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Suppose 4 and B are continuous linear operators mapping a complex Banach
space X into itself. For any polynomial p over C, it is obvious that when 4 com-
mutes with B, then p(4) commutes with B. To see that the reverse implication is
false, let 4 be nilpotent of order n. Then A" commutes with all B but A cannot do
so. Sufficient conditions for the implication: p(4) commutes with B implies 4
commutes with B: were given by Embry [2] for the case p(1) = A" and Finkelstein
and Lebow [3] in the general case. The latter authors proved in fact that if fis a
function holomorphic on ¢(4) and if f'is univalent with non-vanishing derivative
on o(4), then 4 can be expressed as a function of f(4).

In this paper, similar questions are studied when A and B are closed operators
with domain and range in X. Immediately the question of the definition of com-
mutativity arises. Several definitions appear in the literature. A well-known ap-
proach is

C, : B commutes with A iff D(B), the domain of B is all of X and

AB is an extension of BA.
See, for example, [5].
More recently, Marti [4] used the condition:

C, : B commutes with A iff D(A) < D(B), BD(A) < D(A) and

ABx = BAx
for all x e D(BA).

It is a simple exercise to show that C; implies C,. Both C; and C, suffer from an
evident lack of symmetry. A symmetrical definition appears in [1]:

C; : B commutes with A iff D(A) n D(AB) = D(B) n D(BA) and

ABx = BAx
JSor all xe D(AB) n D(BA).

Again, it is straightforward to verify that C, implies C5. Moreover, if D(B) = X,
then C; implies C, . If A and B are closed operators with non empty resolvent sets,
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then from [1], we know that Cj is a necessary and sufficient condition for the com-
mutativity of the resolvent operators.

In that which follows, we obtain a sufficient condition that the C;-commuta-
tivity of p(4) with B should imply the C;-commutativity of 4 with B when A and
B are closed operators with non empty resolvent sets. Suppose that p is a monic
polynomial of degree n and let 1, € p(A4). If u(, 4y, - - -, #, denote the roots of
p() = p(Ao) with pu; = A, then, since p(A) is an open set we can assume without
loss of generality that p'(w,) # O for k = 1, 2, - - -, n and that the p, are distinct.
In these terms we can state

THEOREM. Suppose that p(A) commutes with B in the C; sense. Suppose also
that for some A, € p(A) we have
- 1
X -
k=1 p ()R~ ) (A2 — 1)
Sfor all Ay, A, € 6(A). Then A commutes with B in the C; sense.

¢y

ProOF. Since p(u)—p(do) = [Tr=1(¢t—m) and the p, are distinct, we can
write [p(u)—p(4o)]™" = Y-y a(u—m) " and hence

a = lim —F7H g _FTHe ,1 .
s ()= P(Ro)  wome () —p(e) P11
Moreover
(A_l‘k)—1 = [(A_Iix)[l'*'(A—M)_l(ﬂx—#k)]]_l
= [T+(A4—20) (s — )1 1 (A—20) 7Y,
so that )
[p(A)—p(4e)] ™" =i |:I‘*‘(1"‘1"/10)_1(#1—#k)]—l(A—'lo)—1 .
k=1~ P'(m)
If we define
=Y ’

k=1 p'()[1— (s — )A]

then [p(4)—p(2o)]1" = fI(A—2)"']. If f fulfils the requirements of the result
of Finkelstein and Lebow, then we can conclude that (4—4,)~" is a function
of [p(A4)—p(4e)]~" and hence the result follows.

Consider now the properties of f. Evidently f is analytic except when A =
(e —40) 1. Now since p(4)—p(Ao) = [ [i=1 (4 — )it is evident that all g belong
to p(A4). Hence (1,—Ao) ™! € p[(A—25)~ 1] so that f'is analytic on o[(4—40) ']
It remains to show that the restriction of f'to ¢[(4— o)~ *]is univalent with non-
vanishing derivative. Straightforward calculations show that this requirement is
precisely the assumed property (1). For example, if 0,0, e 6[(4—1,)""] then
there exists 4,, 4, € 6(4) such that (1,—2,)"* = 0;, i = 1, 2. Suppose 0, # 0,
but f(8,) = f(6,); then
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T (=20 ). |1+ j—:ﬂ} =% (=t |1+ %];

which reduces to

PP ONICIET) S o PPN/ ) R
@ N
kzl[p’(ﬂk)('ll — (A —u)]™! = 0.

Since this contradicts (1), we know that f'is univalent on ¢[(4—4,)~']. In a similar
way, the assumption that f'(8,) = 0 leads to equation (1) with A; = A,. This
concludes the proof.

REMARK. The relation of the result of our theorem and the results of [2] and
[3] seems obscure. Even when 4 and B are in B(X) and p(1) = 4", (1) reduces to

k
= o)

£
";1 (0" 2y = Ao)(@" A, = 4o)
where @ = exp (2in/n). It is not obvious that this condition is related in any simple
way to that of [2]: 6(4) N o(w*4) = ¢, k = 2,3, -, n. However when n = 2,
(3) reduces to Ag(4; +4,) # 0 so that (1) is equivalent to the condition of [2].

0 for 4,2, e0(A)

(3)

COROLLARY. If 6(A) = ¢ and p(A) commutes with B in the C; sense, then A
commutes with B in the C sense.
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