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MOD ODD MODULAR COINVARIANTS, 
HOMOLOGY OPERATIONS, AND LIMIT SPACES 

NONDAS E. KECHAGIAS 

ABSTRACT. We compute the homology of lim„-^oo(G„ ? X), where (Gn) is a sys
tem of subgroups of Z^ containing a /?-Sylow subgroup (Lpn p) and satisfying certain 
properties. We show that //*(lim„-_>0o(Gl, I X);Z/pZ) is built naturally over homology 
operations related to (Gn). We describe this family of operations using modular coin-
variants. 

0. Introduction. In this work given a connected pointed space X of finite type and 
a family of compatible permutation groups, S = {Gn/En I - • -1 E\ < Gn < Jlpn9 n = 
1,2,...}, we construct a new space denoted G^ I X and compute its mod-p homology 
groups. Here Zpn is the symmetric group of all permutations of all elements of V", an 
n dimensional vector space over Z/pZ for p a prime number; and En I • • •} E\ a fixed 
/?-Sylow subgroup of Xp«. There is an algebra of homology operations, denoted RN (see 
[8]), associated to each such family S and the main result of this work is that //*(Goo I 
X, Z/pZ) is an algebra generated by the free module with basis a fixed homogeneous 
basis of Z/*(X, Z/pZ) over RN. This algebra RN called the extended Dyer-Lashof algebra 
is closely related to the rings of invariants of various parabolic subgroups of GLW(Z//?Z), 
[8]. 

It was long ago when the relation between operations in topology and the Dickson 
algebra (the ring of invariants of a polynomial algebra on n generators over Z/pZ of 
GLn(Z/pZ)) was realized. Then a natural question to ask is what about other rings 
of invariants. This question is answered in this work for any fixed odd prime number; 
namely: certain subalgebras of (E(x\,..., xn) (g) P\y\ ,...,yn]) can be realized as duals 
of coalgebras of homology operations applied to certain topological spaces associated 
to G so called Gn-spaces. Here E(x\,... ,xn) is an exterior algebra on n generators and 
P[y\,... ,y„] is a polynomial algebra on n generators over Z/pZ. They are both graded 
with degrees: |x/| = 1 and \yt\ = 2 for / = 1, . . . , n. G is one of the following groups: 
Un < Bn < Pn(N) < GL„, (the group of upper triangular matrices with one along the 
main diagonal, the Borel subgroup, the parabolic subgroup associated to a sequence of 
positive integers, and the general linear group, respectively). We should note here that 
for p = 2 the whole ring of invariants can be realized and the theory appears to be more 
elegant, (see [1], [2], [7], [11]), while for odd primes a lot of technical problems arise. 
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The main theorem in this work is the computation of the homology of G ^ } X over 

Z/pZ, where G ^ is the direct limit of a sequence of permutation subgroups satisfying 

certain relations, and V stands for the wreath product between topological spaces ex

tending the definition of the usual wreath product of permutation groups. Namely: 

THEOREM 4.7. Let X be a pointed connected space of finite type, and either Gn — 

Zp"/ \" -\ Zp«i associated to N — (n\,ri2,...) an increasing sequence of positive integers 

or Gn — Hpn. Then if*(Goo IX, Z/pZ) is a free non associative (associative, ifGn — lLpn 

for all n) commutative algebra over Z/pZ generated by the free RN-module Z?(ff*(X)) 

modulo the relation: Qsx = tf, if 2s — \x\, x E #(if*(X)j. 

Moreover if*(Goo Ï X, Z/pZ) is a coalgebra, where the coproduct is given by: 

^ x = J2 QKx <g> g V , with i)x = J2x' ®•*"• 

Here #(if*(X)) is a fixed homogeneous basis ofH*(X) over Z/pZ. 

This is a revised form of the topology chapter of my Ph.D. thesis [8]. The first chapter 

which deals with the algebraic structure of RN will appear in a separate work [9] be

cause of its length and technicality. We note that this is a generalization of the work of 

May [4], Milgram [12], and later by Huynh [7]. There are two methods of approaching 

the problem: one using the topology of the space and the second using modular invariant 

theory. There are advantages to both; for example, the first method is natural and direct; 

on the other hand, the second is less abstract and overcomes the Adem phenomenon. Our 

method is a mixture of the above two. 

The p — 1 case is more direct and less technical. For the families Gn = ^ and 

Gn — £2 Ï • • • J £2 the theorem above was first proved in [7] and [1] respectively using 

modular invariant theory, and the families Gn — £ 2«/1" 'I ^2ni associated with parabolic 

subgroups, Eft, = n, have been considered by Campbell, McCleary, and myself in [2]. 

The author wishes to thank Eddy Campbell and John McCleary for suggesting the correct 

map associated with the direct system {Gn IX \ n = 1 ,2 , . . .} . 

Our work is divided in to four sections. In Section 1 we recall basic elements from the 

literature and (G„)-spaces are explicitly discussed as a generalization of wreath products 

between permutation groups as well as their properties. We also recall elements of the 

cohomology of symmetric subgroups and modular invariant theory in Section 2. Sec

tion 3 is devoted to the definition of homology operations and in Section 4 the theorem 

above is proved. 

1. Wreath product and Gn-spaces. Let G be a subgroup of the symmetric group 

Zn on n elements and H a finite group. The wreath product or the semidirect product 

between G and Hn is the group denoted by G I H — GxH. Here the multiplication is 

gWenby:te;hu...,hn)Çg';h[,...X) = (gg'\hxh'f,{Xy..^hnh'g^n))^xàHn = n?/// , 
with Hi = if. If if is a subgroup of Sm , then G ^ if is a subgroup of SnXm as follows: 

(g\h\,...,hn)(s : f i , . . . , f n ) = (g(s);hg-Hs)(t\),...,hg-\is)(tnj). 
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Here the nm elements, where £„ Xm acts, are divided into n blocks of m elements each and 
s denotes the number of the block while ti the ^-th element of the m elements where Zm 

acts. In this case we have the following inclusions: GxH C GlH C 2„Xw In particular 
there is an inclusion according to the discussion above: i(Ln I Zm, E„Xm)' %n ^m -^ ^«xm-

This can be extended to any number of subgroups of symmetric groups and we write: 

G\ I G2 I • • • ï Gm C Z„]X..-x/im 

Here G; C EW/. Since there is an isomorphism from (Gi Ï G2) ? G3 to G\ I (G2 ? G3) we 
can omit the brackets in the wreath product. 

Let V1 be the rc-dimensional vector space spanned by (e\ ,...,en) over Z/pZ and Ẑ « 
the symmetric group permuting the elements of Y1. Let E[ be a cyclic group of order 
p generated by the translation defined by the i-th basis vector in V", for 1 < / < n, 
and A = E" = H" Et the subgroup of lLpn consisting of all translations of V1. We define 
Xp«>/7 = Enl - • -l E\. Then Zp«̂  is ap-Sylow subgroup of Zp«. The inclusion of Zp« into 
X̂n+i is given via the composition: 

Ltpn > tLn+\ I Ijpn > lépn+\ 

For the following ideas and notation [12] is a good reference. 
We denote by BG the classifying space of G and by EG the total space of G. We can 

replace H by a topological space X or a chain complex C*X in the definition of the wreath 
product. We study pointed connected spaces of finite type or cell complexes with finite 
skeleton in each dimension. 

DEFINITION 1.1. GlX = EGxGXm. 

Here G < Zm and acts on Xm by permuting the factors. On the chain level G permutes 
the factors with the sign convention using the Alexander-Whitney chain equivalence. If 
G acts trivially on X, then let G o X = BG x X = EG xG X and the inclusion EGoX-* 
EG xG Xm is induced by the diagonal on X. 

//*(G I X\ Z/pZ) is often called G-equivariant homology. See [13]. 
Let (Gn) be a sequence of permutation groups such that Go C G\ C • • •, where 

Gn C Zpn and Gm I Gn C G/(m>n) for some integer /(m, «) depending on m and «. 

DEFINITION 1.2. A pointed space (F, *) is said to be a (Gn)-space, if there exist maps 

On:GnlY^Y, n>\ 

satisfying: 

i) #n is homotopy equivalent to Gn X Y ^-> Gm X Y -A Y for m > n. 
ii) If j : F ^ Gn 2 Y is given by7(y) = (l;y, *, . . . , *), then 0„ o j ^ /J. 

NOTE. The 6n are called the structure maps. 
A map between (G„)-spaces is required to respect the maps 0n for n > 0, up to homo

topy. 
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1.3. For any pointed space (X, *), we define: 

Goo IX := lim Gn\ X = | J (EGm xGm Xpm)/^ 
n^°° m>0 

Here x G EGm xGm XPm and y G EGn xGn XPn are equivalent iffy = j n - \ , n ° — ' °Jm,m+\ W 
for n> m, where jn,n+\ '-GnlX~^ Gn+\ IX is given by: 

EGnXXP» « G „ , G „ t l ) x ^ > EGn+]XXP^ 

quotient quotient 

Gn IX —> Gn+\ IX 

Explicitly,y„,n+i(é%xi,... ,Xpn) = (/(G„, Gn+\)(e);xu ...,xpn, * , . . . , *). 
GQO IX is a (Gn)-space, where the 6n are induced from the following direct limit map: 

( lim GnlGm)lX-> lim G/(m,n) * X. 

The following (Gn) sequences are studied in this work: 
a ) Gn = Lpn,p> 

b) Gn associated to parabolic subgroups. Namely, let N = (n\, n^,...) be an increas
ing sequence of positive integers, then either let Go = 1; G\ = Ep; G, = Sy if 
/ < I/J = Wl ; or let G; = 5y-„fc \ Ypnk \.. -i x;pni if i/k < i < i/k+l, where i/k — EÎ ^ . 
We denote this group I,Nn. 

c) G„ = I^n, n > 0. 
For (G„) as above, we shall define homology operations from H*(Y) to H*(Y) for F a 

(G„)-space. 
Since the first case Gn = E ^ = En X • • • \E\ is important in calculating the homology 

of Goo ! X, we note the following: 
The (/n,n+i)* we coalgebra monomorphisms: (jn,n+\)*(z) = l®z<8) l®-- - (8) l , for 

This observation implies that H*(Gn IX) injects into H*(Gn+\ IX) and hence it is not 
difficult to calculate lim^oo H*(Gn\X). It would be easy to calculate H^G^lX) provided 
we can associate //*(Goo ? X) with limn_+oo //*(G„ ? X). Fortunately this is true because of 
the following: 

Lety„: Gn \X —> G^ \ X and (/„)* the map induced in homology. These maps induce 
a map between limn^oo H*(Gn IX) and 7/*(Goo } X) and the last map is an isomorphism: 

limtf*(Gn!X)=H#(Goo*X). 
H—>00 

REMARK. For details see [ 15]. 

1.4. Now we discuss some properties of (Gn)-spaces: 
a) Let X and Y be (Gn)-spaces, then X x F is a (G„)-space as follows: 

G n ! ( X x y ) = EGn xGn (X x Yfn d-¥ EGn x EGn xGn X
pn 

x Ypn -^ EGn xGn X
pn x EGn xG„ Ypn dn^n XxY. 
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Here d is the diagonal u the evident shuffle map, and T the interchange map. We define 
6n:=(6nx6n)oTo(dxu). 

b) The diagonal d: X —> X x X is a map of (G„)-spaces. 
c) There is a product in X: 

fi:XxX-^X, 

induced from the following composition: 

XxX^EGlxX» qU^en 'EG, xC | X ^ X . 

Here / x / is the obvious inclusion into the first two factors. 

REMARK. \I does not make X into an //-space. For example, if Gn — X^, then Goo Ï 
{*} = BLpoo and the fundamental group of BI,poo is not abelian. Hence BlLpoo can not be 
an //-space. 

d) Since H*(Gn X X) = H*(EGn xGn X?n) = H*(c*(EGn) ®Gn (//*(X))P"), we can 
compute the external Cartan product in //*(X) 0//*(F) using the following composition: 

C,{EGn) ®Gn (//*(X) ® H,(Y)f) ^ C,(EGn) <g> C*(EGn) ®Gn (H^X))"" 

<g> (H,(Y))pn ^ C*(EGn) 0Gn (H*(X)f 

<g> C*(£G„) 0Gn (H*(Y)f C*0n^9n H,(X)®H*(Y). 

Here ^ is the coproduct in EGn. 
e) (G„)-spaces are Cartan objects as defined by May in [13]. First we prove the asser

tion for Gn = En X • • -X E\. Let us denote £/ = Z//?Z by 7r. Since there is a 7r-equivariant 
chain map C: W —> Eir, we can replace En by the standard Z//?Z-free resolution of 7r. 

Let us consider the following diagram: 

C* (EK X(XX X f ) - ^ C*(£TT) (8) C*(Xy ® C*(JQP c * ^ 1 C*(£TT) ® C*(£TT) (8> C*(Xy <g> C*(Xf 

C*(£TT) <8> C*(X x X f C*(Eir) <g) C*(AT ® C*(£TT) <g> C*(X)P 

C*(£TT) ® c* f(x x x ) ^ (C*(£TT) ^ c*(xyy 

W®(c*(XxX)Y 

l®C*i 

w 

Let/: ETT^ETTX (Enf be given by f(d) = (</,*,...,*) and g: ETT ^ ETT x (Eirf by 
g(d) = (*, d,d, *,..., *). The action of 7r on £7r X (£7^ for the map/ is induced by the 
inclusion: i\ : n —-> 7r ? TT given by /i(cr) = (a, 1, . . . , 1) = a Xl and for the map g case by 
ii. it —-> 7T ? 7T given by /2(a) = (1, <7,..., cr). Then we see that/ and g are 7r-equivariant 
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maps:/(<7d) = (a I \)f{d) and g(ad) = i2(cr)g(d). Since Eix x (EirY is contractible and 
ix I IT acts freely (hence 7r also acts freely),/ is 7r-equivariant homotopic to g. This shows 
that the diagram above is 7r-equivariant and commutative and hence it is commutative in 
7T- equivariant homology. Now it is obvious that X is a Cartan object. 

The following formulas follow as in May [13] page 164: 

#,• ® (JC ® yf = ( - l^-^WW £ ^-_X ^ *,-/. 

Wet ®(x®yY = (-l^-DWW Y,Pei-jX? ® * / / + (- l )We«-,^ ® ̂ y / -

The previous formula can be extended to any number of factors. 
For G\ = Zp consider the following commutative diagram: 

H*(Ei) -^U H*(E{) ® H*(E{) 

I I 

from which we deduce the analogous formula for Z^: 

^ ^ « ( P - D ) ® (* ® # = (- l^-^WW E h(e(H)(p-i)V ® i*{ej(p-\))f. 

^*to(p- i ) ) ® (x 0 .yf = (-I)CP-DWM £ i ^ ^ - ^ - i ) ) ^ (8) Ï * ^ - ! ) ) / 

+ ( - O W / * ^ ^ ) ^ ! ) ) ^ ® UiPejip-i))/. 

2. Subgroups of the symmetric group and modular invariant theory. For the 
rest of this section we recall some results concerning applications of modular invariant 
theory in the mod-/? cohomology of p-groups and discuss the extended Dyer-Lashof al
gebra RN associated with N = (n\, n^,...) an increasing sequence of positive integers. 
This is a review from [9] where proofs will appear, although, proofs can be found in [8]. 

There is a well known injection /*: H*(G) —> H*(A)WG^ induced from the inclusion 
/: A—+G, where Y,pnp < G < Ep«, A = n?=i Et, and WG(A) is the Weyl subgroup of A in 
G (see Quillen's Theorem in [6]). The image of this map has been studied by Huynh in 
[6]. We recall his result: 

THEOREM 2.1 (HUYNH [6]). a) Im/*(A,G) = Im/*(A, V/>) r\H*(A)WciA) 

b)lmi\A^pn,p) = E(jlnWu...,rlnWn)^P[7lnVu..^7lnVn] 

Here Wt = MU-iL^v Vt = n(flI,...û|._l)€(z/pZ)«-'(fli3;i + ' " ' + «1-1^1-1 + yd> and Li = 

ni y . 

Mu-
y\ 

'3f yf2 

and T]n 

'0 , . . . ,o ,r 

1,0,. . . , o , 

For details see [8]. 
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We note here that Imf (A,^*^) is isomorphic to a subalgebra of H*(A)u'n = 

yE(x\,..., xn) (8) P[y\,..., yn]) " where Un is the group consisting of the upper triangular 
matrices with one along the main diagonal and t stands for the transpose of a matrix. 

We extend the result above to the following subgroups of GLn: 

W^(A) = Un< Wlph.,zp(A) = Bn< W w . , V l (A) 

= Pn(N)<Wzpn(A) = GLn. 

Here Bn is the Borel subgroup of GLn and Pn(N) the subgroup consisting of matrices 
with 1 blocks along the main diagonal with sizes ni x n^ for / = 1, . . . , / and n — Y, «/• 
Here each block is an element of GL„., anything is allowed above the main diagonal, and 
zero below. 

Let F be the free graded associative algebra on {el,i > 0} and {(3e\i > 0} over 
Z/pZ with \el\ = 2i and \(3el\ = 2i — 1. T7 becomes a coalgebra equiped with coproduct 
ip'.F—* F® F given by 

i/jj = J2 eH ® é and ^ = E PeH ® ^ + E ^ ® M 

Elements of F are of the form ê = f3C]el] • • • /3€neln where / = ((ei, i\),..., (en, in)) 
with 6j — 0 or 1 and *) a non negative integer for y = 1,... ,n. Let 1(1) denote the 
length of é and the excess of é be denoted by exc(^) = \ëx\ — e\ — [e1 \(p — 1) where 
/ ' = ((e2, ii),..., (em irS). We define U = F/Ie, where Ie is the two sided ideal generated 
by elements of negative excess. U is a Hopf algebra and if we let U[n] denote the set of 
all elements of U with length n, then U[n] is a coalgebra. We note here that the dual 
Steenrod algebra acts on U via Nishida relations, (see [8]). 

We extend the previous construction by restricting the degrees and imposing Adem re
lations. Let U' be the subalgebra of U generated by {e{p~l)\ i > 0} and {(3e{p-X)i, i > 0}. 
We denote these elements by Q and f5Ql and recall that \Q\ = 2i(p - 1) and \f3Q'\ = 
2i(p — 1) — 1. Let B be the quotient algebra of U' by the two sided ideal generated by ele
ments of negative excess, where exc(<2/) = 2i\ — e\ — IQ11, with/ = ((ei,«i),..., (ew,/n)) 

and/' = ((e2,/2),...,(en,«/i)). 
Adem relations are as follows: 

CG 1 = D - i r f ^ " 1 ) 0 "" J ) " 2 W-'-fi'", if r >/«. 

-E(-Drr i(<p"!x,"~J)r1)er^'^ i f^'w-
Y \ pi - r - 1 / 

Let N = (ti\,ri2, • • •) an increasing sequence of positive integers or N = 0 and let IN 

be the two sided ideal of B generated by allowing Adem relations everywhere except 
at positions described by N. We denote RN the quotient B/IN and this quotient algebra 
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is called the extended Dyer-Lashof algebra. If Af = 0, then RN = R the Dyer-Lashof 
algebra. We remark that B and R are special cases of RN. Finally, RN is a Hopf algebra 
and RN[rc] is again a coalgebra. Since RN[n] and U[n] are of finite type, they are isomor
phic with their duals as vector spaces and these duals become algebras. Next we describe 
these duals in terms of modular invariants. 

PROPOSITION 2.2 [8]. a) Let Tbe the subalgebra of(E(x\,...,xn)®P[y\,..., y„]) " 
generated by the following elements: { V/, Wufor i — 1, . . . , n}. Then 

Tn(E(xu...,xn)®P[yl,...,yn])P"W = Tp"w. 

Here TPn^ is the subalgebra of H*(A)Pn^ dual to the extended Dyer-Lashof coalgebra 
of length n denoted by RN[n], (see [8]). 

b) Let T' be the subalgebra of (E(x\,..., xn) ® P\y\,..., yn]) " generated by the fol
lowing elements: {r]nVi, r]nWi \ i — 1 , . . . , n}. Then 

T'n(E(xu...,xn)®P[yu...,yn]ynPn(mrin 

— jPn(N) as aigefrras over tne Steenrod algebra. 

We note here that the case Gn — lLpn has been studied by May in [4]. 
Since we are interested in homology operations, passing to the dual side we get the 

following coalgebra monomorphisms: 

COROLLARY 2.3. Let /(A, Gn) denote the inclusion between the named subgroups, 
then (lm/*(A, Gn)) injects into H*(Gn\ Z/pZ), where the second asterisk denotes the 
dual. Hence: (im /*(A, Gn)) \—> H*(Gn; Z/pZ), implies monomorphisms: 

a) U[n] f—* H*(Lpnp\ Z//?Z), and 

b) KN[n]>-> H*ÇLNn;Z/pZ). 

REMARK. If we define Zp«^ = E\l- • -lEn and Gn = Zp«i X- • -X Zp«/, where n = n\ + 
• • •+«/, then Ws (A) = U*n and Wcn(A) — PniN)1- Actually, the way the wreath products 
are defined indicates what subspaces of V" are left invariant under all permutations of 
these subgroups of Z^, (see [5]). 

3. Homology operations related to parabolic subgroups. In this section we use 
modular coinvariants to define families of homology operations following mainly Huynh. 
The idea is based on a theorem by Steenrod, (see also May [13]). 

THEOREM 3.1 [STEENROD]. /f*(G *X) = H*(G) <g> PGH*(X) e //*(G;M). 

Here G < Zm, X is a pointed topological space or a chain complex over Z/pZ with 
finite «-skeleton for each n, PQ the Steenrod map in homology associated to G, M the 
submodule of (i/*(X)) generated by {®™xis,xis G B} such that xis ^ xit for some s and 
t, where B = {*,, / G /} is a homogeneous basis for H*(X) over Z/pZ. 
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Recall: PQXI = 1 ® G - ^ and extend Pc linearly to a homomorphism of Z//?Z-vector 
spaces: 

PG:H*(X)-+H*(GIX) 

Using the direct sum decomposition in Steenrod's theorem above and Corollary 2.3, 
we define the following map (dn\ which is the induced map from the composition of the 
inclusion / and Steenrod map P in homology: 

{dn\: U[n] ® 77*(X) — 77*(I^) ® PV ,H,(X), or 

(</„)*: RNW ® 77*(X) — 77*(Gn) ® 7>G„77*(X), 

for the appropriate subgroup G„. Moreover, Imdrt is a subcoalgebra of H*(Gn IX). 
The following theorem relates (dn)* ( £/[/z]®//*(X)) with a direct summand of H*(I,pnpl 

X). 

THEOREM 3.2. Let dn: E" o X —• Zp«^ 2 X be induced by the inclusion and the 
diagonal, then 

Im(dn)* = H*{En) ® PxH^En-i) ® • • • ® Pn-XH*(Ei) ® 7>„77*(X). 

The proof is similar to the one given by Huynh [7] for/7 = 2 and it is omitted. 
On the other hand Im(dn)* = (£/[«])* ® (dn)*PnH*(X) in cohomology and hence 

dually: 

77*(i;/A/? i X) = 77*(£„) ® PxH^En-i) ® • • • ® Pn-iH,(E}) ® P„77*(X) 0 ker(d„)* 

Further: £/[n] ® PnH*(X) = 77*(£„) ® PxH*(En-i) ® • • • ® Pn-iH*(E\) ® PnH*(X). 
We recall that T ^ Z ^ ? X) = H*ÇLpn,p) 0 PnH*(X) 0 77*(Ir,/7; M), where M has been 

defined in Steenrod's theorem and inductively: 

Jf-cCEpv) = 77*(£„) ® PxH*(En-x) ® • • • ® Pn-xH^Ex) 0 coker/(£*, Zp»*)*. 

It is obvious now that any element of £/|>i] or RN[w] can define an operation by e7* = 
<7„(é>7 ® JC) or g7* = ûWg7 ® *) for JC G 77*(X). See [8] for the notation. 

Since we would like our operation to raise degree by \e?\ or \(?\ we adjust the defini
tion before as follows. We start again with the case E ^ . 

Let ê e U[nl then / = EtMikn + W>) uniquely, and hence (e7)* = E-Li #?''V?1' 
is an element of (E(x\,..., xn) ® P[ j / , . . . , v^])^. (See [8] for details). 

7̂ 1 stands for the sequence ((0, ^ | J C | ) , . . . ,(0, ^ | J C | ) ) and 7 - 7^ = 

( ( 0 i , M - ^ M ) , . . . , ( / 3 ^ 

DEFINITION 3.3. Define é by 

A:=(4)*(/"7w®x). 
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PROPOSITION 3.4. a) The e are natural monomorphisms of degree\I\, if I > 1^, 
(see [81). 

b) If I = E"=i ^Wun, then e'(x) = Pnx,forx e H*(X). Moreover, 

e{0'mi)x = 0, if mi < ( ^y^ - )W 

e^x = Pxx,ifnn = (P-^-)\x\. 

c) eleJ — ^(/"/l^i"/), where I, J, and (I — I\j\, J) are sequences of length n> m, and n + m, 
respectively. 

d) eI(eJeK) = {eIeJ)eK. 

PROOF. For c) we use Theorem 3.2 above and the isomorphism: H*(Lpn^p I Y.pmp) = 
H*(Lpn+mtP). For d) we use c). 

Since each e1 acts as an operator after being identified with the corresponding homol
ogy class of H*(Lpnp), we note: 

i) We have seen that the set of the e1 admits a coproduct: ^(e1) := Y.J+K=I eJ ® eK. 
It is obvious that if we let e[n] be the set of all non trivial operations of length n, then 
e[n] = U[n] as coalgebras. 

ii) The dual of the Steenrod algebra acts on this set via Nishida relations, (see [4]). 
The above discussion implies that the algebraic structure of this set is the one studied 

in [8]. Hence: 

THEOREM 3.5. The family of operations e1 defined above is a Hopf algebra and it is 
isomorphic to the Hopf algebra U studied in [8]. The subset of U containing all elements 
with length n is a coalgebra and its dual is isomorphic to T as Steenrod algebras. 

NOTE. The action mentioned above has been discussed in [8]. 
We extend the definition above to operations related to 

Gn = Zp I • • -X Zp, ZJ/I-V/ * • • • * Zp»!, or Zp«. 

The definition is induced by the following commutative diagrams: 

H\Gn) ^ //*(VP) 
f (£";G„) \ / i*(£";V*> 

H*(E") 

Consequently, the diagram below commutes: 

H*(Gn) ^ tf*(V.P) 

I 1 
Im !*(£"; Gn) = RN[n]* —> Im /*(£"; X ^ ) = U[n\* 

And hence dually: 
H*(Gn) > H*ÇLpnjP) 

î Î 
U[n] —> RN[n] 
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It is easy to see the relation among Steenrod maps between different subgroups. 

H*(X) - ^ H*ÇLrlX) - ^ H*ÇLklI,rlX) 

The diagram above and the following one are important in our definition. 

î Î 
U[n] ® PnH*(X) —> RN[/i] ® PGnH*(X) 

Pn is a homology operation itself and we can replace it by any other element of U[n]. 
Moreover, composing it with the appropriate inclusion we can define: 

DEFINITION 3.6. L e t / = ((ei,/i), . . . , (€„,/„)) and/7 = Ueu(p - l ) / i ) , . . . , 

(ew, (p — l)in) ). For each element Q1 G RN[«] we define the operation 

Q?:Hq{X)-*Hq^Gn\X)\ 

&x := {-lfiv{q)%ÇL^\ Gn)e
1'x. 

Here v(q) = ( - l ) ^ " 1 ^ ^ , with m = ^ . 
Combining the definition above with the last proposition we describe the fundamental 

properties of this new family of operations. 

PROPOSITION 3.7. a) The Q1 are natural homomorphisms which commute with maps 
between spaces. 

b) Qx = 0, ifli < \x\. Qx = x?, ifli = \x\. Moreover, */exc(/) = |JC|, then gx = 
(tf'xf, where I = ((ci = 0, i{),..., (e„, /„)) and I' = ((e2, i2) , . . . , (c„, /„)). 

c) The product of Q1 and Q1 is defined as follows: Let 1(1) — n and l(J) — m, then 
G'Q7 = Q(I~^J\ where (I-I^J) is of length n + m and 1^ has been defined before in 
Proposition 2.3. 

d) (QIQI)QK = QI(QJQKX 
e) Let Q[n] be the set of all operations of length n. Then Q[n] becomes a coalgebra 

equipped with coproduct XJJ: Q[n] —• Q[n] 0 Q[n] given by: ^Q1 — J2K+J=I Q3 ® QK• 
Q[n] = RN[n] as coalgebras. 

PROOF, a) and b) follow from the definition of the Qhs and d) is a consequence of 

c). 
For c) we use the following commutative diagram and proposition 2.4. 

H,(X) -^-> Ht(ErtPlX) -^ H*(Zp»,PlZp*,PlX) = H*(ZP^,PIX) 

{u | , | , 

Ht(X) - ^ H,(GalX) - ^ H,(Gnl(GmlXJ) = Ht((G„lGm)lX) 
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As in definition above we associate /', ( / ) to /, (resp. J). 

dO? = UÇLpn^Gn)/ o i*ÇLpm^Gm)ef 

= n{Y.pn+m^GnlGm)eveJ' 

= î*(ï^^,Gn iGO T> ( / ,-Vi^> 

= Q«~W) 

Here we just used the coproduct between extended Dickson algebras, (see [4] or [8]). 

REMARK. This is exactly the way the Dyer-Lashof algebra is defined, if we concen
trate on Gn = Zpn, (see May [4] or [9]). 

If X is replaced by a (Gn)-space Y, then we do have operations from //*(Y) to H*(Y) 

as follows: 

H*(Y) - ^ H*(Gn X Y) -^ H*(Y) 

By abuse of notation Q1 denotes 6n o Q1. 
We have proved the following theorem which is similar to Theorem 1.1 in May [4]. 

THEOREM 3.8. Let Y be a connected (Gn)-space of finite type and let (Gn) be a 
sequence of permutation subgroups associated to an increasing sequence of positive in
tegers N — (n\,..., ni,...). Then there exist homomorphisms: 

Qs:H*(Y)^H*(nfors>0, 

which satisfy the following properties: 
1) The Qs are natural with respect to maps of (Gn)-spaces. 
2) Qs raises degree by 2s(p — 1). 
3) Qsx = 0, ifls< \x\. 
4) Qsx = xP, ifls= \x\. 
5) Qs(x (g) y) = E/+/=J Qlx ® Qy> ifx^y £ H*(Y\ x Y2). There is a similar formula 

for the internal product: Qs(xy) — J2i+j=s Q
lxQy> withx and y G H*(Y). 

6) ij(Qsx) = Hi+j^ss Qx' ® Qx", ifxKx) = £* ' <g> JC", andx G H*(Y). 
7) Adem relations hold everywhere except at positions W( — Yl\ Wjfc-7+1 from the left 

for any element of length n\ + • • • + n^. 

Qr$ = E(-D r+ ' ((P ~ m ~S)~l) (T-'Qf, ifr > ps. 
i \ Pi-r ) 

Qrp& = E(-Dr+' (^ ~1)(( " s)\or'-'& 
\ Pi-r J 

-i:(^ri{p~m's)~l)Qr+s-w,ifr>ps. 
i \ pi-r-l J 

Here (5 is the mod-/? Bockstein. 
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8) The Nishida relations hold: Let Pr^ be the dual to Steenrod cohomology operation 

Pr. Then 

KQS = £ ( - i r l^' ^ ~ . r ) " l)Qs~r+lK. 

KP& = E( - i r fe "1)(" "r) " * W r+/n 
\ r-pi J 

+ E(-irf < p " 1 ) ( J r r i"V m ^ 
i \ r-pi-l j 

All coefficients are to be reduced mod-/?. 

To classify the set of homology operations properties 6), 7), and 8) must be used. But 

those are exactly the properties we used to determine the algebraic structure of RN in 

[8]. 

4. The homology of G^ IX. We shall compute the homology of \imn-+00(LpnfP 2 X), 

for X a pointed connected space of finite type, and deduce the homology of limn_^oo(Gn I 

X), for subgroups Gn as defined before. 

THEOREM 4.1. Let X be a pointed connected space of finite type, and Gn = X ^ . 

Then H*(Zpoop I X,Z/pZ) is a free non-associative, p-commutative (see fact 5 below) 

algebra overZ/pZ generated by the free U-module B(H*(X)) modulo the relation: esx = 

y?, ifs = (p- 1) |JC| /2 , x G #(//*(X)). 

Moreover, H*(Zpoop IX, Z/pZ) is a coalgebra where the coproduct is given by 

ipeJx = E eKx' ® eJx"> wtih ^x = Ylx ®*M-
K+J=Ijc'X 

Here B(H*(XU is a fixed homogeneous basis ofH*(X) over Z/pZ. 

PROOF. The proof depends on the following claims: 

1) The homology of Gn IX can be decomposed as in Steenrod's theorem. 

H,(Gn\X) = H*{Gn)®PH*(X) 0 H*(Gn,M). 

2) The image of the composite: H*(X) ^ H*(Xf = ft(l|X) ^ H*(E{ IX) is the 

Z/pZ-module generated by JC/ (g) 1 (g) • • • (8> 1, where xt G Z?(//*(X)). This composition is 

the structure mapy'o in homology and it is a coalgebra monomorphism. 

3) Inductively we have the following: 

/ 7 * ( ^ v IX) = ®n
k=0H*(En) 0 PxH*(En-x) <g> • • • ® PkH,(En_k, Mn_k). 

Here Mn_k is the module over Z/pZ on products between homology classes from 

H*(En-k-i I ^0 a n d a i l factors are equal, and for / = n the last tensor product factor 

is PnH*(X). 
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4) For / = n in 3), H*(En)®P\H*(En-\) <8> • • • ®Pn-\H*(E\) is exactly the homology 
operations of length n. 

5) //*(£;, Mn-i) is actually the coinvariants of Mn_„ //*(£,-, M„_/) = Z//?Z(8) (Mn_/)£;. 
This observation reveals a relation between thep-th product of elements of Mn_/. This is 
what we call /?-commutativity: 

X\ (& X2 ® ' ' • <8> Xp = X2 (8) *3 ® ' ' • ® X\ = Xp 0 X\ 8) ' • • (g) Xp-\. 

If/? = 2, this is exactly commutativity, or if E{ is replaced by £p, since all permutations 
are allowed. The non-associativity comes from the same idea: Since/? is odd,/? > 3, (the 
same is true for p = 2). We see that (x\x2)x3 can not be equivalent to x\ (x2x3) under the 
group action, since for example: 1 8)x\ 8Dx2 8D*3 = 1 ®x2 0x3 ®x\ ~ 1 C8X3 (&x\ Ç§xi, 
where 1 ® JCI (8) X2 ® X3 G //*(£i, M) = Z//?Z (8) ME] . But associativity is obtained when 
Gn = Xp«, for all n. 

6) The multiplication between homology classes expressed by tensor products coin
cides with the one induced by the product on a (Gn)-space Y: 

//*: H*(Y x Y) - • //*(y), for y a (G„)-space. 

/ i*(*l,*2) = *l-*2 = (*1 ®X2 ® 1 ® ' • • ® 1)E=Z/PZ-

Here JCI, X2 are first injected into H*(Gn I X) and then their images are considered in 
H*(GoolX). 

H*(GnlX)®H*(GnlX) ^ H^EilGnlX) ° ^ H^G^lX) 

l(JG„)*®(JG„)* 1 0 ' G „ + , ) * 

H*(G00IX)®H*(G00IX) ^ H*(EilGoolX) ^ H^G^lX) 

It is obvious that the diagram above commutes and (#1 o x)* = M*- Here (x«)* is a 
monomorphism modulo/7-commutativity, and (/£„)* *s m e nionomorphism induced by 
the inclusion. The diagram above can be generalized for Gn any other group from the 
family we are interested in. 

7) There is a relation on this direct limit system induced by the definition of the oper
ations, namely: 

We see that the/?-th powers of homology classes appear as images of suitable operations. 
We proceed by induction on n, the number of wreath factors on Gn\X. The last remark 

to make is that at each stage the only new elements appearing in the direct sum splitting 
are due to new operations of length n, namely the generators given in the statement of 
theorem. The rest of the homology consists of products of elements appearing at least 
one step before. 

Before we discuss the homology of (Gn)-spaces related to parabolic subgroups, we 
recall some key statements from the literature. 
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THEOREM 4.2 NAKAOKA [14]. HqÇL^ Z/pZ) = £ r <^ Uf{Q(pJ), where U?(Q(pj) 
is the module over Z/pZ generated by monomials Qm]/l • • • Q"1'1', where Q1' is an admis
sible element of the Dyer-Lashof coalgebra R[t] such that q = £ mt\It\ and r — J2 mtP*-

We can rewrite the isomorphism above as follows: 

HqÇLpn,Z/pZ)=^2Wr(Q(p))= £ tf?(G(p)) ©tf[n]. 
r<p" r<p"~{ 

4.3. Next we consider the following decompositions: 

Ht(L^p IX) = / /*(Ip V) <g> PnH*(X) ©//»(I p V ; M) 
= ®n

k=0H*(En) <g> /»,//,(£:„_,) (g> • • • <g> PkH*(E„_k,M„-k) 
Ï 

H*(Lp l---lZplX) = HAZP l---lXp® PnH*(X) ®H*(Lpl---l Lp; M) 
= ®n

k=0H41,p) <g> P,//*(Z„) ® • • • ® PkH*ÇLp,M„-k) 
I 

HAZNJX) = H*ÇLNn)®P„H*{X)®H*ÇLNn;M) 

= RN[ii] ® P„Ht(X) © ( ^ ^ ) <8> P„H.(X) (BH*(LNn;M) 
I 

H*(I,pn IX) = # , ( 2 » <g> />„//*(X) © //*(£„„; M) = 

= R[ll] <g> P„//*(X> © Er<p--1 £/?(C(p)) ® PnH.W 
®H*(Zp»;M) 

4.4. Moreover, if we restrict each of these maps to 

H,(En) <g> Pi#*(£„_i) ® • • • ® P„_i// t(£i), 

we have the following epimorphisms: 

I 
fi[n]<®/>„//* (X) 

I 
RN[n] <g> P„#„(X) 

I 
R[n] <g> P«H,(X) 

These are the coalgebras that classify the appropriate operations of length n. 

4.5. Let Gn = ~LP I • • • I ~LP. To prove the analogous theorem for this system of groups 
we consider the following commutative diagram: 

H,(X) -

H,(X) -

The epimorphism between H*(Lp*>tP IX) and //*(Goo IX) is induced by the epimor
phisms between H*(E„ I- • -lEilX) and Ht(Lp I- • -II,PIX). We have seen that Ht(Lp«,iPlX) 
is an associative /^-commutative algebra over the extended Dyer-Lashof algebra and a 

tf*(Ei*X) -+ H,(E2}EllX) - • • 

I 1 
HAZplX) - » HAZplZplX) — • 

•• —• HfÇLpooplX) 

I 
•• - » H,(GooiX) 
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coalgebra over the opposite Steenrod algebra. Since the //* product in homology is in
duced by the tensor product between homology classes of these spaces and since the 
epimorphisms above preserve this product, the last epimorphism is an algebra epimor-
phism. Finally, since the coalgebra monomorphisms are induced from the appropriate 
inclusions, the following theorem has been proved. 

THEOREM 4.6. Let X be a pointed connected space of finite type, and Gn = T,pll,pl 
• • -lisp. Then H*(GoolX, Z/pZ) is a free non associative, commutative algebra overZ/pZ 
generated by the free B-module B(H*(X)) modulo the relation: Qsx — xF, if 2s — \x\, 
x G B(H*(X)\ Moreover 7/*(Goo ?X, Z/pZ) is a coalgebra, where the coproduct is given 
by: 

V'Q7* = Y, Q**' ® Q1*"' with ^x = Y-,x' ® x" • 

Here B(Ht(X)) is a fixed homogeneous basis ofH*(X) over Z/pZ. 

It is obvious now that the diagram above can be extended to calculate 
H*(Goo I X\ Z/pZ), for Gn = Zp"/ I • • • I Z^i, with n = m + • • • + ni as defined be
fore. We only need to observe that the sequence of the positive integers TV = (n\,...) 
indicates where to expect Adem relations. Thus if N — 0, Adem relations are carried up 
to the homology of the limit space, i.e. the Dyer-Lashof algebra R. 

THEOREM 4.7. Let X be a pointed connected space of finite type, and either Gn = 
lépnil- - -ÎLpn\ associated to an increasing sequence N = (n\, n^,...) of positive integers or 
Gn = Zpn. Then 7/*(Goo IX, Z/pZ) is a free non associative, (associative, ifGn = Zp»for 
all n), commutative algebra over Z/pZ generated by the free RN-module H*(X) modulo 
the relation: Qsx = X?, if 2s = \x\, x G B(H*(X)). Moreover H*(Goo I X,Z/pZ) is a 
coalgebra, where the coproduct is given by: 

^x = Yl QKx' ® Q*x"> with ^x = Ylx' ® *"• 
K+J=Ij'j" 

Here B(H*(X)\ is a fixed homogeneous basis ofH*(X) over Z/pZ. 

Let us make a few remarks before we close this work. First, //*(Goo I X, Z/pZ) is a 
Steenrod opposite algebra via Nishida relations, admits a coproduct structure, and is an 
algebra over the appropriate extended Dyer-Lashof algebra (RN or R). The difference 
between H^G^ IX, Z/pZ) and H*ÇLpoo I X, Z/pZ) (for N ^ 0 and N = 0) is that the 
second is associative. Second, it is known that there exists an injection in homology 
between Ẑ oo IX and QX. That is //*(Zpoo IX) lives inside the homology of the appropriate 
infinite loop space and R is an invariant in the category of QX. We are not able to observe 
a similarity for (Gn) a sequence of parabolas. That is "is there a category of spaces which 
contains G^ ! X and the extended Dyer-Lashof algebra as an invariant?" (See also [ 1].) 
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