
ON REDFIELD'S GROUP REDUCTION FUNCTIONS 

H. O. FOULKES 

1. Introduction. In 1927, J. H. Redfield (12), discussed some of the 
links between combinatorial analysis and permutation groups, including such 
topics as group transitivity, the enumeration of certain geometrical configura
tions, and the construction of various permutation isomorphs of a given 
group. Except for a revision of Redfield's treatment of transitivity by D. E. 
Littlewood (6), this 1927 paper appears to have been overlooked. However, 
it has recently been described (5) as a remarkable pioneering paper which 
appears to contain or anticipate virtually all of the enumeration results for 
graphs which have been discovered and developed during the last thirty 
years.1 Redfield associated every permutation group with a type of symmetric 
function which he called a group reduction function, and introduced two 
connective operations between such functions which we shall denote by (\ 
and U. 

In this paper I treat the topics considered by Redfield, except those dealt 
with by Littlewood, in a modern context from the point of view of group 
representation theory, and discard Redfield's symmetric functions in favour 
of group characters. The operations fl, U are then equivalent to well-known 
compositions, the scalar product and the inner product, of certain group 
characters. 

This disentanglement of the group characters from the symmetric functions 
is not, however, sufficient in itself to resolve the ambiguities which beset 
Redfield, and which he was unable to analyse. These ambiguities are com
pletely removed in § 6 by discarding the group characters in favour of the 
marks (1) of transitive permutation groups. 

Received 26 February, 1962. 
1The referee suggested the following quotation from (5): "it contains 
(1) The exact formula of Read's Superposition Theorem. 
(2) Apparently the first published definition of the cycle index of a permutation group under 

the name of the 'group reduction function.' 
(3) Formulas for the cycle index of the symmetric, alternating, cyclic and dihedral groups. 
(4) The cycle index of the group of symmetries of a 3-cube. He actually substitutes 1 + x 

into this cycle index, thereby giving the first known example of Pôlya's theorem. This also 
anticipates the enumeration of the symmetry types of boolean functions due to Pôlya and 
Slepian. 

(5) A substitution of 1/(1 — x) into this cycle index. This is a device . . . for enumerating 
graphs in which any number of lines are permitted to join the same two points. 

(6) The number of graphs with p points and q lines for p — 5 and q = 4 as a solution of 
a problem involving the number of types of binary relations." 
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GROUP REDUCTION FUNCTIONS 273 

2. Symmetric functions and induced characters. If ^ is the charac
ter of a representation c of a subgroup H of a group G, it is well known (4) 
that the character yp' of G induced by ^ is given by 

(i) n*)=é E Hz), 
">gp zeCpf\H 

where g, h are the orders of G, i J respectively, and Cp is the class of G, of 
order gp, which contains x. 

In the special case when a is the principal unit representation of H, that 
is, the representation in which every element of H is mapped on + 1 , we 
have 
(2) V(x) = ghjhg,, 

where hp is the number of elements in Cp P\ H. This is the character of the 
transitive permutation representation of G induced by H. The character of 
any permutation representation will be referred to as a permutation charac
ter, whether the representation is transitive or not. 

Consider any faithful permutation representation R, of degree m, of a 
finite group G of order g. Let x 6 G, and let Rx have ar cycles of length r, 
where r = 1, 2, . . . , m. With Rx associate a product Sx = Siais2

a*. . . sm
am, 

where 
t 

3=1 

the a / s being indeterminates, and / having no specified value in general. Let 
v be any representation of G, not necessarily as a permutation group, with 
character <j>. Then we associate with R and v the symmetric function 

HR, ") = ~ E <t>(x)sx. 

LEMMA 1. 

where <£' w /&£ character of ©m induced by </>, the summation is over all classes 
Cp, of order gp, of @m, and Sp = Szfor z £ Cp.

2 

Proof. If i£ is a faithful representation of G, then G can be considered as 
a subgroup of ©m, and *> induces a representation *>' of @m such that, from 
(1), for any 5 belonging to the class Cp of @m 

<*>'(*) = 7 7 E *(2). 
ggp zcCpn<7 

Hence 

6 & P Z€Cpf1<? 

2 ©m is the symmetric group on m symbols. 
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and 

F{R,v) = i £ <t>(x)Sx 
g xeG 

= \ E [ E *(*)5.1 

(3) = ^ E ^ / S p . 

Thus F(iî, y) may be defined either in terms of the character <j> of G, or 
in terms of the character <£' of ©m. We may write F(i?, P) = F(R', v')t where 
R' is the representation of @m as a permutation group of degree m. If rç is 
any representation of ©m, we shall say that F(R'f 17) is based on 77, or on the 
character of 77. 

These symmetric functions include many well-known functions as special 
cases. Here we are concerned with the case when v is the principal unit repre
sentation of any finite group G, and R is any permutation representation of G 
on m letters. In this case F(R, v) is Redfield's group reduction function of G 
with respect to R (12). Redfield observed that the same group reduction 
function may be shared by two or more distinct permutation groups. We 
return to this ambiguity in § 6. 

This special case of F(R, v) has also been used by Pôlya (9), Riordan (13), 
Read (10, 11), and others, and has been called the cycle index, or cycle indi
cator of R. When R is the permutation representation of ©„ induced by 
@n_2 X ©2, and v is the principal unit representation of ©n, then F(R, v) is 
the function Gn used by Riordan (13) in enumerating linear graphs. 

3. Scalar product of two functions defined on a group. Let <t>y \p be 
any functions defined for every element x Ç G, and having values in some 
field F whose characteristic is not a divisor of the order g of G. Then the 
scalar product of <j> and \p is defined as (see 4, 270; 8, 95) 

(*, *) = \ E *(*)*(*_1). 
g xtO 

The property of the scalar product we require is that if 

* = ] £ ai Xu $ = ]C Pt Xu 
i i 

where ai} pt Ç F, and x* is an absolutely irreducible character of G, then 
(*, *) = Z "ifii. 

i 

In particular if <j> is absolutely irreducible, then (<£, \p) is the multiplicity 
of 4> m #• 
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The concept of scalar product has appeared in various forms in the litera
ture, and the equivalence of the various forms appears not to have been 
appreciated. It has frequently been entangled with symmetric functions (2, 
6, 10, 11, 12). Thus if Z)0 is a differential operator (2) obtained from a sym
metric function 

V7 = = / ; Kp tOpj 
p\m 

based on a representation of character 6 of ©m, by replacing st
a by ia(da/dsi

tt)i 

we have the following result: 

LEMMA 2. If <£, yp are any two characters of ©m, and 

then 
D*V = D*$ = (</>, \P). 

Proof. If p = la i2°2 . . . mam is a partition of ra, then 

P -J n«i+a2+ . . . +am "I 

D<9 = \—t E & *, I"' 2 " • • • « - - 7 — : ~ k 

[ 1 «jai+a2+ . . . +am "1 -j 

? a , ! a , ! . . . a j * ' a^'ds?" . . . d s ^ - M Ç g ' * ' 5 " 

= r r Z g». *P ̂  = (*. tfO. 

since in ©m every class contains the inverse of every element in the class. 
Redfield (12, 436-438) introduces an operation between two symmetric 

functions defined by 

/.s J l j î n o m i c m 2 — XllXl2
 c»»lc^2 

\l) S\lS\2 ' ' • • • Sl*l SH2 • • • —' 0\l°M ' ' ' SM SH2 ' ' ' 1 

where 8W = w(d/dsw), and 

(ii) (A +B)(\C = (A(\C) + (B(\ C), 

where A, B, C are symmetric functions. Clearly the following lemma holds. 

LEMMA 3. $ fl ^ = D ^ = (tf>, yp). 

Read (10, 422) defines a composition of two symmetric functions 

A \ ^ A nflloflî eflm vr- \ ^ T* JH JH Jim 
<P = 2 ^ ^ P Si S2 . . . Sm , \F = 2-f BpSiS2 . . . STO 

P P 

as 

7V{$**} = X) ApBpa1\a2l...aml2a2Sa 

9 

Hence 
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and so we have: 

LEMMA 4. iV{ $ * >£} = Z)$^ = (tf>, ^ ) , where <ï>, \£ are 6ased on the functions 
<£, \̂  defined over @m. 

Littlewood (6, 165) defines a function N(Gi, G2) of two subgroups Gi, G2 
of ©m taking non-negative integer values. He calls it the transitive factor 
of Gi, G2 and shows that if 

<t> = 2 «< X*» ^ = S j8* Xi 

are the permutation characters of ©w induced by Gi, G2 respectively, and x< 
is an irreducible character of ©m, then 

NQGi, Gt) = Z «i fa 
i 

Hence we have: 

LEMMA 5. N(G1}G2) = (4>, ^ ) . 

Both Redfield and Read define their respective compositions fl and * for 
more than two symmetric functions. This extension is considered in the 
following section. 

4. Kronecker products of representations. If </>(x), t(x) are the 
characteristics of an element x Ç G in two representations i?, 5 of G, the 
character of the Kronecker product representation R X S is called the inner 
product of <j> and ^ and is denoted by [#, ^ ] . We write [</>, ^, 0] for the common 
value of [[<£, #| ,0], [[<t>, 0],iA]> [[#> $L <£L and similarly we have a unique 
definition of [#1, 02, . . . , <£rL where $* is any character of G. 

Redfield (12, 438) defines a second composition A\} B between two sym
metric functions A, B of the same weight m. Thus, if <f>, \f/ are characters of 
@m, and the symmetric functions based on 0, \f/ are 3>, ^ as in Lemma 2, 
then $> U ^ is defined by means of 

(i) 5!ai52
fll . . . Sm

a" U 5X
a^2

a2 . . . V " 
= (5!a i52

a 2 . . . Sm
a>» 0 Sifl lS2

a2 . . . Sm
a») Sf^*2 . . . Sm

a>», 

(ii) 5!ai52
a2. . . sm

a™ U sx»^2. . . sm*« = 0 
when lfli2a2. . . mam and l6l2&2. . . rn*m are different partitions, 

(iii) (A +B)UC = AU C + BU C. 

We have 

$ U S, = -^g, <>, lal 2a\.. m a m a 1 !a 2 ! . . . am\ sf sf . . . sT = <*>P S„ 
ml 
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and 

in. p 

which is the symmetric function of weight m based on [0, ^ ] . Hence we have: 

LEMMA 6. / / $, SF, 9 are symmetric functions of weight m based on characters 
<t>, \p, 6 of ©w respectively, and $ U SF = 6, then 6 = [<f>, ^ ] . 

If $i U $2 U . . . U $r = 0, then it is clear that 9 is based on [fa, fa, . . . , <£r], 
and we are able to extend the concept of a scalar product of two characters 
of @m to that of a scalar product of several characters of ©w as follows. 

DEFINITION. / / lm is the principal unit character of ©m, and fa, fa, . . . , <f>r 

are class functions defined over ©w, then the multiple scalar product {fa, fa,..., <£r) 
is defined as (lm, [fa, fa, ... , <t>r])-

In particular (<j>, $) = (lm, [fa ̂ ]), $i fl $2 H . . . R $ r = (fa, fa, . . . , fa), 
and N{ $i * $2 * . . . * $r} = Oi, 4>2, . . . , fa). 

Since every class function defined over @m is a linear combination of the 
irreducible characters of @m, we have by § 3: 

LEMMA 7. / / fa, fa, . . . , <t>r are class functions defined over ©OT, //^w 
(fa, fay • • • > 0r) w /A« multiplicity of the principal unit character of ©m in 
[fa, </)2, . . . , 0 r]. 

5. Application of Frobenius' reciprocity theorem. A formulation of 
Frobenius' reciprocity theorem in terms of scalar products has been given 
by P. Hall (3) as follows. 

If <t>, \p are characters of subgroups H, K respectively of a finite group G, 
and <t>G,TpG are the corresponding induced characters of G, then 

(**,**) = (***,*) = (fa+HG), 

where (I>KG,$HG respectively denote <j>G restricted to K, and \f/G restricted to H. 
When <j>, ip are the principal unit characters 1H, \K of H, K and 1G is the 

principal unit character of G, we have 

( * ° , n = ( i 0 , [0°,^°]) = (IK,4>KG) = (1H,*H°) 

so that we have: 

LEMMA 8. If <j>G,ypG are the transitive permutation characters of G induced by 
subgroups H, K respectively, then the multiplicities of the principal unit charac
ters in [cj)G, yj/°], \f/H

G, <I>KG are the same. 

If the multiple scalar product (<£a, . . . , <t>s) of permutation characters 
0o» • • • » #s of any finite group G is defined as (1G, [#a, . . . , <t>8]), then the 
following theorem replaces Redfield's main theorem (12, 445): 
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THEOREM 1. If <£ i , . . . , <j>T are the permutation characters of G induced by a 
complete set of non-conjugate subgroups, then [<j>af <j>b, . . . , <f>s] is in general an 
intransitive permutation character of G, and (<£a, <fo>, . . . , <j>s) is the number of 
its transitive constituents. 

Proof. The Kronecker product of permutation representations of G is 
clearly a permutation representation. If the analysis of the corresponding 
character into transitive constituents is given by 

r 

[0o, <£&, • • • , <t>s] = X / ki 0<> 

t h e n 

(4>ay <£&, • • • , <t>s) = (1(?, [<£a, 0 6 , • • • , <t>s]) 

i 

by the reciprocity theorem, Hi being the subgroup of G which induces the 
permutation character 0<. Hence (0a, 06, . . . , 0,) is J^kt, the number of 
transitive constituents of [<j>a, <j)b, . . . , </>s]. 

RedfiekTs theorem is, essentially, the particular case of the above theorem 
when G = @TO, and it is this special case with which we are mainly concerned 
here. 

6. The unique resolution of permutation representations into 
transitive constituents. When m > 2 the transitive permutation charac
ters of @TO are linearly dependent. The analysis of a permutation character 
of ©m into transitive permutation characters in accordance with Theorem 1 
is thus not unique in general, though the number of such transitive characters 
is precisely determined by the theorem. This was one of the difficulties en
countered by Redfield (12, 446). 

To resolve the ambiguity we recall that two permutation matrix repre
sentations of a group are equivalent if and only if they can be transformed 
into each other by a permutation matrix. With this understanding of per-
mutational equivalence the ultimate irreducibles with which we have to deal 
are not the irreducible characters of the group but are the marks (1, 236) 
of the distinct subgroups in each of the transitive permutation representations 
of the group. The mark of a subgroup H of a group G in a permutation repre
sentation g, of degree r, of G is the number of the r symbols which are invariant 
under every permutation of g restricted to H. We shall use the term mark 
of a representation g as the set of marks of all the non-conjugate subgroups 
of G in that representation. 

https://doi.org/10.4153/CJM-1963-030-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-030-0


GROUP REDUCTION FUNCTIONS 279 

We are primarily interested here in the case in which G is a symmetric 
group. Thus when G = ©4, the representative subgroups can be taken as3 

Gi = 1, 
G2 = {l,(ab)}, 
Gz = {l,(ab)(cd)}, 
G4 = {1, (abc), (acb)\, 
G$ = {1, (abed), (ac)(bd), (adeb)}, 
G6 = {1, (ab)(cd), (ac)(bd), (ad)(be)}, 
G7 = {1, (ai), (cd), (ab)(cd)}, 
G8 = ©3, 
G9 = {1, (ac), (bd), (ac)(bd), (abed), (adeb), (ad)(be), (ab)(cd)\, 

d o = 2Ï4, 
Gn = ©4, 

where the subgroups are written as permutation groups on four or fewer 
letters merely for convenience of description. The table of marks for @4 is 
found to be as in Table I. 

TABLE I 

G i G2 G* G4 G6 G* G, Gs G9 do G i i 

gl 24 
£2 12 2 

g* 12 0 4 

gi 8 0 0 2 

gs 6 0 2 0 2 

g6 6 0 6 0 0 6 

gl 6 2 2 0 0 0 2 

gs 4 2 0 1 0 0 0 1 

g* 3 1 3 0 1 3 1 0 1 

gio 2 0 2 2 0 2 0 0 0 2 
gll 1 1 1 1 1 1 1 1 1 1 1 

If p(m) is the number of partitions of m, then @m will have p(m) non-con
jugate cyclic subgroups, each generated by an arbitrary element taken from 
one of the p(m) conjugate classes of ©m in turn. Let these, in non-decreasing 
order, be taken as G\, G2, . . . , Gp(m). The mark of any cyclic subgroup in 
any representation gT is the characteristic of the generator in gT regarded as 
a matrix representation. Hence if in the first p(m) columns of the table of 
marks we replace Gi, G2, . . . , GP(m) at the head of the table by Cim, CP2, . . . , 
Cp (m), where Cpi is the class of @m which contains a generator of Gt, we obtain 
a table of the complete set of transitive permutation characters of ©m. 

3The same set of subgroups of © 4 and the table of the complete set of transitive permutation 
characters of ©4 are given by (14, 5). 
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When m > 2, this table of transitive permutation characters has more 
rows than columns. We note, however, that because of the triangular nature 
of the table of marks, the characters <f>u i — 1 , 2 , . . . , pirn), of the repre
sentations gi form a linear basis for all transitive permutation characters of 
©m, and also for all characters of ©m. 

The inner product of two or more transitive permutation characters gives 
another permutation character, but this can often be decomposed into a sum 
of integer multiples of transitive characters in more than one way. In the 
language of group reduction functions instead of permutation characters we 
have the difficulty encountered by Redfield, namely that the decomposition 
of Grf (Gi) U Grf (G2) is not in general unique. 

To restore uniqueness all that is needed is to consider the marks, instead 
of the characters, of the Kronecker products of the g/s. 

Thus for ©4 the subgroups G7, G9 have group reduction functions 

i(*i4 + 2sx*S2 + S22), i(5i4 + 2*i** + 3s2
2 + 254) 

respectively, giving transitive permutation characters #7 = 6, 2, 2, 0, 0 and 
4>9 = 3, 1, 3, 0, 1 of ©4 where the classes of ©4 are taken as l4, 122, 22, 13, 4. 
We have 

Grf (G7) 0 Grf (G9) = 2, 

which is equal to ($7, #9) by Lemma 3, and by Theorem 1 is the number of 
transitive characters in [#7, #9]- Also 

Grf(G7) U Grf(G9) = i(3*i4 + 2s^s2 + 3s2
2), 

which by Lemma 6 is the symmetric function based on [#7, #9] = [18, 2, 6, 0, 0]. 
This character can be written as </>2 + <£e or as </>3 + <t>i. 

If mi denotes the set of marks corresponding to giy and which we regard 
as the mark of gu then g7 X £9 has the mark 18, 2, 6, 0, 0, 0, 2, 0, 0, 0, 0, 
which decomposes uniquely into ra3 + m-i and the ambiguity is resolved. 

Another difficulty encountered by Redfield arises from the fact that the 
same group reduction function can belong to two or more groups which are 
not equivalent as permutation groups. Thus the groups 

Q1 = {1, (ab)(cd)(e)(f), (ab)(c)(d)(ef), (a) (b) (cd) (ef)}, 

Q2 = {1, (ab)(cd)(e)(f), (ac)(bd)(e)(f), (ad) (be) (e) (/)}, 

are not equivalent as permutation groups but have the same group reduction 
function i ( 5 i 6 + 3si2s2

2), and give the same induced permutation character 

<t> = 180,0,0 ,0 , 12,0, . . . , 0 

of ©6, where the two non-zero characteristics belong to the classes l6, 1222 

of ©6 in this order. The subgroup @5 X ©1 of ©6 induces the usual permuta
tion representation of ©6 on 6 symbols. Its group reduction function is the 
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product of the Schur functions {5} and {1}, and the corresponding permuta
tion character of ©e is 

^ = 6 , 4 , 3 , 2 , 2 , 1 , 1 , 0 , 0 , 0 , 0 

where the classes of ©6 are taken in the sequence l6, 142, 133, 124, 1222, 123, 
15, 6, 24, 23, 32. We have O, f) = 3 and 

fo, *] = 1080, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0. 

RedfiekTs difficulty here was, in effect, to separate [<£, \p] into three transitive 
characters when <j> was taken as belonging to Qi, and into another three 
when it was taken as belonging to Q2. 

The difficulty vanishes if we consider the inner product, defined in the 
obvious way, of appropriate rows of the table of marks of ©6 instead of rows 
of the transitive permutation character table. We need consider only the 
subgroups G6 = @5 X ©i, Gz = Qlt G4 = Q2, and the common subgroups 
G1 = 1, Gi — {1, (ab)(cd)} of Qx and Q2. The only part of the table of marks 
of ©e which matters for our purpose is that given in Table II, where the 

TABLE II 

Gi G2 Gz G4 G, 

£1 720 
£2 360 8 
£3 180 12 X 

£4 180 12 0 y 
£5 6 2 0 2 1 

first two columns correspond to the columns l6, 1222 of the transitive per
mutation character table, and x, y are integers > 0 whose values we need 
not in fact determine. Besides distinguishing g3, g4, or in effect Qi, Ç2, which 
the permutation characters fail to do, the table of marks gives the inner 
products [ra3, mh] = 1080, 24, 0, 0, 0 = 3m2 and [m4, w5] = 1080, 24, 0, 2y, 
0 = mi + 2ra4, thus giving the different decompositions of g3 X £5 and 
£4 X £5 into three transitive constituents, as sought by Redfield. 

Summarizing, we have the following elaboration of Theorem 1, giving 
uniqueness criteria to the decomposition of RedfiekTs U-products. 

THEOREM 2. If the transitive permutation representations of ©m with respect 
to a complete set of non-conjugate subgroups Gi, G2, . . . , Gr have marks 
mi, W2, . . . , mr {each a set of r non-negative integers m^, the sets being linearly 
independent) and characters 0 i , 0 2 , . . . » 0 r (each a set of p(m) non-negative 
integers <t>i\ the sets being linearly dependent when m > 2), then 

(i) <t>ij = mi3 if the notation is such that when Gj is cyclic it is generated by 
an element of the class Cj of ©OT, 
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(ii) [ma, mb, . . . , mk] has a unique expression as 
r 

where the a^s are non-negative integers, and at = 0 when Gt is not a subgroup 

of Gar\Gbr\...r\Gk, 
T 

(iii) 22 <*i = (0a, 0&, • . • , 0*), 
i = i 

r 

(ÎV) [fa, 06, • • . , <t>k] = S «* tfi-
2 = 1 

Redfield noted two special cases in which his U-products were capable of 
unique decomposition into group reduction functions. His special cases are 
replaced by the two following theorems. 

THEOREM 3. If at least one of Ga, Gb, . . . , Gk is cyclic, then [0a, fa, . . . , fa] 
can be uniquely expressed as av fa + aq 4>q + . . . + at<j>t, where fa, <j>q,. . . , <j>t 

are permutation characters of @OT induced by subgroups of the cyclic group 
Ga(^ Gb C\ . . . r\ Gk, and ap, aq, . . . , at are non-negative integers such that 
ap + aq + . . . + at = (fa, fa, ... , <j>k). 

Proof. Take Glt G2, . . . , G>(m> in non-decreasing order as the complete set 
of non-conjugate cyclic subgroups of @TO. Then the complete set of r marks 
in any of the representations gi, g2, . . . , gp(m) is obtained from the set of 
p(m) numbers in the permutation character 0<f (i = 1, 2, . . . , p(m)), by 
attaching r — p(m) zeros. Also the p(m) X p(m) table of characters induced 
by Gi, G2, . . . , Gp(m), arranged suitably, will be triangular in the sense that 
no term in the main diagonal will be zero, and every entry above the diagonal 
will be zero. Hence fa, 02, • . . , fa M are linearly independent. 

Now because at least one of Ga, Gb, . . . , Gk is cyclic, one at least of 
ma, mb, . . . , mk will have zeros in the last r — p(m) places, and so 
[0a, fa, • • • , 0fc] will differ from [ma, mb, . . . , mk] only in that the latter has 
a further r — p(m) zeros. By Theorem 2, [ma, mb, . . . , mk\ has a unique 
expression as I ^ m * , where the at are non-negative integers, and every mx 

corresponds to a subgroup Gt of Ga C\ Gb O . . . C\ Gk, which is cyclic since 
at least one of the groups is cyclic. But mt = 0< for a cyclic subgroup Gu 

except for the attached zeros, and so [<t>a, fa, . . . , <j>k] ~ ]L«*0*, where the 
summation is over all subgroups of Ga O Gb r\ . . . C\ Gk, and 

£ « * = (0a, 06, . . . , 0/;) 

by Theorem 2. Since 0i, 02, . . • , fa(m) are linearly independent, this decom
position of [fa, fa, . . . , fa] is unique. 

THEOREM 4. If the subgroups Ga, Gb,.. . f Gk of ©m are each the direct product 
of symmetric groups, then [0a, fa, . . . , fa] can be expressed uniquely as 

ap fa + aq <j>q + . . . + « i 0 | f 
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where fa, fa, . . . , <t>t are permutation characters of ©m induced by subgroups 
which are themselves direct products of symmetric groups, and ap,aq,...,at are 
non-negative integers such that av + aq + . . . + at = (#a> <t>b> • • • > </>*)• 

Proof. Let 

Ga = &ii x e^2 x ... x ©îr, 

where (lXl2X2. . . raXw), ( p ^ " 2 . . . mVm), . . . are partitions of m. Let the 
symbols on which ga operates be Alf A2, . . . , and those on which gb operates 
be Bly B2, . . . , and so on. Then the symbols on which the Kronecker product 
ga X gb X . . . X gk operates can be taken as all possible sets {A u Bjf . . . , Kv], 
where if 0 G @ro, {Au Bj, . . . , Kv)d is defined as {Aid, Bfi, . . . , Kvd}. By 
Theorem 2, these symbols fall into (<t>a, fa, . . . , 0*) transitive sets. Let 

form a transitive set S. H 6 belongs to the stabilizer of {Axl, Byi, . . . , Kul], 
that is to the subgroup of @m which leaves this symbol unaltered, then 

Axl0 = Axl, Byid = Jjyn . . . , -&U1V = &UI 

and 6 will belong to the stabilizers of Axl, Bvl, . . . , KU1 and conversely. Hence 
the stabilizer of [Axl, BV1, . . . , Kul} is the intersection of the stabilizers of 
Ain Byi, . . . , Kul. But these stabilizers are permutation transforms of 
Ga, Gb, . . . , Gk respectively, and so the stabilizer of {AX1, Bvl, . . . , KUI\ is 
also a direct product of symmetric groups. Thus the transitive representation 
of ©w on the symbols of S is induced by a subgroup of ©m which is a direct 
product of symmetric groups. This applies to each of the (fa, fa, . . . , fa) 
transitive sets into which ga X gb X . • . X gk decomposes. 

Hence [ma, mb, . . . , mk) has a unique expression as 

apmp + aqmq + . . . + a t m t, 

where the a / s are non-negative integers, and mp, mq, . . . , mt belong to the 
set of marks of representations of ©m induced by the p(m) distinct non-
conjugate subgroups of ©m which are direct products of symmetric groups. 

Considering the first p(m) columns of the table of marks of ©m as the 
columns corresponding to cyclic subgroups, it follows that since <j>ij = mt

j 

for these columns, then [<j>a, fa, ... , fa] can be expressed as 

OLPfa + aq<t>q + . . . + at4>t-

It remains to show that this expression is unique. To do this we show that 
the characters 4>t corresponding to the p(m) subgroups @ifll X @2

a2 X . . . 
X @mam> taken over all partitions l a i 2a2 . . . mam of m, are linearly independent. 

Arrange the partitions of m so that (pi) precedes (p2) if, after parts com
mon to (pi) and (p2) are struck out, (p2) has at least one part greater than 
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every part of (pi). This ensures that if (pi) = lai 2a*. . . mam, then 
©ifll X @2fl2 X . . . X ®m

am has no element whose permutation cycles are 
given by (p2), and so has no cyclic subgroup corresponding to (P2). With this 
ordering of the partitions, the part of the table of marks consisting of the 
first p(m) columns and the p(m) rows corresponding to representations 
induced by subgroups of type ©ia i X ©2a2 X . . . X ©w

flm will have, by (2), 
non-zero entries on the main diagonal and nothing but zeros above the diagonal. 
The p(m) rows are thus independent, and so the p(m) permutation characters 
of @m induced by subgroups of type ©ifll X @2fl2 X . . . X ©™am are linearly 
independent. From Theorem 2, ap + aa + . . . + at = (<£a, <£6, . . . , <t>k), and 
the proof is complete. 

Redfield used symmetric function formulae to perform the actual decom
position dealt with in this theorem. In the present treatment, the triangular 
nature of the restricted character table makes the arithmetical reduction 
extremely simple. His example (12, 448) is from MacMahon (7) and in the 
notation of § 6 is the reduction of gi X gi X gi. We have 

[*2, «2, 4>i] = 864, 8, 0, 0, 0 
= 34*i + 402. 
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