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FORBIDDEN SUBCATEGORIES
OF NON-POLYNOMIAL GROWTH
TAME SIMPLY CONNECTED ALGEBRAS

J. A. DE LA PENA AND A. SKOWRONSKI

ABSTRACT.  Let k be an algebraically closed field and 4 = kQ// be a basic finite
dimensional k-algebra such that Q is a connected quiver without oriented cycles. As-
sume that 4 is strongly simply connected, that is, for every convex subcategory B of 4
the first Hochschild cohomology H'(B, B) vanishes. The algebra 4 is sincere if it ad-
mits an indecomposable module having all simples as composition factors. We study
the structure of strongly simply connected sincere algebras of tame representation type.
We show that a sincere, tame, strongly connected algebra 4 which contains a convex
subcategory which is either representation-infinite tilted of type £,, p = 6,7,8, ora
tubular algebra, is of polynomial growth.

The class of finite dimensional algebras over an algebraically closed field & may
be divided into two disjoint classes: First, there are tame algebras for which the inde-
composable modules occur, in each dimension, in a finite number of discrete and one-
parameter families. Second, there are wild algebras whose representation theory is at
least as complicated as the study of finite dimensional vector spaces together with two
non-commuting endomorphisms, for which the classification of indecomposable up to
isomorphism is a well-known unsolved problem. We are interested in the classification of
tame simply connected algebras and their representations. Our interest in this problem is
motivated by the fact that often a convenient way to determine whether a given algebra 4
is tame (and to compute its representations) consists in finding a simply connected cover
of a suitable degeneration of 4. It is known to be the case for all representation-finite
algebras [5, 7], and it is expected to be true for tame algebras (for some special cases see
[9, 11, 20]). It is also expected that a simply connected algebra A4 is tame it and only if
the Tits form ¢4 of A is weakly non-negative, and, if this is the case, the one-parameter
families correspond to the generic positive null vectors, see [14]. Following [1], by a
simply connected algebra 4, we mean a basic triangular algebra such that, for any pre-
sentation 4 — kQ /1 of A as a bound quiver algebra, the fundamental group IT,(Q, /) of
(0, 1) is trivial, or equivalently 4 does not admit proper Galois coverings. The class of
simply connected algebras consists of algebras of finite global dimension, and includes
the tilted algebras of Euclidean types D, n > 4, Ep, p = 6,7,8, and Ringel’s tubular
algebras [18]. We consider here the simply connected algebras for which every convex
subcategory is also simply connected, and call them strongly simply connected algebras.
It is known [21] that a triangular algebra 4 is strongly simply connected if and only if,

Received by the editors March 30, 1994; revised January 15, 1995.
AMS subject classification: 16G10, 16G60.
(© Canadian Mathematical Society 1995.

1018

https://doi.org/10.4153/CJM-1996-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-053-5

FORBIDDEN SUBCATEGORIES 1019

for every convex subcategory C of 4, the first Hochschild cohomology group H'(C, C)
vanishes.

The representation theory of strongly simply connected algebras is best understood
in case 4 is of polynomial growth (see [15, 22, 23]), that is, there is a natural number m
such that the indecomposable 4-modules occur, in each dimension d, in a finite number
of discrete and at most " one-parameter families. But the knowledge of non-polynomial
growth tame (strongly) simply connected algebras is rather poor. In the study of inde-
composable modules over such algebras we may restrict to the sincere algebras, that
is, algebras which admit indecomposable finite dimensional modules having all simple
modules as composition factors. Our main result gives crucial information on the struc-
ture of non-polynomial growth, tame, sincere, strongly simply connected algebras.

THEOREM. Let A be a sincere, tame, strongly simply connected algebra which con-
tains a convex subcategory which is either representation-infinite tilted of type E,, p =
6,7,8, or a tubular algebra. Then A is either tilted algebra or a coil algebra. In particular
A is of polynomial growth.

We have the following direct consequence:

COROLLARY. Let 4 be a sincere, non-polynomial growth tame strongly simply con-
nected algebra. Then every minimal representation-infinite convex subcategory of A is a
concealed algebra of type D,,, m > 4.

The paper is organized as follows. In a preliminary Section 1, we shall recall some
concepts and results necessary for the proof of our main result. Section 2 consists of
some preparatory lemmas on strongly simply connected algebras. We devote Section 3
to coil enlargements of algebras and their tame one-point extensions. In Sections 4 and
5 we present two essential parts of the proof of the above theorem, related respectively
with tilted and coil algebras. In Section 6 we prove the theorem and present some of its
consequences.

Both authors gratefully acknowledge support from the Polish Scientific Grant KBN
No. 1222/2/91. The first author also acknowledges support from the Consejo Nacional
de Ciencia y Tecnologia, México.

1. Preliminaries.
1.1. Notation. Throughout this article, k£ will denote a fixed algebraically closed field.
By an algebra 4 is meant a finite dimensional associative k-algebra with an identity,
assumed moreover to be basic and connected: In this case, it is known that there exists
a connected bound quiver (Q4, /) and an isomorphism A4 kO, /1. Equivalently, 4 =

kQ. /I canbe considered as a k-category, of which the object class is the set of the vertices
of Q4, and the set A(x, y) of morphisms from x to y is the quotient of the k-vector space
kQ4(x,y) of all linear combinations of paths in Q, from x to y by the subspace I(x,y) =
INkQ4(x,y), see [10]. A full subcategory C of 4 is said to be convex if any path in Q,
with source and target in C lies entirely in Qc¢. If Q4 has no oriented cycle, 4 is said to
be triangular.
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By an 4-module we mean a finitely generated right 4-module, and we denote by
mod A their category. Then ind 4 is the full subcategory of mod 4 formed by the inde-
composable modules. A path in mod 4 is a sequence My — M| — --- — M, of non-zero
non-isomorphisms between indecomposable A-modules. If M, = My, such a path is said
to be a cycle. An indecomposable 4-module M is said to be directing if it does not lie
on any cycle in mod 4. For each vertex i of Q4, we shall denote by ¢; the corresponding
primitive idempotent of 4, by S.(i) the simple module e;4/e; rad 4, by P4(i) the projec-
tive cover of S4(i), and by /4(i) the injective envelope of S4(i). For an 4-module M, its
support Supp M is the full subcategory of A consisting of all objects i € Q4 such that
Homy (PA(i),M) # 0. A module M is called sincere if Supp M = A. Finally, an algebra
A having an indecomposable sincere module is said to be sincere.

We shall denote by I'4 the Auslander-Reiten quiver of A whose vertices are the iso-
morphism classes of indecomposable 4-modules, arrows are the irreducible maps and
whose translations 7,, 7; are the Auslander-Reiten translations D Tr, Tr D, respectively.
We shall agree to identify the vertices of ', with the corresponding indecomposable
A-modules.

Finally, by a component of "4 we mean a connected component. For a background
on Auslander-Reiten theory we refer to [10, 17].

1.2. One-point extensions of algebras. Let B be an algebra and M be a B-module. The
one-point extension of B by M is the algebra
k M
s =g |

with the usual addition and multiplication of matrices. The quiver Qg of B[M] contains
the quiver Op as a full convex subquiver and there is an additional (extension) vertex
which is a source. We may identify the B[M]-modules with the triples (V, X, ¢) where
V is a finite dimensional k-vector space, X a B-module, and ¢: V' — Homg(M, X) a k-
linear map. A B[M]-linear map (V, X, ¢) — (V', X', p') is thus a pair (f, g) where f: V —
V' is a k-linear map and g: X — X’ is a B-linear map such that ¢’/ = Homp(M, g)p.
With mod B[M] one associates a vector space category Homp(M, mod B) in the following
sense.

A vector space category K is a Krull-Schmidt k-category together with a faithful
functor | — |: K — modk. The subspace category U(K) of K is defined as follows:
its objects are triples (V, Y, ¢) where V is a finite dimensional k-vector space, Y an
object of K, and p:V — |X| a k-linear map. A morphism (V,Y,¢) — (V. Y, ")
in U(K) is a pair (f,h) where f:V — V' is a k-linear map and 2:Y — Y’ is a mor-
phism in K such that ¢’f = |h|¢. Then Homg(M, mod B) is the vector space category
whose objects are of the form Homp(M, X) with X in mod B, and morphisms are of
the form Homg(M, g): Homp(M,X) — Homg(M,X") with g:X — X’ a morphism in
mod B. Then | Homg(M, X)| is the underlying k-vector space of Homp(M, X). We have
then the reduction functor d)j‘&: mod B[M] — ‘ZI(HomB(M, mod B)) which assigns to each
B[M]-module (V, X, ) the object (V, Homg(M, X), <p) and to each B[M]-homomorphism
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,g): (V. X, p) — (V',X, ¢") the morphism (f, Homg(M, g)). It is well-known (see [19,
(17.3)]) that ¢&, is full, dense and induces a representation equivalence between the full
subcategory of mod B[M] consisting of modules having no direct summands of the form
(0, X, 0) and the category ‘U(HomB(M, mod B)).

A vector space category K is said to be linear if dimy |X] < 1 for every object X.
A linear vector space category is of tame representation type if and only if it does not
contain as a full subposet one of the posets of the following Nazarova’s list:

%
r
R
SR S S

T 1711 T1 1T TN 1
a L1 A,1,1,2) 2,2,3) {,3,4) (1,2,06) (N, 5)
See [17].

1.3. Splitting lemma. The following lemma gives some necessary conditions for an
algebra 4 to be sincere.

LEMMA. Let A be a triangular algebra and B = By,B,,...,B; = A a family of
convex subcategories of A such that, for each 0 < i < s, either Biyy = Bi[M;] or
Biv1 = [M;]B; for some indecomposable Bi-module M;. Assume moreover that ind B
admits a splitting ind B = PV J where P and J are full subcategories of ind B, and the
following conditions are satisfied:

1) Homg(J,P)=0

2) For each i such that Biyy = Bi[M;), M;|g belongs to add J
3) For each i such that B;+y = [M;1B;, M;|p belongs to add P.
4) There are i andj such that M; € J and M; € P.
Then A is not sincere.

PROOF. We know that Q4 has no oriented cycle and QO is a convex subquiver of Q4.
Denote by xi,...,x, (resp. yi,...,) the set of all vertices in Q4 being sources (resp.
targets) of arrows with target (resp. source) in Q. Observe that, by (4), both sets are
not empty. For each i, denote by B; (resp. B;") the maximal convex subcategory of B;
which does not contain yy, ...,y (resp. xi, . . . ,x»). Moreover, let P; (resp. J;) be the full
subcategory of ind By (resp. of ind B) consisting of modules X such that X|z € add P
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(resp. X|p € add J). We claim that, for each 0 < i < s, we have ind B; = % V J; and
Homg,(J;, P) = 0. It is obvious for i = 0. Assume that it is true for some 0 < i <.
Consider the case Bi+; = B;[M;]. By our assumption, we know that M; belongs to &, or 7.
If M; € P, then M; € ind B; and M;|3 = 0, by (2). Similarly, if M; € J; then M; € ind B}
and M;|g € add J. Take now an arbitrary module Z = (V, X, ¢) inind B;+;. We have three
cases to consider: Suppose first that Z = (£,0,0). Then Z € Py, ifM; € B, or Z € Jini,
ifM; € J;. Letnow V' = 0. Then Y € ind B, = BV J;, and hence Y belongs to P, C Py,
orto J; C J41. Assume now that ¢ # 0. Let X = X| & --- @ X, be a decomposition
of X into a direct sum of indecomposable B;-modules. Since Z is in ind B;+; and ¢ # 0,
we get that Homg (M, X;) # 0 forany 1 <j < s. If M; € P, then since M;|z = 0,
M; € ind B and indB; = P, V J;, we get that the modules X|, ..., X, belong to ¥, and
hence Z = (V, X, ¢) belongs to P,. Finally, if M; € J; then, since M;|p € add J, M; €
ind B}, ind B; = B,V J; and Homg,(J;, P) = 0, we get that the modules X}, . .., X, belong
to J; and hence Z = (V, X, ¢) belongs to J+;. This proves that ind Bix; = Py V Jis1.
Moreover, if Y € Py and Z € Ji11, then Homg,,,(Z, Y) = Homg(Z|s, Y|5) = 0 because
Homg(J, P) = 0. Thus Homg(Ji+1, Pi+1) = 0. The proof in the case Bis; = [M;]B; is
similar.

Therefore, ind4 = P,V J;, Hom,(J;, P;) = 0, and by (4), B # B} and B # B, . Since
P, consists of B -modules and J; of B, -modules, we conclude that A4 is not sincere. =

1.4. Tame algebras. Let A be an algebra and k[X] be the polynomial algebra in one
variable. Then A is said to be tame if, for any dimension d, there is a finite number of
k[X] — A-bimodules M;, 1 < i < ny, which are finitely generated and free as left k[X]-
modules and such that all but a finite number of isomorphism classes of indecomposable
A-modules of dimension d are of the form k[X]/(X — X) ®x; M; for some A € k and
some i. Let u4(d) be the least number of k[X] — 4-bimodules M; satisfying the above
condition. Then 4 is said to be of polynomial growth (resp. domestic) if there is a natural
number m such that p4(d) < d" (resp. py (d) < m) for any d > 1. Observe that, from
the validity of the second Brauer-Thrall conjecture, 4 is representation-finite if and only
if ug(d) = 0 foranyd > 1.

1.5. Tilted algebras. Let H = kA be a hereditary algebra and 7 a (multiplicity-free) tilt-
ing H-module, that is, Ext/',(T, T) = 0 and T is a direct sum of n pairwise non-isomorphic
indecomposable H-modules, where # is the number of vertices of A. Then B = End,(7)
is called a tilted algebra of type A. If A is one of the Euclidean quivers A,, D, E¢, E7,
or Eg and T is preprojective (direct sum of modules lying in the 7, orbits of projective
modules), then C = Endy(7) is called tame concealed. In this case, I'c consists of a
preprojective component P containing all projective modules, a preinjective component
J containing all injective modules, and a family 7, A € P,(k), of stable tubes, forming
the class of indecomposable regular C-modules, see [18]. We note also that by [12] every
tame tilted algebra is domestic.
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1.6.  Tubular extensions of tame concealed algebras. Consider the following infinite

[} [} XY ] [} ) [
[ [ ) L ) Y
T LU Y | [ ) [}
e [ ] [ ] [}
) LN | LN | Y
(Y] (Y] (Y ‘e e [}
" [ [ w Y Y

s, -
- -
e .=
. .=

bound by all possible relations of the form 3. A branch is the k-category given by a
finite connected full bound subquiver of the above tree containing the root b. Let now
C be a tame concealed algebra and T, A € P;(k), its family of stable tubes. Take a
sequence £ = (E|,..., E;) of pairwise non-isomorphic C-modules which are simple
among the regular modules, and a family K = (K|, ..., K}) of branches, say with the
roots by, ..., b, respectively. The tubular extension A = C[E, K] of C by E and K is the
category whose set of objects is the disjoint sum of the sets of objects of C, K|, ..., K.
The morphism sets are such that A(x,y) = C(x,y) if x,y € C; A(x,y) = Ki(x,y) if
x,y € Ki, Ax,y) = 0ify € Kjandx € CUK;, i # j; Alx,y) = E(y) & Ki(x, b)) if
x € K;, y € C. Letr, denote the rank of the tube Z;, A € P,(k). The tubular type np =
(m\)aep k) 18 definedby ny = r\+ YEeT, |K;|. Since almost all n, are equal to 1, we shall
write, instead of (1)) ep, ), the (finite) sequence containing at least two n,, including all
those which are larger than 1, arranged in non-decreasing order. A tubular extension A
of C is called domestic (resp. tubular) if its tubular type is one of the following: (p, 9),
1<p<q,2,2,r,2<r(2,3,3),(2,3,4)0r(2,3,5) (resp. (3,3,3), (2,4,4), (2,3,6)
or(2,2,2,2)). Dually, one defines a tubular coextension of C. It was shown in [18, (4.9)]
that B is a representation-infinite tilted algebra of Euclidean type with a complete slice
in its preinjective (resp. preprojective) component if and only if B is a domestic tubular
extension (resp. coextension) of a tame concealed algebra. A tubular (resp. cotubular)
algebra is a tubular extension (resp. coextension) A of C with n, tubular. By [18, (5.2)],
any tubular algebra is cotubular and conversely. We know (see [13, (2.1)]) that for, a
tubular extension A of C the following conditions are equivalent: (a) A is tame; (b) A
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is of polynomial growth (c) n, is domestic or tubular. Moreover, A is domestic if and
only if n, is domestic.

We shall now describe the Auslander-Reiten quiver of a tame tubular extension or
coextension of C. Let B be tubular extensions of C, then

Ip=PEVIEV I,

where Pf denotes the preprojective component of I'c, Z? is a P (k)-family of (ray) tubes
obtained from the corresponding tubes in "¢ by successive ray insertions, and ]59 denotes
the remaining components of I'. The ordering from the left to the right indicates that
there are non-zero morphisms only from any of these classes to itself and from the classes
to its right. All projective indecomposable B-modules belong to P2V I 8. Similarly, if
B is a tubular coextension of C, then

My=P2vT8v 798

where 72 denotes the preinjective component of I'¢, T8 is a P|(k)-family of (coray)
tubes obtained from the corresponding tubes in ['¢ by successive coray insertions, and
P8 denotes the remaining components of I'z. All injective indecomposable B-modules
belong to 72\ 98 If B is a domestic tubular extension (resp. coextension) of C, then
JE (resp. P2) is the preinjective (resp. preprojective) component of I's and contains a
complete slice [18, (4.9)]. If B is tubular then B is also a tubular coextension of a tame
concealed algebra C’' and

B=(V ')V IEv L,
q€Q*
22 = VIV (TP
9€Q*
where Q7 is the set of positive rationals and each ‘Z;B is a Py (k)-family of stable tubes
(18, (5.2)].
We shall need the following facts.

PROPOSITION. Let B be a tame tubular extension of a tame concealed algebra C,
and M be an indecomposable B-module. Then, with the above notation, the following
holds:

i) If B[M] is tame then M does not belong to PE = £P0C.
i) If B is tubular and B[M) is tame, then M belongs to T2 \/ 95
iii) If B is tubular and [M)B is tame, then M belongs to ¢/ IE.
iv) If B is tilted of type E,,, 6 <p <8 Mec J& and [MIB tame, then [M)B is a
tubular extension of C.
v) If B is tilted of type E,,, 6<p<8M( ]é’, and B[M] tame, then M lies on the
mouth of a tube in ‘IP and B[M] is a tubular extensions of C.

PROOF. (i): see [17,(3.5)] and [2, (3.1)].
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(ii) and (iii): see [2, (3.2)].

(iv) and (v): take verbatim the proofs of Lemmas 3.3, 3.4 and 3.5 in [2], using the
tameness of [M]B (resp. of B[M]) and the fact that, by [17, (3.5)], every one-point ex-
tension of a hereditary algebra of type Ep, 6 < p < 8, by an indecomposable regular
module of regular length at least 2, is wild.

2. Strongly simply connected algebras.

2.1.  Let 4 be a triangular algebra and Q = Q. For each vertex x of Q, denote by O(x)
the subquiver of Q obtained by deleting all those vertices of Q being a source of a path in
Q with target x (including the trivial path from x to x). Following [6], 4 is said to have the
separation property if, for each vertex x of O, the radical rad P4(x) of the projective A-
module P,(x) at x is a direct sum of pairwise non-isomorphic indecomposable modules
whose supports are contained in pairwise different connected components of Q(x). It
is known [21] that every algebra 4 with the separation property is simply connected
in the sense of [1], that is, for any presentation 4 — KQ /1 of A as a bound quiver
algebra, the fundamental group I1,(Q, 1) of (Q,]) is trivial. It was shown in [21] that
every convex subcategory of A4 has the separation property if and only it every convex
subcategory of 4 is simply connected. If this is the case, 4 is said to be strongly simply
connected. Observe that the opposite algebra to a strongly simply connected algebra is
also strongly simply connected. The class of strongly simply connected algebras contains
all representation-finite simply connected algebras, algebras whose ordinary quiver is a
tree, and all tilted algebras of Euclidean type (resp. tubular algebras) which do not contain
convex hereditary subcategories of type A,.

2.2. PROPOSITION. Let B be a convex subcategory of a strongly simply connected al-
gebra A. Then there is a sequence B = Ao, A1, ..., A; = A of convex subcategories of A
such that, for each 0 < i < t, Aj+| is a one-point extension or coextension of A; by an
indecomposable Ai-module.

PROOF. Let Q = Qy (resp. Q' = QOp) be the quiver of 4 (resp. B = Ag), then Q' is
a convex full subquiver of Q. Without loss of generality, there is a source xo of Q not in
Q'. Consider the indecomposable decomposition rad P4(xo) = @}_, R; such that supp R;
is contained in the connected component A; of Q(xo). Then A; # A, for i # j. Let D; be
the convex subcategory of 4 with objects A;. Since Q' is connected we may assume it is
contained in A;. Therefore B is a convex subcategory of D.

If s = 1, then 4 = D,[R;] and by induction we obtain the result. Assume thats > 1.
Choose a sink yy in A; and consider the indecomposable decomposition 14(y9) /S4(vo) =
@;_, C; such that supp C; is contained in the connected component A} of the quiver ob-
tained from Q by deleting yo. Then A # A; for i # j. Let D; be the convex subcategory
of 4 with objects A;. We may assume that O’ (and xo) is contained in A}. If ¢ = 1, then
A = [C]D; and we obtain the result by induction. Otherwise, r > 1 and we may choose
a source x in Aj. Since xo is in A}, then xo # x;. We repeat the above construction ob-
taining either 4 = E|[M;] (or [N,]E}) for a convex subcategory E; (or E}) of 4 and an
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indecomposable module M; (or N}), or a source x; different to xo and x;. This process
can only be repeated finitely many times. Thus the result. n

2.3. The following technical result will be useful; we will encounter situations such as
the one described below in Section 5.

LEMMA. Let A be a strongly simply connected algebra. Let B be a convex subcate-
gory of A satisfying the following, (1) ind B admits a splitting ind B = PV I, where P
and I are full subcategories of ind B with Homp(I, P) = 0; (2)there is a vertex xo of Q4
not in Qp such that rad P4(xo)|g has a direct summand N in P, and for any successory
of xo not in Qp, rad P4(»)|s € add(1). Then there exists an indecomposable B-module R
such that B[R] is a convex subcategory of A and Homy(R, N) # 0. In particular, R is in
P.

PROOF. We denote M = rad P,4(xo).

Let D be the convex subcategory of 4 formed by the vertices of B and those vertices of
0,4 which are successors of xy and predecessors of some vertex in Op. Then D is strongly
simply connected and by (2.2) there is a sequence of convex subcategories B = By C
By C --- C By C Bs+1 = D of A such that B;y; = B;[M;] for some indecomposable B;-
module M;. Moreover, observe that My = M|p and rad P4(xo)|s = rad Pp(xo)|B. Assume
thats > 1.

By (2), M;|p € add(]) fori = 0,...,s—1. Therefore we may proceed as in the splitting
lemma (1.3), to construct full subcategories P; and I; of ind B; such that ind B; = B V [;
and Homg ([;, %) = 0,i = 0,...,s. Lety; be the extension vertex of B; from B;_,, that
is, rad Pg,(y;) = M;_,. By definition, P, (y;) belongs to I;. Hence every indecomposable
B;-module X with Homy, (Pgl(yi),X) # 0 belongs to . In the last step ys+; = xo and
Homy (ng(ys), MS) #£ 0. Therefore M, belongs to I; and the restriction M|z € add(])
which contradicts (2). This shows that s = 0 and D = B[R] with R = M, an indecom-
posable B-module. Finally, there is an isomorphism Pp(xo) — P4(x0)|p, which implies
that Homy(R, N) # 0. n

2.4. LEMMA. Let A be a strongly simply connected algebra. Let B be a convex sub-
category of A satisfying the following (1) ind B admits a splitting indB = PV C V |,
where P, C, I are full subcategories of ind B with Homg(C V I, P) = 0 = Homg(I, C);
(2)there is a vertex xo not in Qp such that rad P4(xo)|s has a direct summand N with
Homg(N, C) # 0, for any proper successory of xo not in Qp, if Homg (rad P4()|s, CV I)
# 0, then rad P4(y)|g € add(I). Then there exists an indecomposable B-module R such
that B[R] is a convex subcategoryof Aand R € PV (.

PROOF. Let M = rad P4(xp). Let D be the convex subcategory of A formed by the
vertices Qp and those vertices which are successors of xo and predecessors of some vertex
in Qp. Consider a sequence of convex subcategories of 4, B = By C B C --- C B; C
Bs+) = D such that B;y) = B;[M;] for some indecomposable B;-module M;. Observe that
M = MlD
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We construct full subcategories P, (;, I; of ind B; such that ind B; = P V ; V I; and
Homg, (G V 1, P) = 0 = Homg (I, (), i = 0,...,s. Let y; be the extension vertex of
B; from B;_,, that is, rad P (y;) = M;. Assume that for i < j < s — 1, the categories
P, G, I; are defined and ; = C. Moreover, if M; € &, then Homp (M;, GV ;) = 0. We
prove that the same is satisfied by Bj.+; (and by My in casej+ 1 <s).

If M; € B, then Homg (M;, G V I}) = 0. We define B+, as the full subcategory
of ind B;;; whose objects are of the form X = ( V,Xo0,V:V — HomBj(Mj,Xo)) with
Xo € add(F)). Observe that for any indecomposable X = (V, Xo,Y) with V # 0, X € Py,.
Set G+1 = C and Ijy; = I. Then indBj+; = Py V Gv1 V Iy is the desired splitting.
IfM; € GV I, then M; € I (by (2), because G = (). We define I+, as the full
subcategory of ind B;+; with objects of the form X = (V, Xy,7) with Xo € add([)). Set
P+1 =B, G+1 = C. Thenind Bjy1 = By V G1 V Ly is the desired splitting.

Ifj+1 <sand My € By, itis of the form M;y = (V,L,7) with L € add(F})). As-
sume Homg, (Mj+1, G+1 V Iiv1) # 0. Since I+ = I;, there is some ¥; € GV I such that
Homgp (L, Y;) # 0. Then either B = B or [; = [,_,inanycase weget ¥, | € G V
Iy suchthatHomp (L, Y;—1) # 0. Continuing this way, we get that Homp(M;x1 |5, ¥) # 0
for some module Y € C V [, a contradiction. Hence Homg,,,(Mj+1, G1 V L) = 0.

At the final step, we get yo.1 = xo and M; = M|p. If s > 1, there is some 0 < i <,
such that Hom,(P3,(y:), Ms) # 0. Since M; is an indecomposable B;-module such that
Homp(M;|p, C) # 0, then M; € F; V C. Therefore M; € ‘P;. Let y,, be a maximal vertex
in Qp not in Op, such that y,, is a successor of y;. Then there is a chain of non-zero maps
Pp(¥m) — -+ — Pp(y;) and the radical R = rad Pp(yn) is an indecomposable B-module
in P. This shows that there is a convex subcategory B[R] of 4 with Rin P. In cases = 0,
then R = rad Pp(xo) is indecomposable in ? V C and B[R] is a convex subcategory of
A. [

3. Coil enlargements of algebras. We recall in this section the notions of admis-
sible operations, coils, and coil enlargements of algebras, playing an essential role in the
proof of our main theorem. For more details on these concepts we refer the reader to [2,
3,4].

3.1. LetAbeaalgebraandI beacomponentinI'4. For an indecomposable module X
in T, called the pivot, three types of admissible operations are defined, yielding in each

case a modified algebra 4’ of 4, and a modified component I of T
ad 1) If the support of Hom,(X, —)|r is of the form:

XZXO_’X]_)XZ—')"'

wesetd’ = (A X D)[X® Y], where D is the full X t lower triangular matrix algebra, and Y
is the unique projective-injective indecomposable D-module. In this case, I is obtained
by inserting in T a rectangle consisting of the modules Z;; = (k,X,- DY, (:)) fori >0,
1 <j<tandX = (kX 1) fori>1,whereY;, 1 <j <t denote the indecomposable
injective D-modules. If 1 = 0, we set A’ = A[X], and the rectangle reduces to the ray
formed by modules of the form X.
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ad 2) If the support of Homy(X, —)|r is of the form:
V— X=Xy — X=X —

with ¢ > 1 (so that X is injective), we set A’ = A[X]. In this case, I is obtained by
inserting in I" a rectangle consisting of the modules Z; = (k,Xi @Y, (})) fori > 1,
1 <j<tand X = (k,X;, 1), fori > 0.

ad 3) If the support of Hom, (X, —)|r is of the form

Y - Hh — - = Y
T T T
X=X — X5 —» -+ - X, — X —

with £ > 2 (so that X, is injective), we set 4’ = A[X]. In this case, I is obtained by
inserting in I a rectangle consisting of the modules Z; = (k,X,- DY, (:)) fori > 1,
1 <j<iandX = (k,X;,1)fori>0.

It was shown in [3] that the component of T4/ containing X is I'". The dual coextension
operations ad 1*), ad 2*) and ad 3*) are also called admissible. We say that X is a pivoting

module (resp. copivoting module) if X can be used as pivot for an admissible operation
of type ad 1), ad 2) or ad 3) (resp. ad 1), ad 2*) or ad 3%)).

3.2. The above admissible operations can be regarded as operations on translation
quivers rather than on Auslander-Reiten components (see [2, (2.1)]).

Following [2, 3] a translation quiver I is called a coil if there exists a sequence of
translation quivers I'g, 'y, ..., = I' such that [’y is a stable tube and for each 0 < i <
m, [';4) is obtained from I'; by an admissible operation.

Given a coil T, the full convex subquiver I'" formed by all non-directing vertices in
I' is again a coil (see [3]).

3.3.  Let C be a tame concealed algebra and 7 = (‘1),cp, ) the family of all stable
tubes in ['¢c. Following [4], an algebra B is said to be a coil enlargement of C if there is
a finite sequence of algebras C = By, B,,..., B, = B such that for each 0 < j < m,
B+ is obtained from B; by an admissible operation with the pivot in a stable tube of 7
or in a component of I'g,, obtained from a stable tube of 7" by means of the sequence
of admissible operations done so far. Observe that, for each A € P;(k), all modules
of 7, are contained in one component, say (Cy, of ' which is a coil. It follows that
coil enlargements of C using only the operations of type ad 1) (resp. of type ad 1*)) are
Jjust tubular extensions (resp. tubular coextensions) of C in the sense of (1.6). By a coil
algebra we mean a tame coil enlargement of a tame concealed algebra. We have the
following facts proved in [4, (3.5), (4.1)].

PROPOSITION. Let B be a coil enlargement of a tame concealed algebra C. Then, in
the above notation, the following holds:

i) There exists a unique maximal tubular extension B* of C which is a convex sub-
category of B such that B is obtained from B* by a sequence of admissible operations of
types ad 1*), ad 2*) or ad 3*).
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ii) There is a unique maximal tubular coextension B~ of C which is a convex subcat-
egory of B such that B is obtained from B~ by a sequence of admissible operations of
types ad 1), ad 2) or ad 3).

iii) Tp = P& v(CV Iéy (see (1.6)) where C = (())xep, (k) is the family of coils
obtained from the tubular family T = (‘I))cp,w) by the corresponding admissible op-
erations. Moreover C weakly separates PZ, from I}, that is, every map from PE to
IE" factors through add(C).

iv) B is tame if and only if B~ and B* are tame.

3.4. We shall need also the following proposition:

PROPOSITION. Let B be a coil enlargement of a tame concealed algebra C of type
D,, m >4, or Ep, 6 < p < 8. Assume that X is an indecomposable B-module lying in
a coil T of Tg such that A = [X)B is tame and Homg(Z, X) # 0 for some non-directing
module Z in I'. Then

i) B is a tilted algebra of Euclidean type D,,, n > m, or Eq, 6<p<qg<8 witha
complete slice in the preprojective component.

ii) Mis either copivoting or B is of type D,, and the support of Homg(—, X)|r contains
the k-linear category of one of the following posets

/N N
SN S /N
SN S N
- %
;

In case (2), there are at least 4 projective indecomposable B*-modules which are not
C-modules. Moreover, there exists an indecomposable B~-module Y lying in the prepro-
Jective component of Tg- such that dim; Homg(Y, X) = 2.

PROOF.  Since Homp(Z, X) # 0 for some non-directing module Y of T', we conclude
that I admits an infinite sectional path

Yoo XX — - Xi—Xo=X

Put F = B~. We know from Proposition 3.3 that B is obtained from F (resp. I is obtained
from a coray tube 7 in I'r) by a sequence of admissible operations of type (ad 1), (ad 2)

https://doi.org/10.4153/CJM-1996-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-053-5

1030 J. A. DE LA PENA AND A. SKOWRONSKI

or (ad 3). Clearly, in the notation of (1.6), T belongs to the family Z.*. Observe also that
infinitely many modules X; belong to 7 and, if s is the minimal index i with this property,
then N = X is the restriction of X to F. In particular, the one-point coextension [N]F
is a convex subcategory of A = [X]B. Since A is tame and N belongs to 7%, we get by
Proposition 1.6, that F is not tubular. Therefore, Fis a tilted algebra of Euclidean type D,,
or E, (see (1.6)) with a complete slice in its preprojective component P%. Let A be a slice
in PL and U the direct sum of modules in A. Then U is a tilting module H = Endp(U) is
a hereditary algebra of type A, and M = Homg(U, N) is an indecomposable module lying
in the stable tube 7’ of T’y containing all modules Homp(U, Y) with Y from 7. Moreover,
since [N]F is tame, [M]H is also tame. Suppose now that X is not copivoting. We have
two cases to consider. Assume first that supp Homg(—, X)|r contains all modules lying
on an infinite sectional path which is parallel to . Then the support of Homg(—, N)|
contains the k-linear category of a subquiver

7N

. . N
SN S

7N/
/

of T. In this case, M = Homg(U, N) does not lie on the mouth of 7’, and then, by
[17, (3.5)], we get that A = D,. Hence F = B~ is of type D, and supp Homp(—,X)
contains a k-linear subcategory given by a poset of type (1). Suppose now that all non-
directing modules from supp Homg(—, X)|r lie on X. Then, since X is not copivoting by
the structure of I" we infer that supp Homg(—, X)|r- contains a k-linear category of a poset
of type (2). We claim that, in this case, F is also of type D,.. Indeed, if F is of type E,,
then Homg(mod B, X) contains a full subcategory given by a poset

Homp(Zs, X)
l
Homp(Z;,X) Homp(Z,X) Homp(Z;,X) Homg(Zs,X)

of type (1,1, 1,2), where Z;,Z, are from I' and Z3, Z4, Zs from EPOFO. But then [X]B
is not tame, a contradiction. Hence, F = B~ is of type D,. Moreover in both cases,
by [17, (3.5)], there exists Y in PL such that dim; Homg(Y,N) = 2, and hence
dim; Homp(Y,X) > 2, because there is a monomorphism N — X. Since A = [X]B
is tame, we get that dimy Homg(Y, X) = 2. This finishes our proof. =

We end this section with two typical examples of coil enlargements of concealed al-
gebras which will occur in this paper.
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3.5. Let A be the bound quiver algebra kQ/ I, where Q is the quiver
11

£ S0
5] 4\/6 :

|
6 9
[

and / is the ideal in kQ generated by vp, 6vp, YBax — o and pp — o€n. Let C = kA
by the hereditary (hence concealed) algebra of type E¢ given by the subquiver A of O
consisting of the vertices 1,2, ..., 7. Then, by [8, Tables], I'c admits a tube 7, containing
the simple regular C-module X having the space k at the vertices 1,4, 6 and 7, and 0 in the
remaining vertices of A. Consider now the bound quiver algebra D = k(' /I' where Q' is
the subquiver of Q given by the vertices 1,2, ...,9, 10,and 7’ the ideal in kQ generated by
vpand 61p. Then D is a cotubular, hence also tubular, algebra of type (2, 3, 6). Moreover,
the (coray) tube Z; of I'p containing all modules of 7y and the injective D-modules Ip(8),
Ip(9) and Ip(10) is of the form

N S N S NSNS
N /N S Ny /S
N /N N S Ny
N /N N 2N SN
N /N /N 2N SN /'\?
3/':‘\"’/“:'\“'/'."\"'/"\ / N /"

where the vertical dotted lines have to be identified in order to obtain a tube. Then A =
D[Y] is a coil enlargement of C obtained from D by the operation of type ad 2) with the
pivot Y. Moreover, the coil (j of I' containing Y is of the form

N SN S NGSN SN SN S
N N/ Ny N SN /N
N N SN SNy SN SN S
NS NS NS NS NN
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Observe that A~ = D and A" is a tubular algebra of type (2,3, 6) given by the bound
subquiver of (Q, I) formed by all vertices except 8. Moreover, A is obtained from A* by
one admissible operation of type ad 2*) creating the vertex 8. Further, A is strongly simply
connected and of polynomial growth, by Proposition 3.3 and the polynomial growth of
tubular algebras. It is also easy to see that the coil () contains infinitely many sincere
indecomposable modules.

Consider now the one-point extensions R = D[Y] of D by the indecomposable module
Z having k at the vertices 1,4, 6, 7, 8 and 9, and 0 in the remaining ones. Then Z is the
pivot for an admissible operation of type ad 3), and hence R is a coil enlargement of C.
Observe that R is the bound quiver algebra KQ /J where Q is the quiver

///550
/;1

3 — 2 — —
n v p

and J is the ideal in KQ generated by vp, 61p, YBa — p1) and p1Yp — on. Moreover, the
coil Cj of I'y containing Z is of form

—
(=]

8

a

_——— O\ — ]
0 —— O —

N SN S NS N SN

SN N NN SN SN
N N SN S NS N SN SN
SN N SN SN SN SN
N N N SN SN 2N N

In this case, R~ = D and R" is a tubular algebra of type (2,3, 6) given by the bound
subquiver of (Q, ) formed by all vertices except 8. Moreover, R is obtained from R*
by one admissible operation of type ad 3*) creating the vertex 8. Finally, R is strongly
simply connected of polynomial growth, and the coil (; contains infinitely many sincere
indecomposable modules.

4. The tilted case. We will divide the proof of our main theorem in two parts. In
this section we study a particular situation corresponding to the tilted case.

PROPOSITION 4.1.  Let A be a tame, sincere, strongly simply connected algebra. Let
B be a convex subcategory of A satisfying the following conditions:
(i) Bisrepresentation-infinite tilted algebra of type E,,, 6 < p < 8 having a complete
slice in its preinjective component;
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(ii) A admits no convex subcategory of the form [N]B for some indecomposable B-
module N,

(iii) for any convex subcategory B[M] of A, M is an indecomposable preinjective B-
module.

Then A is a tilted algebra.

4.1.  For the proof of (4.1) we need the following observation:

LEMMA. Let K be a tilted algebra of type A,. Let Uy — -+ — U, be a slice in T'k.
Consider an indecomposable K-module M such that Homg(M, U;) # 0 for some j. Then
one of the following happens,

(a) K[M]is a tilted algebra of type A+ and there is a slice Uy — Uy — --- — Uj,,
in Ugpq starting at Uy,

(b) there are indecomposable modules Y, Y, over K[M] with trivial endomorphism
rings, Homgpn (Y1, ¥2) = 0 = Homgpn(Y2, Y1) and dimg Homgp(U,, Y;) = 1,0 =
1,2.

PROOF. Assume first Homg(M, U;) # 0 # Homg(M, U,) for some i < ¢. Then
Homg (M, Ui+1) # 0. We consider the indecomposable K[M]-modules ¥, = Ui and
Y, = (k, U;, Tnom(m,u;)) satisfying the conditions in (b). Otherwise, j is the unique index
such that U; receives morphisms from M. Then in 'k there is a sectional path

U — - = U — (kUp, homgar,y) — Uit — -+ — UL
In particular, K[M] is tilted of type A;. n

4.2. Proofof (4.1). We know by (1.6) that ['p consists of a preprojective component
P, a family Ty, A € Py(k), of (ray) tubes, and a preinjective component [ having a
section of type E,,. By (iii)) we may choose a section X of type Ep in I such that, for
any convex subcategory B[M] of 4, M is a successor of X in I. Denote by D the full
translation subquiver of [ given by all predecessors of £ in 1. We infer by (ii) and (iii)
that P, T, A € P,(k), and D are full translation subquivers of ['4, and for any path
Zo—Zy— - —ZyinmodAwithZ,in E= PV (V, T») VD, Z, also belongs to ‘E.
Denote by C the component of T4 containing D. We may assume that C contains at least
one projective module, because otherwise C = I, 4 = B, and we are done. We shall
construct a sequence £ = Xg,%y,...,2Z,, m > 1, of convex subquivers of ( satisfying
the following conditions, for any 1 <i < m:

(a) X; is a sectional tree subquiver of C and there exists #; > 0 such that T;"'Z,-,] isa
full proper subquiver of Z;;

(b) the full translation subquiver D; of C formed by all modules of the form 74X,
g >0, X € ¥, is closed under predecessors in C; ‘

(c) every module X in 2); such that 77X # 0 for all ¢ > 0, belongs to the 74-orbit of
a module in Zg;

d) D=PV 3 Iy) V D; is closed under predecessors in mod 4;
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(e) there is no injective module in C which is a proper predecessor of some module
in %;;

(f) all projective modules in C belong to D,,.

First we show that this implies that 4 is a tilted algebra.

Observe that A = X, is a finite section of C, and so ( has no oriented cycle. Let A
be the full subcategory of 4 given by all objects of B and all x € Q4 such that P4(x) is
in C. Clearly, A is a convex subcategory of 4. Moreover, (C is a full component of I's.
Indeed, if Hom, (PA(y), Y ) #0forY € C,P4(y) ¢ C, then there is an infinite path

el I (B (E

in C such that Hom, (PA(V), Y,-) # 0 for any i >'0. Since C has only finitely many 7,4-
orbits and no oriented cycle, all but finitely many ¥; belong to D, and hence y € Qp.
Further, every non-zero map P4(z) — I4(z) factors through a direct sum of modules from
A, and hence A is a sincere family of indecomposable A-modules. Finally, A is convex in
mod A, because A is convex in C and £ is closed under predecessors in mod 4. Therefore,
A is aslice in mod A, and A is a tilted algebra Endy(T), where H is a hereditary algebra of
type A and T is a tilting H-module. Also, ( is the connecting component of 'y determined
by T. Observe that A = X,, is wild because it contains a proper subquiver7;'Z of type E,,.
Since A is tame, as a convex subcategory of 4, we get, by [24, (7.6)] (see also [12]), that
T has both a non-zero preprojective direct summand and a non-zero preinjective direct
summand. But then C admits at least one injective module, say I5(z) = I4(z). The facts
that C contains an injective module and P V (/) 7)) V C is closed under predecessors
in mod 4, imply that every indecomposable sincere 4-module lies in C. Consequently
A = A and 4 is a tilted algebra.

We shall construct the required sequence Xy, %1, . .., 2, by inductionon i, 0 < i < m.
Suppose that we have constructed a sequence £ = %, ..., Z; of convex subquivers in
C satisfying the above conditions (a)~(f). If all projective modules belong to D, we are
done. Assume that C contains a projective module P4(x) which is not in 2. Then there
is a smallest r; > 0 such that 7,"* X, contains an indecomposable direct summand, say
N, of rad P4(x). If rad4 P(x) = N, we define X4, as a full subquiver of C formed by
all vertices of 7, "X and P(x). Obviously, X, satisfies (). Indeed, suppose that some
injective module /4(a) is a proper predecessor of X4 in C. Then, since PV (\V/, 7)) V
(Dy+1 \ Zg4+1) is closed under predecessors in mod 4, we conclude that mod 4 has no path
of the form P4(x) — W — I4(a). This gives a contradiction because 4 is sincere, and we
are done.

Assume now that M = rad, P(x) decomposesas M = Ny P --- & N, with ¢ > 2
and N = N,,..., N, indecomposable A-modules. Since 4 is strongly simply connected,
the supports of the N; are pairwise disjoint. Let D be the full subcategory of 4 given by
x and the vertices of Q4(x). Then D = E[M] where FE is the convex subcategory of 4
given by the vertices of Q4(x). Moreover, E = E; X --- X E, with E; connected and
containing the support of N;, 1 < j < ¢ Since 4 is tame, the vector space category
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X = Homg(M, mod E) is tame.

Consider the full subquiver Q of € formed by all the modules in C lying on sectional
paths with source N = N, and not passing through P4(x). Then Q is a finite tree (of the
same type as X;), and there is no path in mod 4 from P4(x) to amodule in 2. This implies
that Q contains a subtree of type E,, 6 < p < 8. Therefore the vector space category
X, = Homg, (N, mod E}) contains a k-linear full subcategory given by a poset of type
(1,2). We show now that ¢ = 2. Indeed, suppose that ¢ > 3. Consider arrows a; «— x —
a3 in QOp with a; in Qg,, i = 2,3. Denote by F the full subcategory of D given by the
objects of E, a; and a3. Then we get a convex subcategory G = F[N, ®S(a2) ® S(a3)] of
A. The corresponding vector space category HomF(N 1 @ S(az2) @ S(az), mod F ) contains
a k-linear full subcategory given by a poset of type (1, 1, 1,2). By Nazarova’s criterion
(1.2), G is not tame. Hence A4 is not tame. This contradiction shows that ¢ = 2.

We consider now carefully the structure of E. Let L be the support of N;. We claim
that L is a convex line in Q4. Suppose first that L contains two incomparable objects
¢ and d, with respect to the path order in Q4. Observe that then Homg, (N, mod E>)
contains two orthogonal objects Homg, (NZ,IE2 (c)) and Homg, (N;;_,IEz (d)) with
Endg, (Ir,(c)) — k and Endg, (Iz,(d)) — k. Then using the poset of type (1,2) asso-
ciated to Xj, we obtain a full subcategory " of X of one of the following types:

(i) 9 is the k-linear category of the poset (1, 1, 1, 2);

(ii) 9 is given by two objects Homg(M, Y;), Homg (M, Y,) with trivial endomorphism
rings, dim; Homg(M, Y;) = 1 and dim; Homg(M, Y3) = 2;

(iii) 9 is given by an object Homg(M, Y) with trivial endomorphism ring and
dim; Homg(M, Y) > 3.

In any case we obtain a contradiction with the tameness of 4, by (1.2) and [17, (2.4)].
Therefore, the vertices in Q; are linearly ordered. Since the convex hull of L in Q4 yields
a strongly simply connected category, L is a convex line in Q4.

Let K be the biggest branch containing L and which is a convex subcategory of E,.
Then N, = Pg(b), for the root b of K, and there is a maximal sectional path N, =
Vi — V5 — --- — V; in I'k. Consider the convex subcategory D of 4 formed by x
and the vertices in K and E;. Then there is a splitting indD = P° V D, V 7°, where
P is the set of predecessors of V; in ['x and J° is formed by the proper successors of
modules in =, U {V,..., V;}. By (2.2), there is a sequence of convex subcategories of
A,D = Dy C Dy C --- C D; = A such that Di,y = Di[M;] or Dy = [M;]D;
for some indecomposable D;-module M;. We show that for each i there is a splitting
indD; = P’V D, V 7' satisfying that:

(o) Thepath Ny = V| — V5 — - -+ — V, is sectional in ['p, and ' is formed by all
predecessors of V;;

(B) J consists of the proper successors of modules in ;U {V},...,V};

(Y) Homp,(J' Vv D,, Py = 0 and every map X — Y with X € P and Y € 7' factors
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through a direct sum of modules V;

(6) if X € P’ and Homp,(X, V}) # 0 for some 1 <j < g, then X|p € add(P°).

For i = 0, this is clear. Assume we have («)—6) for i. We consider the two possible
situations for i + 1. Assume D;+; = D;[M;]. We prove that Homp,(M;, V;) = 0, for all j.
Otherwise, assume Homp, (M;, V;) # 0. By (o) and (7), M; € Pi;by (6), Mi|p € add(P°).
By the induction hypothesis, the conditions of (2.4) are satisfied for the splitting ind K =
P'V YV VT, where P is the set of proper predecessors of modules V; (1 < i < ¢), V
istheset {V; =i =1,...,t} and J' are the proper successors of modules V(1 <i <)
in ind K. Therefore, there exists an indecomposable K-module R such that K[R] is a
convex subcategory of 4 and R € P°. Then (4.2) applies: either K[R] is a branch bigger
than K, a contradiction; or there are indecomposable modules Y, Y> over K[M] which
together with X; yield a k-linear subcategory of Homg, xkr)(N1 © Nz, mod E; x K[R])
given by a poset of type (1, 1, 1,2). Since this poset is of wild type, then D;; is wild, a
contradiction. Therefore Homp (M;, V;) = 0, for all j. If M; € P, by (7) we also have
Homp,(M;, D, V 97) = 0. Hence ind D;s; = P*' vV D, v ' with P! given by P’ and
all indecomposable D;,;-modules X = (V, Xy,7) with ¥ # 0, Xy € mod D;. Clearly this
splitting satisfies (a)}~8). If M; € 7'V D,, we get ind Dy, = P’V D, V 97 with J*!
given by 7' and all indecomposable D;.j-modules X = (V,Xp,Y) with V' # 0 (recall
that D, was already closed under predecessors in mod 4). This splitting also satisfies
(a)~Y). Assume now that D;+; = [M;]D;. In this case we show that Homp, (¥}, M;) = 0
for all j. Indeed, this follows as dual to the situation above using the dual statements of
(2.4) and (4.2). Therefore, if M; € P/, then ind Dy, = P*' VvV D, V 75 if M; € 7', then
indD;y; = PV D, V J*! satisfying in both cases (c)~5).

Consider the category P? obtained in the final step of this process. If P7 # P° we
may assume that P = P°,j > 0and M; € P. Call y the vertex in Qp,, such that
rad Py, (v) = M; (tesp. Ip,.,(v)/Sp,,(") = M) if Dy = D,IM}] (resp. Dy = [M;1D)).
Thenlp, () € P*'. Indeed, in both cases ind D;y; = P*! VD,V Y and Ip,.,(y) ¢ ind D;.
Hence I4(y) € ‘P9. Then for an indecomposable sincere 4-module X, we get a path
P4(x) — X — L4(v), which is impossible since P4(x) € J7. Hence P = P, showing
that P° is a convex subquiver of T'y. Moreover, the sincerity of 4 implies that there are
no injective modules in P°. Also, there are only finitely many predecessors of modules
Vi (1 <i <) and they are of the form 74V;, g > 0.

Define X+ as the full subquiver of C formed by all vertices of 7, X, P4(x) and
the modules Vi, ..., V,. Then L, is a tree and the full translation subquiver Dy of C
formed by all modules of the form TZX ,q > 0,X € X, is closed under predecessors
in C. All conditions (a)(e) are satisfied for ;. We continue this process until we get
¥ a sectional tree such that D,, contains all the projectives modules of C. Therefore the
sequence ¥ = X, X,..., %, satisfies (a)(f) and 4 is a tilted algebra. This completes the
proof of the proposition. ]

4.3. The fully commutative algebras given by the quivers below satisfy the conditions
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of Proposition 4.1

o N
/i\ ~l
ol 1L 0 !
.\i/. l

. /.

These algebras are domestic with two one-parameter families of indecomposable
modules. By [12], every tame sincere tilted algebra is domestic; by [15], these algebras
admit at most two one-parameter families of indecomposable modules.

5. The coil case. In this section we will prove a result which covers a situation
complementary to the Proposition 4.1.

5.1. PROPOSITION. Let A be a tame, sincere, strongly simply connected algebra. As-
sume that A contains a convex subcategory B satisfying the following conditions:

i) Bis either a representation-infinite tilted algebra of type E,,, 6 < p < 8withacom-
plete slice in the preinjective component and some projective outside the preprojective
component or B is a tubular algebra;

ii) there exists a convex subcategory of A of the form [N]B for some indecomposable
B-module N.

Then A is a coil algebra.

The proof will be given at the end of the section after proving some technical results.
We use freely the notation and results introduced in section 3.

5.2. LEMMA. Let B be a tubular extension of a tame concealed algebra C. Assume
that B is tubular or tilted of type Ep, 6 < p <8 Let (i, GG be two tubular components
of T'g containing projective modules and let M; € C,, i = 1,2. If M, is not copivoting
and the situation (1) of (3.4) occurs, then [M>)([M,1B) is not tame.

PROOF. Assume that [M,]B is tame.

There is an indecomposable C-module N; such that Hom¢(X, Ny) = Homg(X, M) for
every C-module X. Then N, is a non-simple regular C-module. Since [N, ]C is tame then
Cis of type D,., N has regular length 2 and lies on a tube of rank m — 2 in ['¢. By (3.4),
there is a module Y (in fact there are infinitely many!) in the preprojective component
of I'c such that dim; Hom¢(Y, N;) = 2. We produce a family (X)),¢, of pairwise non-
isomorphic indecomposable [N, ]C-modules of the following form: choose two linearly
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independent elements py, p; in Home(Y, Ny ), then X, = (Y, kY2 YRDN) — k,y®f —
f(or + )\pz)y). Moreover, this family is orthogonal, that is Hom(X), X)) = 0 for A # p.

Since N, lies on the tube of rank m —2, then B is of tubular type (2, 2+py,(m —2)+p2)
with p;,p, > 1. Therefore M, belongs to a coil obtained by ray insertions in a tube of
rank 2 in T'¢.

Let N, be an indecomposable C-module such that Homc(X, N,;) = Homg(X, M>)
for every C-module X. Then one checks that Homc(Y,N,) # 0. Therefore
Homys,18(X), M) # 0 for every A\ € k. In particular, Homgy,)5(mod[M, 1B, M) con-
tains a poset of type (1, 1,1, 1, 1). Hence [M>]([M,]B) is not tame. n

5.3. LEMMA. LetB beatubularextension of a tame concealed algebra C. Assume that
B is tubular or tilted of type Ep, 6 <p <8 Let G (1 <i<s)bethe tubular components
of T containing preinjective modules. Let M; € C;,i = 1,...,s and assume the iterated
coextension i_,[M;]1B is tame. Then for some j, M; is copivoting.

PROOF. Assume that M, is not copivoting, By (3.4), C is concealed of type D,,, (|
has at least 4 projective modules and s > 2. Assume first that we get the situation (1) of
(3.4). By (5.2), [M;]([M]B) is not tamie, a contradiction. We can assume that we have
the situation (2) of (3.4).

If M, is not copivoting, as before, (; has at least 4 projective modules and the tubular
type of B is neither Dynkin nor Euclidean, a contradiction. Hence M, is copivoting. =

5.4. From now on we keep the following notation and hypothesis.

Let 4 be a tame strongly simply connected algebra. Let B be a convex subcategory
of A which is a tubular extension of a tame concealed algebra C. We assume that B is
either tubular or tilted of type E,, 6 < p < 8 with a complete slice in the preinjective
componentand some projective module outside the preprojective component. Obviously,
we may assume that B is a maximal convex subcategory of 4 satisfying these properties.
Let D be a maximal coil enlargement of B which is convex in A. Then as in (3.3), there is
a unique maximal tubular coextension D~ of C which is a convex subcategory of 4 such
that D is obtained from D~ by a sequence of admissible operations of types ad 1), ad 2)
orad3). ThenIp = P, V CV J where C = (C)aep, ) 1s the family of coils obtained
from the tubular family 7" = (7))xep,) of I'c by admissible operations. Moreover, Ps,
(resp. %) is formed by D~ -modules (resp. D*-modules).

In fact, we may restate the assertion of Proposition 5.1:

CLAIM. Assume 4 is sincere and satisfies (i) and (ii) in (5.1). Then 4 = D.
The proof is given in (5.9). In the paragraph below we analyze carefully the structure
of D and its enlargements.

5.5. Let Cy beacoil inI'p. Let () be the full convex subquiver of Cy formed by the
non-directing modules in C,.

We define the left border of C) (resp. right border of () as the set £(C)) (resp. r(()))
of modules X € () such that there is an irreducible map ¥ — X (resp X — Y) with ¥
directing.
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The left directing part of C, (resp. right directing part of () is the set d~(()) (resp.
d*(())) of directing modules M € (, which are predecessors (resp. successors) of mod-
ules in £(Cy) (resp. r((Cy)). The following properties are clear:

() Homp((},d"(C))) = 0 = Homp(d*(C), G7), 0 = Homp(d* (1), d(C))-

(b) Any morphism 0 # /1Y — X with Y € d~(C3) and X € (] V d*((,) factorizes
through add(Z(CA)). Moreover, Imf € add(Z(C,\)). Dually for the right border.

(c) Let M be an indecomposable module in Cy such that Homp(M, C7) = 0. Then
M e d'(C).

LEMMA. Let M € () be such that Homp(M, C}) = 0. Let E = D[M]. Then there
is a component C5 of T'r containing C, as a full subquiver such that the modules of C;
are divided in three parts, C\ = C, Vd~(C\) Vd'(C), where d*(C}) are those modules
in C, which are successors of modules in r(C,). Moreover, the following conditions are
satisfied: a)Hom(C},d~(Cy)) = 0 = Hom(d"((}), C}), 0 = Hom(d*(C}),d~(C)).
b)Any morphism 0 # f:Y — X with Y € d (C\) and X € C) V d'(C) factorizes
through add(@ (C,\)). The dual (b*) also holds. n

We say that the component (j is an altered coil.

5.6. LEMMA. Let A be a tame, sincere, strongly simply connected algebra and B be
a convex subcategory of A satisfying (i) and (ii) of (5.1). Then there is a unique tubular
component of T g containing projective modules.

PROOF. Assume T and 75 are tubular components of I's containing projective mod-
ules. Clearly we may assume that B is a maximal convex subcategory of A which is
a tubular extension of C. Let D be the maximal coil enlargement of B. As in (5.5),
I'p = PV CV Jo where C = (Ch)rep, k) is a family of coils. We may assume that
T\ is contained in (.

By (2.2), there is a sequence of convex subcategories of 4, D = Dy C D} C --- C
D; = A such that D;+; = D;[M;] or D;+1[M;]D; for an indecomposable D;-module M;.

First, assume that there is no indecomposable module M € ( such that [M]B is a
convex subcategory of 4. We consider the splitting indD = P° V ° such that P° =
P,V (A (C)V (), andI°= GV (@), 1V 1o and Homp(I°, %) = 0.
We construct inductively a splitting ind D; = P V I' with Homp (7', P') = 0 such
that P° (resp. J°) contains an injective (resp. projective) module. This will contradict
the sincerity of 4, proving the result in this case. Assume that for all i < j we have
shown that I'p, = P,V 'V J; with C' = (Cl)rep,) @ family of altered coils with
C) = C), Homp(C'V %, P)) = 0 = Homp,(Jj, C). First observe that this yiclds
a splitting ind D; = P' vV J' with Homp (7', P') = 0 as desired, for i < j. Indeed, set
P =PV (d‘(Cj)\/ C’;) and J' = CiV (a’*(C}')) V Js- Now, we prove that T,
has a similar structure.

If D;+y = D;[M;], it is enough to show that

() if M; € P/, then Homp (M}, G V #) = 0 for all A € Py(k);

(8) if M; € C, then M; € d~(C}) with Homp, (M, £(C1)) = 0 or M; € d*(C)).

A#] A#]
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Assume that M; € P and Homp,(M;, N) # 0 for some N € Cf‘ = (. The induc-
tion hypothesis implies that the conditions of (2.4) are satisfied for D with the splitting
indD = P,V C V J. Consequently we get an indecomposable D-module R such that
D[R] isconvexin4 andR € P,V . If R belongs to P, C ind D™, by (1.6), D" [R] is
a tubular coextension of C, contradicting the maximality of D™. If R € C*, by (2.3) we
get a convex extension B[R'] of B in A. By (3.4), R’ is pivoting and B[R] is a tubular ex-
tension of C, again a contradiction. Since (())ep, k) Weakly separates P from ¥ (1.6),
the case Homp, (M}, %) # 0 reduces to the situation Homyp, (M;, C}) # 0 just considered.
This shows («). The proof of (3) is similar. The case Dj+y = [M;]D; is dual. Finally,
observe that there is a projective module in J* (belonging to (}). By (5.1ii), there is a
convex subcategory of 4 of the form [N]B. Consider Ty = P8V T8 v J8 as in (1.6).
If N € J&, then [N]B is a tubular extension of C (1.6), a contradiction to the maximal-
ity of B. Therefore N € P2 v I 2. By hypothesis N ¢ (i, considering the structure of
[p, = Iy, we get that N € P°. Lety in Q4 be minimal with Z4(y)|z = N. Hence, if y in
D;, then Ip,(y) € P'. Thus I4(y) € P*. This finishes the proof in the first case.

Now, let T,. .., T; be the tubular components of I's containing projectives. Let N; €
C; be B-modules such that [N;]B is a convex subcategory of A. If for every N € (; such
that [N]B is a convex subcategory of 4, we have N € d~(()), then we may repeat the
above argument to get a contradiction to the sincerity of 4. Therefore we may assume
that N; € (7. Then (5.3) assures that some N; (say j = 1) is copivoting. Therefore (1.6)
implies that [N;]D™ a tubular coextension of C, a contradiction to the maximality of D~.
We are done. (]

5.7. LEMMA. Under the hypothesis of (5.1), D~ is tubular or tilted of type Eq, 6 <
q < 8 with a complete slice in the preprojective component.

PROOF. Since D~ is a tame tubular coextension of C, we have only to exclude the
case that D~ is tilted of type D,,..

Assume D~ is tilted of type D,,, then C is of type D, with s < m. Consider first the
case where B is tubular of type (2,2,2,2). Then s = 4. First observe that D~ = C.
Indeed, otherwise there is a coray module N in C such that [N]C is convex in D™. Let
T), be the tube of I'c which was inserted to form B; let T, be the tube of I'c where N
lies. Since D™ in not tubular, then )y 5 ;. By (2.2), we may find a sequence of convex
subcategories of 4, C = By C By = B C B, = [N]B C --- C B, = A such that
Biv1 = Bi[M;] or Bx; = [M;]B; for an indecomposable B;-module M;, i = 0,...,t — 1.
The quiver I's, may be described as:

PV q:)/ \ (Q:.)w’eQ* \ 'Too ¥

where I, T, are tubular families of B-modules and Z) = (T ), is a tubular family such
that 77 is a stable tube for A # Ao, A\i; T/’\o is aray-inserted tube and T;l is a coray-inserted
tube and I, is the preinjective component of 'z, .

Now, the splitting of ind C = PV J, where P = By V (T)) a1, I = T, V Jo with Py
(resp. o) the preprojective (resp. preinjective) component of I'¢, satisfies the hypothesis
(1)Y+4) of (1.3). Therefore 4 is not sincere, a contradiction.
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Hence D~ = C. By hypothesis (5.1ii), there is a convex subcategory [N]B of 4 for
an indecomposable B-module N. Since [N]B is tame and N is not a regular C-module,
then either N belongs to T ;0 (as above) or N is a preprojective module. The latter case
would produce a splitting situation as before (Use the splitting ind C = PV J with the
above notation). We may assume that N is in Tgo‘ An application of the dual of (2.3)
(with B := C, P the preprojective modules. ..) yields a convex subcategory [R]C of 4
with R an indecomposable regular C-module. This contradicts that D~ = C.

Now, we assume that B is not of tubular type (2, 2, 2, 2). Since C is of type (2, 2, s —2),
there are two tubes T, T> in ['p containing projective modules. By hypothesis (5.1ii) and
Lemma 5.6, A4 is not sincere. Therefore the result follows. n

5.8. Proof of Proposition 5.1. Let B be a maximal tubular extension of the tame con-
cealed algebra C and D a maximal coil enlargement of B which are convex in 4. By
hypothesis and (5.7), both B and D~ are either tubular or tilted algebras of type E,,
6 < p < 8. Therefore by (5.6) (and its proof), there is a unique tube in I'z (resp.
I'p-) containing projective (resp. injective) modules. Hence I'p = P, V C V I, where
C = (C\)aep, k) 1s a family of coils such that for A # Ao, C, is a stable tube and C,,
contains both projective and injective modules (the sincerity of 4 and (5.6) imply the (),
is the unique coil containing projective or injective modules). Moreover, P, (resp. )
is formed by D~-modules (resp. B-modules).

Consider a family D = Dy C Dy C --- C Dy = A4 of convex subcategories of 4 such
that either D;+; = D;[M;] or Dix; = [M;]D; for some indecomposable D;-module M;.
We want to prove that s = 0. Assume s > 1. Without loss of generality (since B and D™
satisfy dual conditions), we may assume that D; = [M)]D. In case M, € I, then M, is
a B-module. Since [M,]B is tame, by (1.6), it is a tubular extension of C, contradicting
the maximality of B. In case M, lies on C and Homp(N, M;) # 0 for some N € (],
X € Py(k), then (3.4) and (5.6) imply that M, is copivoting. Then D, = [M,]D is a coil
enlargement of C, contradicting the maximality of D.

Finally, assume that M, lies on P, or M, € (,, with HomD(C;'],Ml) = 0. Then
Tp, = P5, V(G V Jo such that G} = G, for A # X; and (), is a coil with CA': =G,
and M, € d~(C),)- Then we find a splitting ind D; = P'V I' with P! = PL vd~(C})V
(G gy, and I' = I' = G} Vd*(C)) V I. As in (5.6), we construct a splitting
indD; = P'V I' such that Homp,(J', P') = 0, P* contains an injective module and J°
a projective module. Of course, this contradicts the sincerity of 4. This completes the
proof that 4 = D is a coil algebra. [

6. Main theorem and remarks.
6.1. Proofof'the Theorem. By duality, we may assume that 4 admits a maximal convex
subcategory B which is a tubular extension of a tame concealed algebra C, such that B
is either tubular or a representation-infinite tilted algebra of type Ep, 6 < p < 8 having
a complete slice in its preinjective component. Therefore for any convex subcategory of
A of the form B[M], M is a preinjective B-module. Indeed, M is not preprojective since
B[M] is tame. If M belongs to a tubular component, then by (3.4), M is pivoting and
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therefore B[M] is a tubular extension of C, contradicting the maximality of B. Moreover,
observe that in case there is a convex subcategory B[M] of 4, then B is not a tubular
algebra. Indeed otherwise the splitting lemma implies that 4 is not sincere (if ind B =
PB v 7% where 72 is formed by the preinjective modules, then ind B[M] = P2V 7’ with
Homgp (7', P2) = 0 and we may apply (1.3)).

If A admits no convex subcategory of the from [NV]B, then (4.1) applies and 4 is tilted.
Assume [N]B is a convex subcategory of 4. We still have two possibilities: if B admits
a projective module outside the preprojective component of ', then (5.1) applies and 4
is a coil algebra. Otherwise, we consider the maximal coil enlargement D of B which is
a convex subcategory of 4. We get that D~ satisfies the hypothesis of (4.1) and therefore
A is tilted. u

6.2. Let A be a strongly simply connected algebra. We denote by n(4) the number of
vertices of the quiver Q4. By ¢(4) we denote the number of convex subcategories of 4
which are tame concealed. Then 4 is representation-infinite if and only if ¢(4) > 1.

COROLLARY. Let A be a tame, sincere, strongly simply connected algebra. Assume A
admits a convex subcategory which is tubular or a representation-infinite tilted category
of type Ep, 6 <p <8 Then

a) if Ais tilted, c(A) <2 and n(4) <19
b) if A is a coil algebra, c(A) < 3 and n(4) < 13.

PROOF. (a) Assume first that 4 is tilted. Then by [15], c¢(4) < 2. In case ¢(4) = 2,
the possible algebras 4 with n(4) > 20 were classified in [16]. None of the algebras of
that list contains a tilted category of type Ep, 6 < p < 8. Hence n(4) < 19 in our case.

In case c¢(4) = 1, then A is a finite enlargement of a category B which is tilted of
type E,,, 6 < p < 8 with a complete slice in its preinjective component. Suppose that
A is tilted of type A. Then A is a tree with at most 3 extremal points. Otherwise, there
is a projective P4(a) whose radical R = rad P4(a) is indecomposable with at least two
irreducible arrows N; — R in T4, and such that S(R —) \ {P4(a)} is a tree containing

some E,,. Here £ = S(R —) denotes the section in I'4 starting at R (that is, X is the
full subquiver of I'y formed by those vertices which receive a sectional path from R).
We shall show that n(4) > 15 implies that (HomD(R, mod D)) is representation-infinite,
where D is the convex subcategory of 4 formed by the vertices in the support of modules
in S(R —) \ {P4(a)}. This contradicts that 4 is a finite enlargement of B. Hence A has
at most 3 terminal vertices. Applying [16, Theorem 3] we get n(4) < 13.

Indeed, if = has 4 or more terminal vertices, then we get a k-linear subcategory of
(HomD(R, mod D)) given by the poset (1, 1, 1, 1). So, assume that X has only 3 terminal
vertices. By similar arguments to [16, (3.3) to (3.7)], we get that n(D) < 13, contradicting
that 15 < n(4) = n(D) + 1.

(b) If 4 is a coil algebra, then 4* (resp. A7) is a tubular extension (resp. tubular
coextension) of a tame concealed algebra C. Both 4* and A~ are either tubular or tilted
of type E,, 6 <p <8.
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Observe that, since 4 is sincere, A* is tubular of type (2,2,2,2) if and only if so is
A~ . In this case n(4) = 7. If 4 is tubular or tilted of Euclidean type, then n(4) < 10. So,
we may assume that A4 is neither tubular nor tilted of Euclidean type and that A* and 4~
are not tubular of type (2, 2,2,2). If follows from (5.6) that C is of type Eq, 6<qg<8.
Then n(4) < n(4*) +n(4~) — n(C) < 10+ 10 — 7 = 13. Finally, if both 4* and 4~ are
tubular, then ¢(4) = 3; otherwise c(4) < 2. .

REFERENCES

1. 1. Assem and A. Skowronski, On some classes of simply connected algebras, Proc. London Math. Soc. (3)
56(1988), 417-450.
, Indecomposable modules over multicoil algebras, Math. Scand. 71(1992), 31-61.
, Multicoil algebras. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc.,
1993, 29-68.
4. 1. Assem, A. Skowronski and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19(1995), 453—
479.
5. R. Bautista, P. Gabriel, P, A. Roiter and L. Salmeron, Representation-finite algebras and multiplicative
bases, Invent. Math. 81(1985), 217-285.
6. R. Bautista, F. Larrion and L. Salmerdn, On simply connected algebras, J. London Math. Soc. (2) 27(1983),
212-220.
7. K. Bongartz, and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65(1982), 331-378.
8. V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math.
Soc. 173(1976).
9. P. Dowbor and A. Skowronski, Galois coverings of representation-infinite algebras, Comment. Math. Helv.
62(1987), 311-337.
10. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II, Ottawa, 1979,
Lecture Notes in Math. 903, Springer, 1981, 68—105.
11. Ch. Geiss, Tame distributive 2-point algebras. In: Proc. ICRA VI, Ottawa, 1992, CMS Conf. Proc. 14,
Amer. Math. Soc., 1993.
12. O. Kerner, Tilting wild algebras, J. London Math. Soc. 39(1989), 29-47.
13. J. Nehring and A. Skowronski, Polynomial growth trivial extensions of simply connected algebras, Fund.
Math. 132(1989), 117-134.
14. ). A. de la Peiia, On the dimension of module varieties of tame and wild algebras, Comm. Alg. 19(1991),
1795-1807.
, Tame algebras with a sincere directing module, J. Algebra 161(1993), 171-185.
, The families of 2-parametric domestic algebras with a sincere directing module. In: Proc. ICRA
VI, Ottawa, 1992, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 361-392.
17. C. M. Ringel, Tame algebras. In: Lecture Notes in Math. 831, Springer, 1980, 137-287.
18. , Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer, 1984.
19. D. Simson, Linear representations of partially ordered sets and vector space categories, Algebra Logic
Appl. 4, Gordon and Breach, 1992.
20. A. Skowronski, Selfinjective algebras of polynomial growth, Math. Ann. 285(1988), 177-199.
21. , Simply connected algebras and Hochschild cohomologies. In: Proc. ICRA VI, Ottawa, 1992, CMS
Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447.
22. Cycle-finite algebras, J. Pure Appl. Algebra 103(1995), 105-116.
23. Tame algebras with simply connected Galois coverings, in preparation.
24. H. Strauss, The perpendicular category of a partial tilting module, J. Algebra 144(1991), 43—66.

2.
3.

15.
16.

Instituto de Matematicas, UNAM Faculty of Mathematics and Informatics
Ciudad Universitaria Nicholas Copernicus University
México 04510 D.F. Chopina 12/18
Meéxico 87-100 Torun

Poland

https://doi.org/10.4153/CJM-1996-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-053-5

