1}\right)$ and $\operatorname{dim}_{k} \operatorname{Hom}_{K[M]}\left(U_{1}, Y_{i}\right)=1, i=$ $1,2$.

Proof. Assume first $\operatorname{Hom}_{K}\left(M, U_{i}\right) \neq 0 \neq \operatorname{Hom}_{K}\left(M, U_{\ell}\right)$ for some $i<\ell$. Then $\operatorname{Hom}_{K}\left(M, U_{i+1}\right) \neq 0$. We consider the indecomposable $K[M]$-modules $Y_{1}=U_{i+1}$ and $Y_{2}=\left(k, U_{i}, \mathbf{1}_{\text {Hom }_{K}\left(M, U_{i}\right)}\right)$ satisfying the conditions in (b). Otherwise, j is the unique index such that U_{j} receives morphisms from M. Then in $\Gamma_{K[M]}$ there is a sectional path

$$
U_{1} \rightarrow \cdots \rightarrow U_{j} \rightarrow\left(k, U_{j}, \mathbf{1}_{\text {Hom }_{K}\left(M, U_{j}\right)}\right) \rightarrow U_{j+1} \rightarrow \cdots \rightarrow U_{t} .
$$

In particular, $K[M]$ is tilted of type \mathbf{A}_{t+1}.
4.2. Proof of (4.1). We know by (1.6) that Γ_{B} consists of a preprojective component \mathcal{P}, a family $T_{\lambda}, \lambda \in \mathbf{P}_{1}(k)$, of (ray) tubes, and a preinjective component I having a section of type $\tilde{\mathbf{E}}_{p}$. By (iii) we may choose a section Σ of type $\tilde{\mathbf{E}}_{p}$ in I such that, for any convex subcategory $B[M]$ of A, M is a successor of Σ in I. Denote by \mathcal{D} the full translation subquiver of I given by all predecessors of Σ in I. We infer by (ii) and (iii) that $\mathcal{P}, T_{\lambda}, \lambda \in \mathbf{P}_{1}(k)$, and \mathcal{D} are full translation subquivers of Γ_{A}, and for any path $Z_{0} \rightarrow Z_{1} \rightarrow \cdots \rightarrow Z_{t}$ in $\bmod A$ with Z_{t} in $\mathcal{E}=\mathcal{P} \vee\left(\vee_{\lambda} T_{\lambda}\right) \vee \mathcal{D}, Z_{0}$ also belongs to \mathcal{E}. Denote by \mathcal{C} the component of Γ_{A} containing \mathcal{D}. We may assume that \mathcal{C} contains at least one projective module, because otherwise $C=I, A=B$, and we are done. We shall construct a sequence $\Sigma=\Sigma_{0}, \Sigma_{1}, \ldots, \Sigma_{m}, m \geq 1$, of convex subquivers of \mathcal{C} satisfying the following conditions, for any $1 \leq i \leq m$:
(a) Σ_{i} is a sectional tree subquiver of \mathcal{C} and there exists $r_{i} \geq 0$ such that $\tau_{A}^{-r_{i}} \Sigma_{i-1}$ is a full proper subquiver of Σ_{i};
(b) the full translation subquiver \mathcal{D}_{i} of \mathcal{C} formed by all modules of the form $\tau_{A}^{q} X$, $q \geq 0, X \in \Sigma_{i}$, is closed under predecessors in \mathcal{C};
(c) every module X in \mathcal{D}_{i} such that $\tau_{A}^{q} X \neq 0$ for all $q \geq 0$, belongs to the τ_{A}-orbit of a module in Σ_{0};
(d) $\hat{\mathscr{D}}_{i}=\mathcal{P} \vee\left(\bigvee_{\lambda} T_{\lambda}\right) \vee \mathcal{D}_{i}$ is closed under predecessors in $\bmod A$;
(e) there is no injective module in \mathcal{C} which is a proper predecessor of some module in Σ_{i};
(f) all projective modules in \mathcal{C} belong to \mathcal{D}_{m}.

First we show that this implies that A is a tilted algebra.
Observe that $\Delta=\Sigma_{m}$ is a finite section of \mathcal{C}, and so \mathcal{C} has no oriented cycle. Let Λ be the full subcategory of A given by all objects of B and all $x \in Q_{A}$ such that $P_{A}(x)$ is in \mathcal{C}. Clearly, Λ is a convex subcategory of A. Moreover, \mathcal{C} is a full component of Γ_{Λ}. Indeed, if $\operatorname{Hom}_{A}\left(P_{A}(y), Y\right) \neq 0$ for $Y \in \mathcal{C}, P_{A}(y) \notin \mathcal{C}$, then there is an infinite path

$$
\cdots \rightarrow Y_{i+1} \rightarrow Y_{i} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}=Y
$$

in \mathcal{C} such that $\operatorname{Hom}_{A}\left(P_{A}(y), Y_{i}\right) \neq 0$ for any $i \geq 0$. Since C has only finitely many $\tau_{A^{-}}$ orbits and no oriented cycle, all but finitely many Y_{i} belong to \mathcal{D}, and hence $y \in Q_{B}$. Further, every non-zero map $P_{A}(z) \rightarrow I_{A}(z)$ factors through a direct sum of modules from Δ, and hence Δ is a sincere family of indecomposable Λ-modules. Finally, Δ is convex in $\bmod \Lambda$, because Δ is convex in \mathcal{C} and \mathcal{E} is closed under predecessors in $\bmod A$. Therefore, Δ is a slice in $\bmod \Lambda$, and Λ is a tilted algebra $\operatorname{End}_{H}(T)$, where H is a hereditary algebra of type Δ and T is a tilting H-module. Also, C is the connecting component of Γ_{Λ} determined by T. Observe that $\Delta=\Sigma_{m}$ is wild because it contains a proper subquiver $\tau_{A}^{-t} \Sigma$ of type $\tilde{\mathbf{E}}_{p}$. Since Λ is tame, as a convex subcategory of A, we get, by [24, (7.6)] (see also [12]), that T has both a non-zero preprojective direct summand and a non-zero preinjective direct summand. But then C admits at least one injective module, say $I_{\Lambda}(z)=I_{A}(z)$. The facts that \mathcal{C} contains an injective module and $\mathcal{P} \vee\left(\bigvee_{\lambda} T_{\lambda}\right) \vee C$ is closed under predecessors in $\bmod A$, imply that every indecomposable sincere A-module lies in C. Consequently $A=\Lambda$ and A is a tilted algebra.

We shall construct the required sequence $\Sigma_{0}, \Sigma_{1}, \ldots, \Sigma_{m}$ by induction on $i, 0 \leq i \leq m$. Suppose that we have constructed a sequence $\Sigma=\Sigma_{0}, \ldots, \Sigma_{s}$ of convex subquivers in \mathcal{C} satisfying the above conditions (a)-(f). If all projective modules belong to \mathcal{D}_{s}, we are done. Assume that \mathcal{C} contains a projective module $P_{A}(x)$ which is not in \mathcal{D}_{s}. Then there is a smallest $r_{s} \geq 0$ such that $\tau_{A}^{-r_{s}} \Sigma_{s}$ contains an indecomposable direct summand, say N, of $\operatorname{rad} P_{A}(x)$. If $\operatorname{rad}_{A} P(x)=N$, we define Σ_{s+1} as a full subquiver of C formed by all vertices of $\tau_{A}^{-r_{s}} \Sigma_{s}$ and $P_{A}(x)$. Obviously, Σ_{s} satisfies (e). Indeed, suppose that some injective module $I_{A}(a)$ is a proper predecessor of Σ_{s+1} in \mathcal{C}. Then, since $\mathcal{P} \vee\left(\vee_{\lambda} T_{\lambda}\right) \vee$ $\left(\mathcal{D}_{s+1} \backslash \Sigma_{s+1}\right)$ is closed under predecessors in $\bmod A$, we conclude that $\bmod A$ has no path of the form $P_{A}(x) \rightarrow W \rightarrow I_{A}(a)$. This gives a contradiction because A is sincere, and we are done.

Assume now that $M=\operatorname{rad}_{A} P(x)$ decomposes as $M=N_{1} \oplus \cdots \oplus N_{t}$ with $t \geq 2$ and $N=N_{1}, \ldots, N_{t}$ indecomposable A-modules. Since A is strongly simply connected, the supports of the N_{i} are pairwise disjoint. Let D be the full subcategory of A given by x and the vertices of $Q_{A}(x)$. Then $D=E[M]$ where E is the convex subcategory of A given by the vertices of $Q_{A}(x)$. Moreover, $E=E_{1} \times \cdots \times E_{t}$ with E_{i} connected and containing the support of $N_{i}, 1 \leq j \leq t$. Since A is tame, the vector space category
$\mathcal{K}=\operatorname{Hom}_{E}(M, \bmod E)$ is tame.
Consider the full subquiver Ω of \mathcal{C} formed by all the modules in \mathcal{C} lying on sectional paths with source $N=N_{1}$ and not passing through $P_{A}(x)$. Then Ω is a finite tree (of the same type as Σ_{s}), and there is no path in $\bmod A$ from $P_{A}(x)$ to a module in \mathcal{D}_{s}. This implies that Ω contains a subtree of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Therefore the vector space category $X_{1}=\operatorname{Hom}_{E_{1}}\left(N_{1}, \bmod E_{1}\right)$ contains a k-linear full subcategory given by a poset of type $(1,2)$. We show now that $t=2$. Indeed, suppose that $t \geq 3$. Consider arrows $a_{2} \leftarrow x \rightarrow$ a_{3} in Q_{D} with a_{i} in $Q_{E_{i}}, i=2,3$. Denote by F the full subcategory of D given by the objects of E_{1}, a_{2} and a_{3}. Then we get a convex subcategory $G=F\left[N_{1} \oplus S\left(a_{2}\right) \oplus S\left(a_{3}\right)\right]$ of A. The corresponding vector space category $\operatorname{Hom}_{F}\left(N_{1} \oplus S\left(a_{2}\right) \oplus S\left(a_{3}\right), \bmod F\right)$ contains a k-linear full subcategory given by a poset of type ($1,1,1,2$). By Nazarova's criterion (1.2), G is not tame. Hence A is not tame. This contradiction shows that $t=2$.

We consider now carefully the structure of E_{2}. Let L be the support of N_{2}. We claim that L is a convex line in Q_{A}. Suppose first that L contains two incomparable objects c and d, with respect to the path order in Q_{A}. Observe that then $\operatorname{Hom}_{E_{2}}\left(N_{2}, \bmod E_{2}\right)$ contains two orthogonal objects $\operatorname{Hom}_{E_{2}}\left(N_{2}, I_{E_{2}}(c)\right)$ and $\operatorname{Hom}_{E_{2}}\left(N_{2}, I_{E_{2}}(d)\right)$ with $\operatorname{End}_{E_{2}}\left(I_{E_{2}}(c)\right) \xrightarrow{\sim} k$ and $\operatorname{End}_{E_{2}}\left(I_{E_{2}}(d)\right) \xrightarrow{\sim} k$. Then using the poset of type $(1,2)$ associated to X_{1}, we obtain a full subcategory \mathcal{Y} of \mathcal{K} of one of the following types:
(i) \mathcal{Y} is the k-linear category of the poset $(1,1,1,2)$;
(ii) \mathcal{Y} is given by two objects $\operatorname{Hom}_{E}\left(M, Y_{1}\right), \operatorname{Hom}_{E}\left(M, Y_{2}\right)$ with trivial endomorphism rings, $\operatorname{dim}_{k} \operatorname{Hom}_{E}\left(M, Y_{1}\right)=1$ and $\operatorname{dim}_{k} \operatorname{Hom}_{E}\left(M, Y_{2}\right)=2$;
(iii) \mathcal{Y} is given by an object $\operatorname{Hom}_{E}(M, Y)$ with trivial endomorphism ring and $\operatorname{dim}_{k} \operatorname{Hom}_{E}(M, Y) \geq 3$.

In any case we obtain a contradiction with the tameness of A, by (1.2) and [17, (2.4)]. Therefore, the vertices in Q_{L} are linearly ordered. Since the convex hull of L in Q_{A} yields a strongly simply connected category, L is a convex line in Q_{A}.

Let K be the biggest branch containing L and which is a convex subcategory of E_{2}. Then $N_{2}=P_{K}(b)$, for the root b of K, and there is a maximal sectional path $N_{2}=$ $V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{t}$ in Γ_{K}. Consider the convex subcategory D of A formed by x and the vertices in K and E_{1}. Then there is a splitting ind $D=\mathcal{P}^{0} \vee \mathcal{D}_{s} \vee \mathcal{J}^{0}$, where P^{0} is the set of predecessors of V_{t} in Γ_{K} and \mathcal{J}^{0} is formed by the proper successors of modules in $\Sigma_{s} \cup\left\{V_{1}, \ldots, V_{t}\right\}$. By (2.2), there is a sequence of convex subcategories of $A, D=D_{0} \subset D_{1} \subset \cdots \subset D_{q}=A$ such that $D_{i+1}=D_{i}\left[M_{i}\right]$ or $D_{i+1}=\left[M_{i}\right] D_{i}$ for some indecomposable D_{i}-module M_{i}. We show that for each i there is a splitting ind $D_{i}=\mathcal{P}^{i} \vee \hat{\mathcal{D}}_{s} \vee \boldsymbol{g}^{i}$ satisfying that:
(α) The path $N_{2}=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{t}$ is sectional in $\Gamma_{D_{i}}$ and \mathcal{P}^{i} is formed by all predecessors of V_{t};
(β) g^{i} consists of the proper successors of modules in $\Sigma_{s} \cup\left\{V_{1}, \ldots, V_{t}\right\}$;
$(\gamma) \operatorname{Hom}_{D_{i}}\left(\mathcal{I}^{i} \vee \hat{\mathscr{D}}_{s}, \mathcal{P}^{i}\right)=0$ and every map $X \rightarrow Y$ with $X \in \mathcal{P}^{i}$ and $Y \in \mathcal{I}^{i}$ factors
through a direct sum of modules V_{j};
(δ) if $X \in \mathscr{P}^{i}$ and $\operatorname{Hom}_{D_{i}}\left(X, V_{j}\right) \neq 0$ for some $1 \leq j \leq q$, then $\left.X\right|_{D} \in \operatorname{add}\left(\mathcal{P}^{0}\right)$.
For $i=0$, this is clear. Assume we have $(\alpha)-(\delta)$ for i. We consider the two possible situations for $i+1$. Assume $D_{i+1}=D_{i}\left[M_{i}\right]$. We prove that $\operatorname{Hom}_{D_{i}}\left(M_{i}, V_{j}\right)=0$, for all j. Otherwise, assume $\operatorname{Hom}_{D_{i}}\left(M_{i}, V_{j}\right) \neq 0$. $\operatorname{By}(\alpha)$ and $(\gamma), M_{i} \in \mathcal{P}^{i} ;$ by $(\delta),\left.M_{i}\right|_{D} \in \operatorname{add}\left(\mathcal{P}^{0}\right)$. By the induction hypothesis, the conditions of (2.4) are satisfied for the splitting ind $K=$ $\mathcal{P}^{\prime} \vee \mathcal{V} \vee \mathcal{I}^{\prime}$, where \mathcal{P}^{\prime} is the set of proper predecessors of modules $V_{i}(1 \leq i \leq t)$, \mathcal{V} is the set $\left\{V_{i}=i=1, \ldots, t\right\}$ and \mathcal{I}^{\prime} are the proper successors of modules $V_{i}(1 \leq i \leq t)$ in ind K. Therefore, there exists an indecomposable K-module R such that $K[R]$ is a convex subcategory of A and $R \in \mathbb{P}^{0}$. Then (4.2) applies: either $K[R]$ is a branch bigger than K, a contradiction; or there are indecomposable modules Y_{1}, Y_{2} over $K[M]$ which together with X_{1} yield a k-linear subcategory of $\operatorname{Hom}_{E_{1} \times K[R]}\left(N_{1} \oplus N_{2}, \bmod E_{1} \times K[R]\right)$ given by a poset of type $(1,1,1,2)$. Since this poset is of wild type, then D_{i+1} is wild, a contradiction. Therefore $\operatorname{Hom}_{D_{i}}\left(M_{i}, V_{j}\right)=0$, for all j. If $M_{i} \in P^{i}$, by (γ) we also have $\operatorname{Hom}_{D_{i}}\left(M_{i}, \hat{\mathcal{D}}_{s} \vee g^{i}\right)=0$. Hence ind $D_{i+1}=P^{i+1} \vee \hat{\mathcal{D}}_{s} \vee g^{i}$ with \mathcal{P}^{i+1} given by \mathcal{P}^{i} and all indecomposable D_{i+1}-modules $X=\left(V, X_{0}, \gamma\right)$ with $V \neq 0, X_{0} \in \bmod D_{i}$. Clearly this splitting satisfies $(\alpha)-(\delta)$. If $M_{i} \in \mathcal{I}^{i} \vee \mathcal{D}_{s}$, we get ind $D_{i+1}=\mathcal{P}^{i} \vee \hat{\mathcal{D}}_{s} \vee g^{i+1}$ with g^{i+1} given by g^{i} and all indecomposable D_{i+1}-modules $X=\left(V, X_{0}, \gamma\right)$ with $V \neq 0$ (recall that $\hat{\mathcal{D}}_{s}$ was already closed under predecessors in $\bmod A$). This splitting also satisfies $(\alpha)-(\gamma)$. Assume now that $D_{i+1}=\left[M_{i}\right] D_{i}$. In this case we show that $\operatorname{Hom}_{D_{i}}\left(V_{j}, M_{i}\right)=0$ for all j. Indeed, this follows as dual to the situation above using the dual statements of (2.4) and (4.2). Therefore, if $M_{i} \in \mathcal{P}^{i}$, then ind $D_{i+1}=\mathcal{P}^{i+1} \vee \hat{\mathcal{D}}_{s} \vee \mathcal{I}^{i}$; if $M_{i} \in \mathcal{I}^{i}$, then ind $D_{i+1}=\mathcal{P}^{i} \vee \hat{\mathcal{D}}_{s} \vee \boldsymbol{g}^{i+1}$, satisfying in both cases $(\alpha)-(\delta)$.

Consider the category \mathcal{P}^{q} obtained in the final step of this process. If $\mathcal{P}^{q} \neq \mathcal{P}^{0}$, we may assume that $\mathcal{P}^{j}=\mathcal{P}^{0}, j \geq 0$ and $M_{j} \in \mathcal{P}^{j}$. Call y the vertex in $Q_{D_{j+1}}$ such that $\operatorname{rad} P_{D_{j+1}}(y)=M_{j}\left(\operatorname{resp} . I_{D_{j+1}}(y) / S_{D_{j+1}}(y)=M_{j}\right)$ if $D_{j+1}=D_{j}\left[M_{j}\right]\left(\operatorname{resp} . D_{j+1}=\left[M_{j}\right] D_{j}\right)$. Then $I_{D_{j+1}}(y) \in \mathcal{P}^{j+1}$. Indeed, in both cases ind $D_{j+1}=\mathscr{P}^{j+1} \vee \hat{\mathcal{D}}_{s} \vee \mathcal{P}^{j}$ and $I_{D_{j+1}}(y) \notin$ ind D_{j}. Hence $I_{A}(y) \in \mathcal{P}^{q}$. Then for an indecomposable sincere A-module X, we get a path $P_{A}(x) \rightarrow X \rightarrow I_{A}(y)$, which is impossible since $P_{A}(x) \in I^{q}$. Hence $\mathcal{P}^{q}=P^{0}$, showing that \mathcal{P}^{0} is a convex subquiver of Γ_{A}. Moreover, the sincerity of A implies that there are no injective modules in P^{0}. Also, there are only finitely many predecessors of modules $V_{i}(1 \leq i \leq t)$ and they are of the form $\tau_{A}^{q} V_{i}, q \geq 0$.

Define Σ_{s+1} as the full subquiver of C formed by all vertices of $\tau_{A}^{-r_{s}} \Sigma_{s}, P_{A}(x)$ and the modules V_{1}, \ldots, V_{ℓ}. Then Σ_{s+1} is a tree and the full translation subquiver \mathcal{D}_{s+1} of \mathcal{C} formed by all modules of the form $\tau_{A}^{q} X, q \geq 0, X \in \Sigma_{s+1}$, is closed under predecessors in \mathcal{C}. All conditions (a)-(e) are satisfied for Σ_{s+1}. We continue this process until we get Σ_{m} a sectional tree such that \mathcal{D}_{m} contains all the projectives modules of \mathcal{C}. Therefore the sequence $\Sigma=\Sigma_{0}, \Sigma_{1}, \ldots, \Sigma_{m}$ satisfies (a)-(f) and A is a tilted algebra. This completes the proof of the proposition.
4.3. The fully commutative algebras given by the quivers below satisfy the conditions
of Proposition 4.1

These algebras are domestic with two one-parameter families of indecomposable modules. By [12], every tame sincere tilted algebra is domestic; by [15], these algebras admit at most two one-parameter families of indecomposable modules.
5. The coil case. In this section we will prove a result which covers a situation complementary to the Proposition 4.1.
5.1. Proposition. Let a be a tame, sincere, strongly simply connected algebra. Assume that A contains a convex subcategory B satisfying the following conditions:
i) B is either a representation-infinite tilted algebra of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$ with a complete slice in the preinjective component and some projective outside the preprojective component or B is a tubular algebra;
ii) there exists a convex subcategory of A of the form $[N] B$ for some indecomposable B-module N.

Then A is a coil algebra.
The proof will be given at the end of the section after proving some technical results. We use freely the notation and results introduced in section 3.
5.2. Lemma. Let B be a tubular extension of a tame concealed algebra C. Assume that B is tubular or tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be two tubular components of Γ_{B} containing projective modules and let $M_{i} \in C_{i}^{\gamma}, i=1,2$. If M_{1} is not copivoting and the situation (1) of (3.4) occurs, then $\left[M_{2}\right]\left(\left[M_{1}\right] B\right)$ is not tame.

Proof. Assume that $\left[M_{1}\right] B$ is tame.
There is an indecomposable C-module N_{1} such that $\operatorname{Hom}_{C}\left(X, N_{1}\right)=\operatorname{Hom}_{B}\left(X, M_{1}\right)$ for every C-module X. Then N_{1} is a non-simple regular C-module. Since [$\left.N_{1}\right] C$ is tame then C is of type $\tilde{\mathbf{D}}_{m}, N_{1}$ has regular length 2 and lies on a tube of rank $m-2$ in Γ_{C}. By (3.4), there is a module Y (in fact there are infinitely many!) in the preprojective component of Γ_{C} such that $\operatorname{dim}_{k} \operatorname{Hom}_{C}\left(Y, N_{1}\right)=2$. We produce a family $\left(X_{\lambda}\right)_{\lambda \in k}$ of pairwise nonisomorphic indecomposable $\left[N_{1}\right] C$-modules of the following form: choose two linearly
independent elements ρ_{1}, ρ_{2} in $\operatorname{Hom}_{C}\left(Y, N_{1}\right)$, then $X_{\lambda}=\left(Y, k, \gamma_{\lambda}: Y \otimes D N_{1} \rightarrow k, y \otimes f \mapsto\right.$ $\left.f\left(\rho_{1}+\lambda \rho_{2}\right) y\right)$. Moreover, this family is orthogonal, that is $\operatorname{Hom}\left(X_{\lambda}, X_{\mu}\right)=0$ for $\lambda \neq \mu$.

Since N_{1} lies on the tube of rank $m-2$, then B is of tubular type $\left(2,2+p_{1},(m-2)+p_{2}\right)$ with $p_{1}, p_{2} \geq 1$. Therefore M_{2} belongs to a coil obtained by ray insertions in a tube of rank 2 in Γ_{C}.

Let N_{2} be an indecomposable C-module such that $\operatorname{Hom}_{C}\left(X, N_{2}\right)=\operatorname{Hom}_{B}\left(X, M_{2}\right)$ for every C-module X. Then one checks that $\operatorname{Hom}_{C}\left(Y, N_{2}\right) \neq 0$. Therefore $\operatorname{Hom}_{\left[M_{1}\right] B}\left(X_{\lambda}, M_{2}\right) \neq 0$ for every $\lambda \in k$. In particular, $\operatorname{Hom}_{\left[M_{1}\right] B}\left(\bmod \left[M_{1}\right] B, M_{2}\right)$ contains a poset of type $(1,1,1,1,1)$. Hence $\left[M_{2}\right]\left(\left[M_{1}\right] B\right)$ is not tame.
5.3. LEMMA. Let B be a tubular extension of a tame concealed algebra C. Assume that B is tubular or tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Let $\mathcal{C}_{i}(1 \leq i \leq s)$ be the tubular components of Γ_{B} containing preinjective modules. Let $M_{i} \in C_{i}, i=1, \ldots, s$ and assume the iterated coextension ${ }_{i=1}^{s}\left[M_{i}\right] B$ is tame. Then for some j, M_{j} is copivoting.

Proof. Assume that M_{1} is not copivoting, By (3.4), C is concealed of type $\tilde{\mathbf{D}}_{m}, \mathcal{C}_{1}$ has at least 4 projective modules and $s \geq 2$. Assume first that we get the situation (1) of (3.4). By (5.2), $\left[M_{2}\right]\left(\left[M_{1}\right] B\right)$ is not tame, a contradiction. We can assume that we have the situation (2) of (3.4).

If M_{2} is not copivoting, as before, \mathcal{C}_{2} has at least 4 projective modules and the tubular type of B is neither Dynkin nor Euclidean, a contradiction. Hence M_{2} is copivoting.
5.4. From now on we keep the following notation and hypothesis.

Let A be a tame strongly simply connected algebra. Let B be a convex subcategory of A which is a tubular extension of a tame concealed algebra C. We assume that B is either tubular or tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$ with a complete slice in the preinjective component and some projective module outside the preprojective component. Obviously, we may assume that B is a maximal convex subcategory of A satisfying these properties. Let D be a maximal coil enlargement of B which is convex in A. Then as in (3.3), there is a unique maximal tubular coextension D^{-}of C which is a convex subcategory of A such that D is obtained from D^{-}by a sequence of admissible operations of types ad 1), ad 2) or ad 3). Then $\Gamma_{D}=\mathcal{P}_{\infty} \vee \mathcal{C} \vee \mathcal{J}_{0}$ where $\mathcal{C}=\left(\mathcal{C}_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$ is the family of coils obtained from the tubular family $\mathcal{T}=\left(T_{\lambda}\right)_{\lambda \in \mathbf{P}_{(k)}}$ of Γ_{C} by admissible operations. Moreover, \mathcal{P}_{∞} (resp. J_{0}) is formed by D^{-}-modules (resp. D^{+}-modules).

In fact, we may restate the assertion of Proposition 5.1:
Claim. Assume A is sincere and satisfies (i) and (ii) in (5.1). Then $A=D$.
The proof is given in (5.9). In the paragraph below we analyze carefully the structure of D and its enlargements.
5.5. Let \mathcal{C}_{λ} be a coil in Γ_{D}. Let \mathcal{C}_{λ} be the full convex subquiver of \mathcal{C}_{λ} formed by the non-directing modules in \mathcal{C}_{λ}.

We define the left border of \mathcal{C}_{λ} (resp. right border of \mathcal{C}_{λ}) as the set $\ell\left(\mathcal{C}_{\lambda}\right)$ (resp. $r\left(\mathcal{C}_{\lambda}\right)$) of modules $X \in \mathcal{C}_{\lambda}$ such that there is an irreducible map $Y \rightarrow X(\operatorname{resp} X \rightarrow Y)$ with Y directing.

The left directing part of \mathcal{C}_{λ} (resp. right directing part of $\left.\mathcal{C}_{\lambda}\right)$ is the set $d^{-}\left(\mathcal{C}_{\lambda}\right)$ (resp. $\left.d^{+}\left(\mathcal{C}_{\lambda}\right)\right)$ of directing modules $M \in \mathcal{C}_{\lambda}$ which are predecessors (resp. successors) of modules in $\ell\left(\mathcal{C}_{\lambda}\right)$ (resp. $r\left(\mathcal{C}_{\lambda}\right)$). The following properties are clear:
(a) $\operatorname{Hom}_{D}\left(\mathcal{C}_{\lambda}, d^{-}\left(\mathcal{C}_{\lambda}\right)\right)=0=\operatorname{Hom}_{D}\left(d^{+}\left(\mathcal{C}_{\lambda}\right), \mathcal{C}_{\lambda}\right), 0=\operatorname{Hom}_{D}\left(d^{+}\left(\mathcal{C}_{\lambda}\right), d^{-}\left(\mathcal{C}_{\lambda}\right)\right)$.
(b) Any morphism $0 \neq f: Y \rightarrow X$ with $Y \in d^{-}\left(\mathcal{C}_{\lambda}\right)$ and $X \in \mathcal{C}_{\lambda} \vee d^{+}\left(\mathcal{C}_{\lambda}\right)$ factorizes through $\operatorname{add}\left(\ell\left(\mathcal{C}_{\lambda}\right)\right)$. Moreover, $\operatorname{Im} f \in \operatorname{add}\left(\ell\left(\mathcal{C}_{\lambda}\right)\right)$. Dually for the right border.
(c) Let M be an indecomposable module in \mathcal{C}_{λ} such that $\operatorname{Hom}_{D}\left(M, \mathcal{C}_{\lambda}\right)=0$. Then $M \in d^{+}\left(\mathcal{C}_{\lambda}\right)$.

Lemma. Let $M \in \mathcal{C}_{\lambda}$ be such that $\operatorname{Hom}_{D}\left(M, \mathcal{C}_{\lambda}\right)=0$. Let $E=D[M]$. Then there is a component C_{λ}^{\prime} of Γ_{E} containing C_{λ} as a full subquiver such that the modules of C_{λ}^{\prime} are divided in three parts, $\mathcal{C}_{\lambda}^{\prime}=\mathcal{C}_{\lambda} \vee d^{-}\left(\mathcal{C}_{\lambda}\right) \vee d^{+}\left(\mathcal{C}_{\lambda}^{\prime}\right)$, where $d^{+}\left(\mathcal{C}_{\lambda}^{\prime}\right)$ are those modules in $\mathcal{C}_{\lambda}^{\prime}$ which are successors of modules in $r\left(\mathcal{C}_{\lambda}\right)$. Moreover, the following conditions are satisfied: $a) \operatorname{Hom}\left(C_{\lambda}, d^{-}\left(\mathcal{C}_{\lambda}\right)\right)=0=\operatorname{Hom}\left(d^{+}\left(\mathcal{C}_{\lambda}^{\prime}\right), C_{\lambda}\right), 0=\operatorname{Hom}\left(d^{+}\left(C_{\lambda}^{\prime}\right), d^{-}\left(\mathcal{C}_{\lambda}\right)\right)$. b)Any morphism $0 \neq f: Y \rightarrow X$ with $Y \in d^{-}\left(\mathcal{C}_{\lambda}\right)$ and $X \in \mathcal{C}_{\lambda}^{\gamma} \vee d^{+}\left(C_{\lambda}^{\prime}\right)$ factorizes through $\operatorname{add}\left(\ell\left(\mathcal{C}_{\lambda}\right)\right)$. The dual ($\left.b^{*}\right)$ also holds.

We say that the component $\mathcal{C}_{\lambda}^{\prime}$ is an altered coil.
5.6. LEMMA. Let A be a tame, sincere, strongly simply connected algebra and B be a convex subcategory of A satisfying (i) and (ii) of (5.1). Then there is a unique tubular component of Γ_{B} containing projective modules.

Proof. Assume T_{1} and T_{2} are tubular components of Γ_{B} containing projective modules. Clearly we may assume that B is a maximal convex subcategory of A which is a tubular extension of C. Let D be the maximal coil enlargement of B. As in (5.5), $\Gamma_{D}=\mathcal{P}_{\infty} \vee \mathcal{C} \vee \mathcal{J}_{0}$ where $\mathcal{C}=\left(\mathcal{C}_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$ is a family of coils. We may assume that T_{1} is contained in \mathcal{C}_{1}.

By (2.2), there is a sequence of convex subcategories of $A, D=D_{0} \subset D_{1} \subset \cdots \subset$ $D_{s}=A$ such that $D_{i+1}=D_{i}\left[M_{i}\right]$ or $D_{i+1}\left[M_{i}\right] D_{i}$ for an indecomposable D_{i}-module M_{i}.

First, assume that there is no indecomposable module $M \in \mathcal{C}_{1}$ such that $[M] B$ is a convex subcategory of A. We consider the splitting ind $D=\mathcal{P}^{0} \vee \mathcal{I}^{0}$ such that $\mathbb{P}^{0}=$ $\mathcal{P}_{\infty} \vee\left(d^{-}\left(\mathcal{C}_{\lambda}\right) \vee \mathcal{C}_{\lambda}^{n}\right)_{\lambda \neq 1}$ and $I^{0}=\mathcal{C}_{1} \vee\left(d^{+}\left(\mathcal{C}_{\lambda}\right)\right)_{\lambda \neq 1} \vee I_{0}$ and $\operatorname{Hom}_{D}\left(I^{0}, P^{0}\right)=0$. We construct inductively a splitting ind $D_{i}=P^{i} \vee I^{i}$ with $\operatorname{Hom}_{D_{i}}\left(\mathcal{I}^{i}, P^{i}\right)=0$ such that \mathcal{P}^{s} (resp. \mathcal{I}^{s}) contains an injective (resp. projective) module. This will contradict the sincerity of A, proving the result in this case. Assume that for all $i \leq j$ we have shown that $\Gamma_{D_{i}}=\mathscr{P}_{\infty}^{i} \vee \mathcal{C}^{i} \vee \mathcal{I}_{0}^{i}$ with $\mathcal{C}^{i}=\left(\mathcal{C}_{\lambda}^{i}\right)_{\lambda \in \mathbf{P}_{1}(k)}$ a family of altered coils with $C_{\lambda}^{i \gamma}=C_{\lambda}^{\gamma}, \operatorname{Hom}_{D_{i}}\left(C^{i} \vee \mathcal{I}_{0}^{i}, \mathcal{P}_{\infty}^{i}\right)=0=\operatorname{Hom}_{D_{i}}\left(\mathcal{J}_{0}^{i}, \mathcal{C}^{i}\right)$. First observe that this yields a splitting ind $D_{i}=\mathcal{P}^{i} \vee g^{i}$ with $\operatorname{Hom}_{D_{i}}\left(\mathcal{I}^{i}, \mathcal{P}^{i}\right)=0$ as desired, for $i \leq j$. Indeed, set $\mathcal{P}^{i}=P_{\infty}^{i} \vee\left(d^{-}\left(\mathcal{C}_{\lambda}^{i}\right) \vee \mathcal{C}_{\lambda}^{\hat{\lambda}}\right)_{\lambda \neq 1}$ and $g^{i}=\mathcal{C}_{1}^{i} \vee\left(d^{+}\left(\mathcal{C}_{\lambda}^{i}\right)\right)_{\lambda \neq 1} \vee \mathcal{I}_{0}^{i}$. Now, we prove that $\Gamma_{D_{j+1}}$ has a similar structure.

If $D_{j+1}=D_{j}\left[M_{j}\right]$, it is enough to show that
(α) if $M_{j} \in \mathcal{P}^{j}$, then $\operatorname{Hom}_{D_{j}}\left(M_{j}, C_{\lambda}^{\gamma} \vee g^{j}\right)=0$ for all $\lambda \in \mathbf{P}_{1}(k)$;
(β) if $M_{j} \in \mathcal{C}_{1}^{j}$, then $M_{j} \in d^{-}\left(\mathcal{C}_{1}^{j}\right)$ with $\operatorname{Hom}_{D_{j}}\left(M_{j}, \ell\left(\mathcal{C}_{1}\right)\right)=0$ or $M_{j} \in d^{+}\left(\mathcal{C}_{1}^{j}\right)$.

Assume that $M_{j} \in P^{j}$ and $\operatorname{Hom}_{D_{j}}\left(M_{j}, N\right) \neq 0$ for some $N \in \mathcal{C}_{\lambda}^{j ?}=\mathcal{C}_{\lambda}$. The induction hypothesis implies that the conditions of (2.4) are satisfied for D with the splitting ind $D=\mathcal{P}_{\infty} \vee \mathcal{C} \vee J_{0}$. Consequently we get an indecomposable D-module R such that $D[R]$ is convex in A and $R \in \mathscr{P}_{\infty} \vee \mathcal{C}^{?}$. If R belongs to $\mathcal{P}_{\infty} \subset$ ind D^{-}, by (1.6), $D^{-}[R]$ is a tubular coextension of C, contradicting the maximality of D^{-}. If $R \in C^{-}$, by (2.3) we get a convex extension $B\left[R^{\prime}\right]$ of B in A. By (3.4), R^{\prime} is pivoting and $B\left[R^{\prime}\right]$ is a tubular extension of C, again a contradiction. Since $\left(\mathcal{C}_{\lambda}\right)_{\lambda \in \mathbf{P}_{1}(k)}$ weakly separates \mathcal{P}^{j} from g^{j} (1.6), the case $\operatorname{Hom}_{D_{j}}\left(M_{j}, g^{j}\right) \neq 0$ reduces to the situation $\operatorname{Hom}_{D_{j}}\left(M_{j}, C_{\lambda}\right) \neq 0$ just considered. This shows (α). The proof of (β) is similar. The case $D_{j+1}=\left[M_{j}\right] D_{j}$ is dual. Finally, observe that there is a projective module in g^{s} (belonging to \mathcal{C}_{1}^{γ}). By (5.1ii), there is a convex subcategory of A of the form $[N] B$. Consider $\Gamma_{B}=\mathcal{P}_{0}^{B} \vee \mathcal{T}_{0}^{B} \vee \mathcal{I}_{0}^{B}$ as in (1.6). If $N \in \mathcal{I}_{0}^{B}$, then $[N] B$ is a tubular extension of $C(1.6)$, a contradiction to the maximality of B. Therefore $N \in \mathcal{P}_{0}^{B} \vee \mathcal{T}_{0}^{B}$. By hypothesis $N \notin \mathcal{C}_{1}$, considering the structure of $\Gamma_{D_{s}}=\Gamma_{A}$, we get that $N \in \mathcal{P}^{0}$. Let y in Q_{A} be minimal with $\left.I_{A}(y)\right|_{B}=N$. Hence, if y in D_{i}, then $I_{D_{i}}(y) \in \mathcal{P}^{i}$. Thus $I_{A}(y) \in \mathcal{P}^{s}$. This finishes the proof in the first case.

Now, let T_{1}, \ldots, T_{s} be the tubular components of Γ_{B} containing projectives. Let $N_{i} \in$ \mathcal{C}_{i} be B-modules such that $\left[N_{i}\right] B$ is a convex subcategory of A. If for every $N \in \mathcal{C}_{1}$ such that $[N] B$ is a convex subcategory of A, we have $N \in d^{-}\left(\mathcal{C}_{1}\right)$, then we may repeat the above argument to get a contradiction to the sincerity of A. Therefore we may assume that $N_{i} \in C_{i}$. Then (5.3) assures that some $N_{j}($ say $j=1)$ is copivoting. Therefore (1.6) implies that $\left[N_{1}\right] D^{-}$a tubular coextension of C, a contradiction to the maximality of D^{-}. We are done.
5.7. Lemma. Under the hypothesis of (5.1), D^{-}is tubular or tilted of type $\tilde{\mathbf{E}}_{q}, 6 \leq$ $q \leq 8$ with a complete slice in the preprojective component.

Proof. Since D^{-}is a tame tubular coextension of C, we have only to exclude the case that D^{-}is tilted of type $\tilde{\mathbf{D}}_{m}$.

Assume D^{-}is tilted of type $\tilde{\mathbf{D}}_{m}$, then C is of type $\tilde{\mathbf{D}}_{s}$ with $s \leq m$. Consider first the case where B is tubular of type $(2,2,2,2)$. Then $s=4$. First observe that $D^{-}=C$. Indeed, otherwise there is a coray module N in C such that $[N] C$ is convex in D^{-}. Let $T_{\lambda_{0}}$ be the tube of Γ_{C} which was inserted to form B; let $T_{\lambda_{1}}$ be the tube of Γ_{C} where N lies. Since D^{-}in not tubular, then $\lambda_{0} \neq \lambda_{1}$. By (2.2), we may find a sequence of convex subcategories of $A, C=B_{0} \subset B_{1}=B \subset B_{2}=[N] B \subset \cdots \subset B_{t}=A$ such that $B_{i+1}=B_{i}\left[M_{i}\right]$ or $B_{i+1}=\left[M_{i}\right] B_{i}$ for an indecomposable B_{i}-module $M_{i}, i=0, \ldots, t-1$. The quiver $\Gamma_{B_{2}}$ may be described as:

$$
\mathcal{P}_{2} \vee \mathcal{T}_{0}^{\prime} \vee\left(\mathcal{I}_{\gamma}\right)_{\gamma \in \mathbf{Q}^{+}} \vee \mathcal{T}_{\infty} \vee I_{1}
$$

where $\mathcal{T}_{\gamma}, \mathcal{T}_{\infty}$ are tubular families of B-modules and $\mathcal{T}_{0}^{\prime}=\left(T_{\lambda}^{\prime}\right)_{\lambda}$ is a tubular family such that T_{λ}^{\prime} is a stable tube for $\lambda \neq \lambda_{0}, \lambda_{1} ; T_{\lambda_{0}}^{\prime}$ is a ray-inserted tube and $T_{\lambda_{1}}^{\prime}$ is a coray-inserted tube and I_{1} is the preinjective component of $\Gamma_{B_{1}}$.

Now, the splitting of ind $C=\mathcal{P} \vee \mathcal{I}$, where $\mathcal{P}=\mathcal{P}_{0} \vee\left(T_{\lambda}\right)_{\lambda \neq \lambda_{0}}, \mathcal{I}=T_{\lambda_{0}} \vee \mathcal{I}_{0}$ with \mathcal{P}_{0} (resp. J_{0}) the preprojective (resp. preinjective) component of Γ_{C}, satisfies the hypothesis (1)-(4) of (1.3). Therefore A is not sincere, a contradiction.

Hence $D^{-}=C$. By hypothesis (5.1ii), there is a convex subcategory $[N] B$ of A for an indecomposable B-module N. Since $[N] B$ is tame and N is not a regular C-module, then either N belongs to $T_{\lambda_{0}}^{\prime}$ (as above) or N is a preprojective module. The latter case would produce a splitting situation as before (Use the splitting ind $\mathcal{C}=\mathscr{P} \vee \mathcal{I}$ with the above notation). We may assume that N is in $T_{\lambda_{0}}^{\prime}$. An application of the dual of (2.3) (with $B:=C, \mathcal{P}$ the preprojective modules...) yields a convex subcategory $[R] C$ of A with R an indecomposable regular C-module. This contradicts that $D^{-}=C$.

Now, we assume that B is not of tubular type ($2,2,2,2$). Since C is of type ($2,2, s-2$), there are two tubes T_{1}, T_{2} in Γ_{B} containing projective modules. By hypothesis (5.1 ii) and Lemma 5.6, A is not sincere. Therefore the result follows.
5.8. Proof of Proposition 5.1. Let B be a maximal tubular extension of the tame concealed algebra C and D a maximal coil enlargement of B which are convex in A. By hypothesis and (5.7), both B and D^{-}are either tubular or tilted algebras of type $\tilde{\mathbf{E}}_{p}$, $6 \leq p \leq 8$. Therefore by (5.6) (and its proof), there is a unique tube in Γ_{B} (resp. $\Gamma_{D^{-}}$) containing projective (resp. injective) modules. Hence $\Gamma_{D}=\mathscr{P}_{\infty} \vee \mathcal{C} \vee I_{0}$, where $\mathcal{C}=\left(\mathcal{C}_{\lambda}\right)_{\lambda \in \mathbf{P}_{I}(k)}$ is a family of coils such that for $\lambda \neq \lambda_{0}, \mathcal{C}_{\lambda}$ is a stable tube and $\mathcal{C}_{\lambda_{0}}$ contains both projective and injective modules (the sincerity of A and (5.6) imply the $\mathcal{C}_{\lambda_{0}}$ is the unique coil containing projective or injective modules). Moreover, \mathcal{P}_{∞} (resp. I_{0}) is formed by D^{-}-modules (resp. B-modules).

Consider a family $D=D_{0} \subset D_{1} \subset \cdots \subset D_{s}=A$ of convex subcategories of A such that either $D_{i+1}=D_{i}\left[M_{i}\right]$ or $D_{i+1}=\left[M_{i}\right] D_{i}$ for some indecomposable D_{i}-module M_{i}. We want to prove that $s=0$. Assume $s \geq 1$. Without loss of generality (since B and D^{-} satisfy dual conditions), we may assume that $D_{1}=\left[M_{1}\right] D$. In case $M_{1} \in I_{0}$, then M_{1} is a B-module. Since $\left[M_{1}\right] B$ is tame, by (1.6), it is a tubular extension of C, contradicting the maximality of B. In case M_{1} lies on C and $\operatorname{Hom}_{D}\left(N, M_{1}\right) \neq 0$ for some $N \in \mathcal{C}_{\lambda}$, $\lambda \in \mathbf{P}_{1}(k)$, then (3.4) and (5.6) imply that M_{1} is copivoting. Then $D_{1}=\left[M_{1}\right] D$ is a coil enlargement of C, contradicting the maximality of D.

Finally, assume that M_{1} lies on \mathcal{P}_{∞} or $M_{1} \in \mathcal{C}_{\lambda_{1}}$ with $\operatorname{Hom}_{D}\left(C_{\lambda_{1}}, M_{1}\right)=0$. Then $\Gamma_{D_{1}}=\mathcal{P}_{\infty}^{\prime} \vee\left(\mathcal{C}_{\lambda}^{1}\right)_{\lambda} \vee \mathcal{J}_{0}$ such that $\mathcal{C}_{\lambda}^{1}=\mathcal{C}_{\lambda}$ for $\lambda \neq \lambda_{1}$ and $\mathcal{C}_{\lambda_{1}}^{1}$ is a coil with $\mathcal{C}_{\lambda_{1}}^{1 \gamma}=C_{\lambda_{1}}^{\prime}$ and $M_{1} \in d^{-}\left(\mathcal{C}_{\lambda_{1}}\right)$. Then we find a splitting ind $D_{1}=\mathscr{P}^{\mathrm{l}} \vee I^{1}$ with $\mathcal{P}^{1}=\mathscr{P}_{\infty}^{1} \vee d^{-}\left(\mathcal{C}_{\lambda}^{1}\right) \vee$ $\left(\mathcal{C}_{\lambda}^{1 \gamma}\right)_{\lambda \neq \lambda_{1}}$ and $I^{1}=I^{1}=\mathcal{C}_{\lambda_{1}}^{\lambda} \vee d^{+}\left(\mathcal{C}_{\lambda}^{1}\right) \vee I_{0}$. As in (5.6), we construct a splitting ind $D_{i}=\mathcal{P}^{i} \vee I^{i}$ such that $\operatorname{Hom}_{D_{i}}\left(\mathcal{I}^{i}, \mathcal{P}^{i}\right)=0, \mathcal{P}^{s}$ contains an injective module and \mathcal{I}^{s} a projective module. Of course, this contradicts the sincerity of A. This completes the proof that $A=D$ is a coil algebra.

6. Main theorem and remarks.

6.1. Proof of the Theorem. By duality, we may assume that A admits a maximal convex subcategory B which is a tubular extension of a tame concealed algebra C, such that B is either tubular or a representation-infinite tilted algebra of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$ having a complete slice in its preinjective component. Therefore for any convex subcategory of A of the form $B[M], M$ is a preinjective B-module. Indeed, M is not preprojective since $B[M]$ is tame. If M belongs to a tubular component, then by (3.4), M is pivoting and
therefore $B[M]$ is a tubular extension of C, contradicting the maximality of B. Moreover, observe that in case there is a convex subcategory $B[M]$ of A, then B is not a tubular algebra. Indeed otherwise the splitting lemma implies that A is not sincere (if ind $B=$ $P^{B} \vee g^{B}$ where g^{B} is formed by the preinjective modules, then ind $B[M]=P^{B} \vee \mathcal{I}^{\prime}$ with $\operatorname{Hom}_{B[M]}\left(\mathcal{J}^{\prime}, \mathcal{P}^{B}\right)=0$ and we may apply (1.3)).

If A admits no convex subcategory of the from $[N] B$, then (4.1) applies and A is tilted. Assume $[N] B$ is a convex subcategory of A. We still have two possibilities: if B admits a projective module outside the preprojective component of Γ_{B}, then (5.1) applies and A is a coil algebra. Otherwise, we consider the maximal coil enlargement D of B which is a convex subcategory of A. We get that D^{-}satisfies the hypothesis of (4.1) and therefore A is tilted.
6.2. Let A be a strongly simply connected algebra. We denote by $n(A)$ the number of vertices of the quiver Q_{A}. By $c(A)$ we denote the number of convex subcategories of A which are tame concealed. Then A is representation-infinite if and only if $c(A) \geq 1$.

COROLLARY. Let A be a tame, sincere, strongly simply connected algebra. Assume A admits a convex subcategory which is tubular or a representation-infinite tilted category of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Then
a) if A is tilted, $c(A) \leq 2$ and $n(A) \leq 19$
b) if A is a coil algebra, $c(A) \leq 3$ and $n(A) \leq 13$.

Proof. (a) Assume first that A is tilted. Then by [15], $c(A) \leq 2$. In case $c(A)=2$, the possible algebras A with $n(A) \geq 20$ were classified in [16]. None of the algebras of that list contains a tilted category of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$. Hence $n(A) \leq 19$ in our case.

In case $c(A)=1$, then A is a finite enlargement of a category B which is tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$ with a complete slice in its preinjective component. Suppose that A is tilted of type Δ. Then Δ is a tree with at most 3 extremal points. Otherwise, there is a projective $P_{A}(a)$ whose radical $R=\operatorname{rad} P_{A}(a)$ is indecomposable with at least two irreducible arrows $N_{i} \xrightarrow{\alpha_{i}} R$ in Γ_{A}, and such that $\mathcal{S}(R \rightarrow) \backslash\left\{P_{A}(a)\right\}$ is a tree containing some $\tilde{\mathbf{E}}_{p}$. Here $\Sigma=S(R \rightarrow)$ denotes the section in Γ_{A} starting at R (that is, Σ is the full subquiver of Γ_{A} formed by those vertices which receive a sectional path from R). We shall show that $n(A) \geq 15$ implies that $\left(\operatorname{Hom}_{D}(R, \bmod D)\right)$ is representation-infinite, where D is the convex subcategory of A formed by the vertices in the support of modules in $\mathcal{S}(R \rightarrow) \backslash\left\{P_{A}(a)\right\}$. This contradicts that A is a finite enlargement of B. Hence Δ has at most 3 terminal vertices. Applying [16, Theorem 3] we get $n(A) \leq 13$.

Indeed, if Σ has 4 or more terminal vertices, then we get a k-linear subcategory of $\left(\operatorname{Hom}_{D}(R, \bmod D)\right)$ given by the poset $(1,1,1,1)$. So, assume that Σ has only 3 terminal vertices. By similar arguments to $[16,(3.3)$ to (3.7)], we get that $n(D) \leq 13$, contradicting that $15 \leq n(A)=n(D)+1$.
(b) If A is a coil algebra, then A^{+}(resp. A^{-}) is a tubular extension (resp. tubular coextension) of a tame concealed algebra C. Both A^{+}and A^{-}are either tubular or tilted of type $\tilde{\mathbf{E}}_{p}, 6 \leq p \leq 8$.

Observe that, since A is sincere, A^{+}is tubular of type $(2,2,2,2)$ if and only if so is A^{-}. In this case $n(A)=7$. If A is tubular or tilted of Euclidean type, then $n(A) \leq 10$. So, we may assume that A is neither tubular nor tilted of Euclidean type and that A^{+}and A^{-} are not tubular of type ($2,2,2,2$). If follows from (5.6) that C is of type $\tilde{\mathbf{E}}_{q}, 6 \leq q \leq 8$. Then $n(A) \leq n\left(A^{+}\right)+n\left(A^{-}\right)-n(C) \leq 10+10-7=13$. Finally, if both A^{+}and A^{-}are tubular, then $c(A)=3$; otherwise $c(A) \leq 2$.

References

1. I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56(1988), 417-450.
2. \qquad Indecomposable modules over multicoil algebras, Math. Scand. 71(1992), 31-61.
3. Multicoil algebras. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 29-68.
4. I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19(1995), 453479.
5. R. Bautista, P. Gabriel, P., A. Roiter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81(1985), 217-285.
6. R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27(1983), 212-220.
7. K. Bongartz, and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65(1982), 331-378.
8. V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173(1976).
9. P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62(1987), 311-337.
10. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II, Ottawa, 1979, Lecture Notes in Math. 903, Springer, 1981, 68-105.
11. Ch. Geiss, Tame distributive 2-point algebras. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc., 1993.
12. O. Kerner, Tilting wild algebras, J. London Math. Soc. 39(1989), 29-47.
13. J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132(1989), 117-134.
14. J. A. de la Peña, On the dimension of module varieties of tame and wild algebras, Comm. Alg. 19(1991), 1795-1807.
15. __, Tame algebras with a sincere directing module, J. Algebra 161(1993), 171-185.
16. The families of 2-parametric domestic algebras with a sincere directing module. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 361-392.
17. C. M. Ringel, Tame algebras. In: Lecture Notes in Math. 831, Springer, 1980, 137-287.
18. \qquad , Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer, 1984.
19. D. Simson, Linear representations of partially ordered sets and vector space categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
20. A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285(1988), 177-199.
21. Simply connected algebras and Hochschild cohomologies. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447.
22. __, Cycle-finite algebras, J. Pure Appl. Algebra 103(1995), 105-116.
23. ___, Tame algebras with simply connected Galois coverings, in preparation.
24. H. Strauss, The perpendicular category of a partial tilting module, J. Algebra 144(1991), 43-66.

Instituto de Matemáticas, UNAM
Ciudad Universitaria
México 04510 D.F.
México
Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina $12 / 18$
$87-100$ Torunं
Poland

