
1
The Modern Mathematics of Deep Learning
Julius Berner, Philipp Grohs, Gitta Kutyniok and Philipp Petersen

Abstract: We describe the new field of the mathematical analysis of deep learn-
ing. This field emerged around a list of research questions that were not answered
within the classical framework of learning theory. These questions concern: the
outstanding generalization power of overparametrized neural networks, the role of
depth in deep architectures, the apparent absence of the curse of dimensionality, a
surprisingly successful optimization performance despite the non-convexity of the
problem, understanding what features are learned, why deep architectures perform
exceptionally well in physical problems, and which fine aspects of an architec-
ture affect the behavior of a learning task in which way. We present an overview
of modern approaches that yield partial answers to these questions. For selected
approaches, we describe the main ideas in more detail.

1.1 Introduction
Deep learning has undoubtedly established itself as the outstanding machine learn-
ing technique of recent times. This dominant position has been claimed through a
series of overwhelming successes in widely different application areas.

Perhaps the most famous application of deep learning, and certainly one of the
first where these techniques became state-of-the-art, is image classification (LeCun
et al., 1998; Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016). In this
area, deep learning is nowadays the only method that is seriously considered. The
prowess of deep learning classifiers goes so far that they often outperform humans
in image-labelling tasks (He et al., 2015).

A second famous application area is the training of deep-learning-based agents
to play board games or computer games, such as Atari games (Mnih et al., 2013).
In this context, probably the most prominent achievement yet is the development of
an algorithm that beat the best human player in the game of Go (Silver et al., 2016,
2017) – a feat that was previously unthinkable owing to the extreme complexity

1

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

2 Berner et al. The Modern Mathematics of Deep Learning

of this game. Moreover, even in multiplayer, team-based games with incomplete
information, deep-learning-based agents nowadays outperform world-class human
teams (Berner et al., 2019a; Vinyals et al., 2019).
In addition to playing games, deep learning has also led to impressive break-

throughs in the natural sciences. For example, it is used in the development of
drugs (Ma et al., 2015), molecular dynamics (Faber et al., 2017), and in high-energy
physics (Baldi et al., 2014). One of the most astounding recent breakthroughs in
scientific applications is the development of a deep-learning-based predictor for the
folding behavior of proteins (Senior et al., 2020). This predictor is the first method
to match the accuracy of lab-based methods.
Finally, in the vast field of natural language processing, which includes the

subtasks of understanding, summarizing, and generating text, impressive advances
have been made based on deep learning. Here, we refer to Young et al. (2018)
for an overview. One technique that has recently stood out is based on a so-called
transformer neural network (Bahdanau et al., 2015; Vaswani et al., 2017). This
network structure has given rise to the impressive GPT-3 model (Brown et al.,
2020) which not only creates coherent and compelling texts but can also produce
code, such as that for the layout of a webpage according to some instructions
that a user inputs in plain English. Transformer neural networks have also been
successfully employed in the field of symbolic mathematics (Saxton et al., 2018;
Lample and Charton, 2019).
In this chapter, we present and discuss the mathematical foundations of the

success story outlined above. More precisely, our goal is to outline the newly
emerging field of themathematical analysis of deep learning. To accurately describe
this field, a necessary preparatory step is to sharpen our definition of the term deep
learning. For the purposes of this chapter, we will use the term in the following
narrow sense: deep learning refers to techniques where deep neural networks1 are
trained with gradient-based methods. This narrow definition helps to make this
chapter more concise. We would like to stress, however, that we do not claim in any
way that this is the best or the right definition of deep learning.
Having fixed a definition of deep learning, three questions arise concerning the

aforementioned emerging field of mathematical analysis of deep learning. To what
extent is a mathematical theory necessary? Is it truly a new field? What are the
questions studied in this area?
Let us start by explaining the necessity of a theoretical analysis of the tools de-

scribed above. From a scientific perspective, the primary reason why deep learning
should be studied mathematically is simple curiosity. As we will see throughout
this chapter, many practically observed phenomena in this context are not explained

1 We will define the term neural network later but, for now, we can view it as a parametrized family of functions
with a differentiable parametrization.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 3

theoretically. Moreover, theoretical insights and the development of a comprehen-
sive theory often constitute the driving force underlying the development of new
and improved methods. Prominent examples of mathematical theories with such
an effect are the theory of fluid mechanics which is fundamental ingredient of the
design of aircraft or cars, and the theory of information which affects and shapes
all modern digital communication. In the words of Vladimir Vapnik2: “Nothing is
more practical than a good theory,” (Vapnik, 2013, Preface). In addition to being
interesting and practical, theoretical insight may also be necessary. Indeed, in many
applications of machine learning, such as medical diagnosis, self-driving cars, and
robotics, a significant level of control and predictability of deep learning methods
is mandatory. Also, in services such as banking or insurance, the technology should
be controllable in order to guarantee fair and explainable decisions.

Let us next address the claim that the field of mathematical analysis of deep learn-
ing is a newly emerging area. In fact, under the aforementioned definition of deep
learning, there are two main ingredients of the technology: deep neural networks
and gradient-based optimization. The first artificial neuron was already introduced
in McCulloch and Pitts (1943). This neuron was not trained but instead used to ex-
plain a biological neuron. The first multi-layered network of such artificial neurons
that was also trained can be found in Rosenblatt (1958). Since then, various neural
network architectures have been developed. We will discuss these architectures in
detail in the following sections. The second ingredient, gradient-based optimiza-
tion, is made possible by the observation that, owing to the graph-based structure
of neural networks, the gradient of an objective function with respect to the param-
eters of the neural network can be computed efficiently. This has been observed in
various ways: see Kelley (1960); Dreyfus (1962); Linnainmaa (1970); Rumelhart
et al. (1986). Again, these techniques will be discussed in the upcoming sections.
Since then, techniques have been improved and extended. As the rest of the chapter
is spent reviewing these methods, we will keep the discussion of literature brief at
this point. Instead, we refer to some overviews of the history of deep learning from
various perspectives: LeCun et al. (2015); Schmidhuber (2015); Goodfellow et al.
(2016); Higham and Higham (2019).

Given the fact that the two main ingredients of deep neural networks have been
around for a long time, one might expect that a comprehensive mathematical the-
ory would have been developed that describes why and when deep-learning-based
methods will perform well or when they will fail. Statistical learning theory (An-
thony and Bartlett, 1999; Vapnik, 1999; Cucker and Smale, 2002; Bousquet et al.,
2003; Vapnik, 2013) describes multiple aspects of the performance of general
learning methods and in particular deep learning. We will review this theory in the

2 This claim can be found earlier in a non-mathematical context in the works of Kurt Lewin (1943).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

4 Berner et al. The Modern Mathematics of Deep Learning

context of deep learning in §1.1.2 below. Here, we focus on the classical, deep-
learning-related results that we consider to be well known in the machine learning
community. Nonetheless, the choice of these results is guaranteed to be subjective.
We will find that this classical theory is too general to explain the performance of
deep learning adequately. In this context, we will identify the following questions
that appear to be difficult to answer within the classical framework of learning the-
ory: Why do trained deep neural networks not overfit on the training data despite
the enormous power of the architecture? What is the advantage of deep compared
to shallow architectures? Why do these methods seemingly not suffer from the curse
of dimensionality? Why does the optimization routine often succeed in finding good
solutions despite the non-convexity, nonlinearity, and often non-smoothness of the
problem? Which aspects of an architecture affect the performance of the associated
models and how? Which features of data are learned by deep architectures? Why
do these methods perform as well as or better than specialized numerical tools in
the natural sciences?
The new field of the mathematical analysis of deep learning has emerged around

questions like those listed above. In the remainder of this chapter, we will collect
some of the main recent advances towards answering these questions. Because this
field of the mathematical analysis of deep learning is incredibly active and new
material is added at breathtaking speed, a brief survey of recent advances in this
area is guaranteed to miss not only a couple of references but also many of the most
essential ones. Therefore we do not strive for a complete overview but, instead,
showcase several fundamental ideas on a mostly intuitive level. In this way, we
hope to allow readers to familiarize themselves with some exciting concepts and
provide a convenient entry-point for further studies.

1.1.1 Notation
We denote by N the set of natural numbers, by Z the set of integers, and by R the
field of real numbers. For N ∈ N, we denote by [N] the set {1, . . . ,N}. For two
functions f ,g : X → [0,∞), we write f . g if there exists a universal constant
c such that f (x) ≤ cg(x) for all x ∈ X. In a pseudometric space (X, dX), we
define the ball of radius r ∈ (0,∞) around a point x ∈ X by BdX

r (x), or Br (x) if
the pseudometric dX is clear from the context. By ‖ · ‖p, p ∈ [1,∞], we denote
the `p-norm, and by 〈·, ·〉 the Euclidean inner product of given vectors. By ‖ · ‖op
we denote the operator norm induced by the Euclidean norm and by ‖ · ‖F the
Frobenius norm of given matrices. For p ∈ [1,∞], s ∈ [0,∞), d ∈ N, and X ⊂ Rd,
we denote by W s,p(X) the Sobolev–Slobodeckij space, which for s = 0 is just a
Lebesgue space, i.e.,W0,p(X) = Lp(X). For measurable spacesX andY, we define
M(X,Y) to be the set of measurable functions from X to Y. We denote by ĝ the

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 5

Fourier transform3 of a tempered distribution g. For probabilistic statements, we
will assume a suitable underlying probability space with probability measure I.
For an X-valued random variable X , we denote by E[X] and V[X] its expectation
and variance and by IX the image measure of X on X, i.e., IX(A) = I(X ∈ A) for
every measurable set A ⊂ X. If possible, we use the corresponding lowercase letter
to denote the realization x ∈ X of the random variable X for a given outcome. We
write Id for the d-dimensional identity matrix and, for a set A, we write 1A for the
indicator function of A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

1.1.2 Foundations of Learning Theory
Before we describe recent developments in the mathematical analysis of deep learn-
ing methods, we will start by providing a concise overview of the classical math-
ematical and statistical theory underlying machine learning tasks and algorithms
that, in their most general form, can be formulated as follows.

Definition 1.1 (Learning – informal). Let X,Y, andZ be measurable spaces. In a
learning task, one is given data in Z and a loss function L : M(X,Y) × Z → R.
The goal is to choose a hypothesis set F ⊂ M(X,Y) and to construct a learning
algorithm, i.e., a mapping

A :
⋃
m∈N
Zm → F ,

that uses training data s = (z(i))m
i=1 ∈ Zm to find a model fs = A(s) ∈ F that

performs well on the training data s and also generalizes to unseen data z ∈ Z.
Here, performance is measured via the loss function L and the corresponding
loss L(fs, z) and, informally speaking, generalization means that the out-of-sample
performance of fs at z behaves similarly to the in-sample performance on s.

Definition 1.1 is deliberately vague on how to measure generalization perfor-
mance. Later, we will often study the expected out-of-sample performance. To talk
about expected performance, a data distribution needs to be specified. We will
revisit this point in Assumption 1.10 and Definition 1.11.

For simplicity, we focus on one-dimensional supervised prediction tasks with
input features in Euclidean space, as defined in the following.

Definition 1.2 (Prediction task). In a prediction task, we have thatZ B X×Y, i.e.,
we are given training data s = ((x(i), y(i)))m

i=1 that consist of input features x(i) ∈ X
and corresponding labels y(i) ∈ Y. For one-dimensional regression tasks with
Y ⊂ R, we consider the quadratic loss L(f , (x, y)) = (f (x) − y)2 and, for binary

3 Respecting common notation, we will also use the hat symbol to denote the minimizer of the empirical risk f̂s
in Definition 1.8 but this clash of notation does not involve any ambiguity.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

6 Berner et al. The Modern Mathematics of Deep Learning

classification tasks with Y = {−1,1}, we consider the 0–1 loss L(f , (x, y)) =
1(−∞,0)(y f (x)). We assume that our input features are in Euclidean space, i.e.,
X ⊂ Rd with input dimension d ∈ N.
In a prediction task, we aim for a model fs : X → Y, such that, for unseen pairs
(x, y) ∈ X × Y, fs(x) is a good prediction of the true label y. However, note that
large parts of the presented theory can be applied to more general settings.

Remark 1.3 (Learning tasks). Apart from straightforward extensions to multi-
dimensional prediction tasks and other loss functions, we want to mention that
unsupervised and semi-supervised learning tasks are often treated as prediction
tasks. More precisely, one transforms unlabeled training data z(i) into features
x(i) = T1(z(i)) ∈ X and labels y(i) = T2(z(i)) ∈ Y using suitable transformations
T1 : Z → X, T2 : Z → Y. In doing so, one asks for a model fs approximating the
transformation T2 ◦ T−1

1 : X → Y which is, for example, made in order to learn
feature representations or invariances.
Furthermore, one can consider density estimation tasks, where X = Z, Y B
[0,∞], and F consists of probability densities with respect to some σ-finite ref-
erence measure µ on Z. One then aims for a probability density fs that approxi-
mates the density of the unseen data z with respect to µ. One can perform L2(µ)-
approximation based on the discretizationL(f , z) = −2 f (z)+‖ f ‖2

L2(µ) ormaximum
likelihood estimation based on the surprisal L(f , z) = − log(f (z)).
In deep learning the hypothesis set F consists of realizations of neural networks

Φa(·, θ), θ ∈ P, with a given architecture a and parameter set P. In practice, one
uses the term neural network for a range of functions that can be represented by
directed acyclic graphs, where the vertices correspond to elementary almost every-
where differentiable functions parametrizable by θ ∈ P and the edges symbolize
compositions of these functions. In §1.6, we will review some frequently used ar-
chitectures; in the other sections, however, we will mostly focus on fully connected
feed-forward (FC) neural networks as defined below.

Definition 1.4 (FC neural network). A fully connected feed-forward neural network
is given by its architecture a = (N, %), where L ∈ N, N ∈ NL+1, and % : R→ R. We
refer to % as the activation function, to L as the number of layers, and to N0, NL ,
and N` , ` ∈ [L − 1], as the number of neurons in the input, output, and `th hidden
layer, respectively. We denote the number of parameters by

P(N) B
L∑
`=1

N`N`−1 + N`

and define the corresponding realization functionΦa : RN0 ×RP(N) → RNL , which

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 7

x1

x2

x3

Φ
(1)
1

Φ
(1)
2

Φ
(1)
3

Φ
(1)
4

x 7→ W (1)x + b(1)

Φ̄
(1)
1

Φ̄
(1)
2

Φ̄
(1)
3

Φ̄
(1)
4

%

Φ
(2)
1

Φ
(2)
2

Φ
(2)
3

Φ
(2)
4

Φ
(2)
5

Φ
(2)
6

x 7→ W (2)x + b(2)

Φ̄
(2)
1

Φ̄
(2)
2

Φ̄
(2)
3

Φ̄
(2)
4

Φ̄
(2)
5

Φ̄
(2)
6

% Φax 7→ W (3)x + b(3)

Figure 1.1 Graph (pale gray) and (pre-)activations of the neurons (white) of a deep fully con-
nected feed-forward neural network Φa : R3 × R53 7→ R with architecture a = ((3, 4, 6, 1), %)
and parameters θ = ((W (`), b(`))3

`=1.

satisfies, for every input x ∈ RN0 and parameters

θ = (θ(`))L`=1 = ((W (`), b(`)))L`=1 ∈
L?
`=1
(RN`×N`−1 × RN`) � RP(N) ,

that Φa(x, θ) = Φ(L)(x, θ), where
Φ(1)(x, θ) = W (1)x + b(1),

Φ̄(`)(x, θ) = %(Φ(`)(x, θ)), ` ∈ [L − 1], and

Φ(`+1)(x, θ) = W (`+1)Φ̄(`)(x, θ) + b(`+1), ` ∈ [L − 1],
(1.1)

and % is applied componentwise. We refer to W (`) ∈ RN`×N`−1 and b(`) ∈ RN`

as the weight matrices and bias vectors, and to Φ̄(`) and Φ(`) as the activations
and pre-activations of the N` neurons in the `th layer. The width and depth of the
architecture are given by ‖N ‖∞ and L and we call the architecture deep if L > 2
and shallow if L = 2.

The underlying directed acyclic graph of FC networks is given by compositions
of the affine linear maps x 7→ W (`)x + b(`), ` ∈ [L], with the activation function
% intertwined; see Figure 1.1. Typical activation functions used in practice are
variants of the rectified linear unit (ReLU) given by %R(x) B max{0, x} and
sigmoidal functions % ∈ C(R) satisfying %(x) → 1 for x → ∞ and %(x) → 0 for
x → −∞, such as the logistic function %σ(x) B 1/(1 + e−x) (often referred to as
the sigmoid function). See also Table 1.1 for a comprehensive list of widely used
activation functions.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

8 Berner et al. The Modern Mathematics of Deep Learning

Name Given as a function Plot
of x ∈ R by

linear x

Heaviside / step function 1(0,∞)(x)

logistic / sigmoid 1
1+e−x

rectified linear unit (ReLU) max{0, x}

power rectified linear unit max{0, x}k for k ∈ N

parametric ReLU (PReLU) max{ax, x} for a ≥ 0, a ,
1

exponential linear unit (ELU) x·1[0,∞)(x)+

(ex − 1)·1(−∞,0)(x)

softsign x
1+ |x |

inverse square root linear unit x·1[0,∞)(x)+
x√

1+ax2 ·1(−∞,0)(x) for a > 0

inverse square root unit x√
1+ax2 for a > 0

tanh ex−e−x
ex+e−x

arctan arctan(x)

softplus ln(1 + ex)

Gaussian e−x
2/2

Table 1.1 List of commonly used activation functions.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 9

Remark 1.5 (Neural networks). If not further specified, we will use the term
(neural) network, or the abbreviation NN, to refer to FC neural networks. Note
that many of the architectures used in practice (see §1.6) can be written as special
cases of Definition 1.4 where, for example, specific parameters are prescribed by
constants or shared with other parameters. Furthermore, note that affine linear
functions are NNs with depth L = 1. We will also consider biasless NNs given by
linear mappings without bias vector, i.e., b(`) = 0, ` ∈ [L]. In particular, any NN
can always be written without bias vectors by redefining

x →
[
x
1

]
; (W (`), b(`)) →

[
W (`) b(`)

0 1

]
; ` ∈ [L − 1]; and

(W (L), b(L)) → [
W (L) b(L)

]
.

To enhance readability we will often not specify the underlying architecture a =
(N, %) or the parameters θ ∈ RP(N) but use the termNN to refer to the architecture as
well as the realization functionsΦa(·, θ) : RN0 → RNL orΦa : RN0×RP(N) → RNL .
However, we want to emphasize that one cannot infer the underlying architecture
or properties such as the magnitude of parameters solely from these functions, as
the mapping (a, θ) 7→ Φa(·, θ) is highly non-injective. As an example, we can set
W (L) = 0, which implies Φa(·, θ) = b(L) for all architectures a = (N, %) and all
values of (W (`), b(`))L−1

`=1 .

In view of our considered prediction tasks in Definition 1.2, this naturally leads
to the following hypothesis sets of neural networks.

Definition 1.6 (Hypothesis sets of neural networks). Let a = (N, %) be a NN archi-
tecture with input dimension N0 = d, output dimension NL = 1, and measurable
activation function %. For regression tasks the corresponding hypothesis set is given
by

Fa =
{
Φa(·, θ) : θ ∈ RP(N)}

and for classification tasks by

Fa,sgn =
{
sgn(Φa(·, θ)) : θ ∈ RP(N)}, where sgn(x) B

{
1, if x ≥ 0,
−1, if x < 0.

Note that we compose the output of the NN with the sign function in order
to obtain functions mapping to Y = {−1,1}. This can be generalized to multi-
dimensional classification tasks by replacing the sign by an argmax function. Given
a hypothesis set, a popular learning algorithm is empirical riskminimization (ERM),
which minimizes the average loss on the given training data, as described in the
next two definitions.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

10 Berner et al. The Modern Mathematics of Deep Learning

Definition 1.7 (Empirical risk). For training data s = (z(i))m
i=1 ∈ Zm and a function

f ∈ M(X,Y), we define the empirical risk by

R̂s(f) B 1
m

m∑
i=1
L(f , z(i)). (1.2)

Definition 1.8 (ERM learning algorithm). Given a hypothesis set F , an empirical
risk-minimization algorithm Aerm chooses4 for training data s ∈ Zm a minimizer
f̂s ∈ F of the empirical risk in F , i.e.,

Aerm(s) ∈ argmin
f ∈F

R̂s(f). (1.3)

Remark 1.9 (Surrogate loss and regularization). Note that, for classification tasks,
one needs to optimize over non-differentiable functions with discrete outputs
in (1.3). For an NN hypothesis set Fa,sgn one typically uses the corresponding
hypothesis set for regression tasks Fa to find an approximate minimizer f̂ surr

s ∈ Fa
of

1
m

m∑
i=1
Lsurr(f , z(i)),

where Lsurr : M(X,R) × Z → R is a surrogate loss guaranteeing that sgn(f̂ surr
s) ∈

argmin f ∈Fa ,sgn R̂s(f). A frequently used surrogate loss is the logistic loss,5 given
by

Lsurr(f , z) = log
(
1 + e−y f (x)

)
.

In various learning tasks one also adds regularization terms to the minimization
problem in (1.3), such as penalties on the norm of the parameters of the NN, i.e.,

min
θ∈RP(N)

R̂s(Φa(·, θ)) + α‖θ‖22,

where α ∈ (0,∞) is a regularization parameter. Note that in this case the minimizer
depends on the chosen parameters θ and not only on the realization functionΦa(·, θ);
see also Remark 1.5.

Coming back to our initial, informal description of learning in Definition 1.1,
we have now outlined potential learning tasks in Definition 1.2, NN hypothesis sets
in Definition 1.6, a metric for the in-sample performance in Definition 1.7, and a

4 For simplicity, we assume that the minimum is attained; this is the case, for instance, if F is a compact
topological space on which R̂s is continuous. Hypothesis sets of NNs F(N , %) constitute a compact space if,
for example, one chooses a compact parameter set P ⊂ RP(N) and a continuous activation function %. One
could also work with approximate minimizers: see Anthony and Bartlett (1999).

5 This can be viewed as cross-entropy between the label y and the output of f composed with a logistic function
%σ . In a multi-dimensional setting one can replace the logistic function with a softmax function.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 11

corresponding learning algorithm in Definition 1.8. However, we are still lacking a
mathematical concept to describe the out-of-sample (generalization) performance
of our learning algorithm. This question has been intensively studied in the field of
statistical learning theory; see §1.1 for various references.

In this field one usually establishes a connection between the unseen data z and
the training data s = (z(i))m

i=1 by imposing that z and z(i), i ∈ [m], are realizations
of independent samples drawn from the same distribution.

Assumption 1.10 (Independent and identically distributed data). We assume that
z(1), . . . , z(m), z are realizations of i.i.d. random variables Z (1), . . . , Z (m), Z .

In this formal setting, we can compute the average out-of-sample performance
of a model. Recall from our notation in §1.1.1 that we denote by IZ the image
measure of Z on Z, which is the underlying distribution of our training data
S = (Z (i))m

i=1 ∼ Im
Z and unknown data Z ∼ IZ .

Definition 1.11 (Risk). For a function f ∈ M(X,Y), we define6 the risk by

R(f) B E[L(f , Z)] = ∫
Z
L(f , z) dIZ (z). (1.4)

Defining S B (Z (i))m
i=1, the risk of a model fS = A(S) is thus given by R(fS) =

E
[L(fS, Z)|S]

.

For prediction tasks, we can write Z = (X,Y) such that the input features and
labels are given by anX-valued random variable X and aY-valued random variable
Y , respectively. Note that for classification tasks the risk equals the probability of
misclassification

R(f) = E[1(−∞,0)(Y f (X))] = I[f (X) , Y].

For noisy data, there might be a positive lower bound on the risk, i.e., an irre-
ducible error. If the lower bound on the risk is attained, one can also define the
notion of an optimal solution to a learning task.

Definition 1.12 (Bayes-optimal function). A function f ∗ ∈ M(X,Y) achieving the
smallest risk, the so-called Bayes risk

R∗ B inf
f ∈M(X,Y)

R(f),

is called a Bayes-optimal function.

6 Note that this requires z 7→ L(f , z) to be measurable for every f ∈ M(X, Y), which is the case for our
considered prediction tasks.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

12 Berner et al. The Modern Mathematics of Deep Learning

For the prediction tasks in Definition 1.2, we can represent the risk of a func-
tion with respect to the Bayes risk and compute the Bayes-optimal function; see,
e.g., Cucker and Zhou (2007, Propositions 1.8 and 9.3).

Lemma1.13 (Regression and classification risk). For a regression taskwithV[Y] <
∞, the risk can be decomposed as follows:

R(f) = E[(f (X) − E[Y |X])2] + R∗, f ∈ M(X,Y), (1.5)

which is minimized by the regression function f ∗(x) = E[Y |X = x]. For a classifi-
cation task, the risk can be decomposed as

R(f) = E[|E[Y |X]|1(−∞,0)(E[Y |X] f (X))] + R∗, f ∈ M(X,Y), (1.6)

which is minimized by the Bayes classifier f ∗(x) = sgn(E[Y |X = x]).
As our model fS depends on the random training data S, the risk R(fS) is a

random variable and we might aim7 for R(fS) to be small with high probability or
in expectation over the training data. The challenge for the learning algorithmA is
to minimize the risk by using only training data, without knowing the underlying
distribution. One can even show that for every learning algorithm there exists a
distribution where convergence of the expected risk of fS to the Bayes risk is
arbitrarily slow with respect to the number of samples m (Devroye et al., 1996,
Theorem 7.2).

Theorem 1.14 (No free lunch). Let am ∈ (0,∞), m ∈ N, be a monotonically
decreasing sequence with a1 ≤ 1/16. Then for every learning algorithm A of a
classification task there exists a distribution IZ such that for every m ∈ N and
training data S ∼ Im

Z it holds true that

E
[R(A(S))] ≥ R∗ + am.

Theorem 1.14 shows the non-existence of a universal learning algorithm for every
data distribution IZ and shows that useful bounds must necessarily be accompanied
by a priori regularity conditions on the underlying distribution IZ . Such prior
knowledge can then be incorporated into the choice of the hypothesis set F . To
illustrate this, let f ∗F ∈ argmin f ∈F R(f) be a best approximation in F , such that we
can bound the error

R(fS) − R∗

= R(fS) − R̂S(fS) + R̂S(fS) − R̂S(f ∗F) + R̂S(f ∗F) − R(f ∗F) + R(f ∗F) − R∗
≤ εopt + 2εgen + εapprox (1.7)

7 In order to make probabilistic statements on R(fS)we assume that R(fS) is a random variable, i.e., measurable.
This is, for example, the case if F constitutes a measurable space and s 7→ A(s) and f → R |F are measurable.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 13

Figure 1.2 Illustration of the errors (A)–(C) in the decomposition (1.7). It shows the exemplary
risk R̂ (blue) and the empirical risk R̂s (red) with respect to the projected space of measurable
functionsM(X, Y). Note that the empirical risk and thus εgen and εopt depend on the realization
s = (z(i))m

i=1 of the training data S ∼ Im
Z .

by

(A) an optimization error εopt B R̂S(fS) − R̂S(f̂S) ≥ R̂S(fS) − R̂S(f ∗F), with f̂S as
in Definition 1.8,

(B) a (uniform8) generalization error

εgen B sup
f ∈F
|R(f) − R̂S(f)| ≥ max{R(fS) − R̂S(fS), R̂S(f ∗F) − R(f ∗F)},

and
(C) an approximation error εapprox B R(f ∗F) − R∗,
see also Figure 1.2. The approximation error decreases when the hypothesis set is
enlarged, but taking F =M(X,Y) prevents control of the generalization error; see
also Theorem 1.14. This suggests a sweet-spot for the complexity of our hypothesis
set F and is usually referred to as the bias–variance trade-off ; see also Figure 1.4
below. In the next sections, we will sketch mathematical ideas to tackle each of
the errors in (A)–(C) in the context of deep learning. Observe that we bound the
generalization and optimization errors with respect to the empirical risk R̂S and its
minimizer f̂S , motivated by the fact that in deep-learning-based applications one
typically tries to minimize variants of R̂S .

Optimization
The first error in the decomposition of (1.7) is the optimization error: εopt. This
error is primarily influenced by the numerical algorithm A that is used to find the
model fs in a hypothesis set of NNs for given training data s ∈ Zm. We will focus
on the typical setting, where such an algorithm tries to approximately minimize

8 Although this uniform deviation can be a coarse estimate it is frequently used in order to allow for the
application of uniform laws of large numbers from the theory of empirical processes.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

14 Berner et al. The Modern Mathematics of Deep Learning

the empirical risk R̂s. While there are many conceivable methods to solve this
minimization problem, by far the most common are gradient-based methods. The
main reason for the popularity of gradient-based methods is that for FC networks
as in Definition 1.4, the accurate and efficient computation of pointwise derivatives
∇θΦa(x, θ) is possible by means of automatic differentiation, a specific form of
which is often referred to as the backpropagation algorithm (Kelley, 1960; Dreyfus,
1962; Linnainmaa, 1970; Rumelhart et al., 1986;Griewank andWalther, 2008). This
numerical scheme is also applicable in general settings, such as those where the
architecture of the NN is given by a general directed acyclic graph. Using these
pointwise derivatives, one usually attempts to minimize the empirical risk R̂s by
updating the parameters θ according to a variant of stochastic gradient descent
(SGD), which we shall review below in a general formulation.

Algorithm 1.1 Stochastic gradient descent
Input: Differentiable function r : Rp → R, sequence of step sizes ηk ∈ (0,∞),

k ∈ [K],
Rp-valued random variable Θ(0).

Output: Sequence of Rp-valued random variables (Θ(k))K
k=1.

for k = 1, . . . ,K do
Let D(k) be a random variable such that E[D(k) |Θ(k−1)] = ∇r(Θ(k−1)) Set
Θ(k) B Θ(k−1) − ηkD(k)

end for

If D(k) is chosen deterministically in Algorithm 1.1, i.e., D(k) = ∇r(Θ(k−1)), then
the algorithm is known as gradient descent. To minimize the empirical loss, we
apply SGD with r : RP(N) → R set to r(θ) = R̂s(Φa(·, θ)). More concretely, one
might choose a batch-size m′ ∈ N with m′ ≤ m and consider the iteration

Θ(k) B Θ(k−1) − ηk
m′

∑
z∈S′
∇θL(Φa(·,Θ(k−1)), z), (1.8)

where S′ is a so-called mini-batch of size |S′ | = m′ chosen uniformly9 at random
from the training data s. The sequence of step sizes (ηk)k∈N is often called the
learning rate in this context. Stopping at step K , the output of a deep learning
algorithm A is then given by

fs = A(s) = Φa(·, θ̄),
9 We remark that in practice one typically picks S′ by selecting a subset of training data in such a way to cover
the full training data after one epoch of dm/m′e many steps. This, however, does not necessarily yield an
unbiased estimator D(k) of ∇θr(Θ(k−1)) given Θ(k−1).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 15

where θ̄ can be chosen to be the realization of the last parameter Θ(K) of (1.8) or a
convex combination of (Θ(k))K

k=1 such as the mean.
Algorithm 1.1 was originally introduced in Robbins and Monro (1951) in the

context of finding the root of a nondecreasing function from noisy measurements.
Shortly afterwards this idea was applied to find the unique global minimum of a
Lipschitz-regular function that has no flat regions away from the minimum (Kiefer
and Wolfowitz, 1952).

In some regimes, we can guarantee the convergence of SGD at least in expecta-
tion. See Nemirovsky and Yudin (1983), Nemirovski et al. (2009), Shalev-Shwartz
et al. (2009), Shapiro et al. (2014, Section 5.9), Shalev-Shwartz and Ben-David
(2014, Chapter 14). One prototypical convergence guarantee that is found in the
aforementioned references in various forms is stated below.

Theorem 1.15 (Convergence of SGD). Let p,K ∈ N and let r : Rp ⊃ B1(0) → R
be differentiable and convex. Further, let (Θ(k))K

k=1 be the output of Algorithm 1.1
with initialization Θ(0) = 0, step sizes ηk = K−1/2, k ∈ [K], and random variables
(D(k))K

k=1 satisfying ‖D(k)‖2 ≤ 1 almost surely for all k ∈ [K]. Then

E[r(Θ̄)] − r(θ∗) ≤ 1√
K
,

where Θ̄ B 1
K

∑K
k=1 Θ

(k) and θ∗ ∈ argminθ∈B1(0) r(θ).

Theorem 1.15 can be strengthened to yield a faster convergence rate if the
convexity is replaced by strict convexity. If r is not convex then convergence to
a global minimum cannot in general be guaranteed. In fact, in that case, stochastic
gradient descent may converge to a local, non-global minimum; see Figure 1.3 for
an example.

Moreover, gradient descent, i.e., the deterministic version of Algorithm 1.1, will
stop progressing if at any point the gradient of r vanishes. This is the case in
every stationary point of r . A stationary point is either a local minimum, a local
maximum, or a saddle point. One would expect that if the direction of the step
D(k) in Algorithm 1.1 is not deterministic then random fluctuations may allow the
iterates to escape saddle points. Indeed, results guaranteeing convergence to local
minima exist under various conditions on the type of saddle points that r admits
(Nemirovski et al., 2009; Ghadimi and Lan, 2013; Ge et al., 2015; Lee et al., 2016;
Jentzen et al., 2020).

In addition, manymethods that improve convergence by, for example, introducing
more elaborate step-size rules or a momentum term have been established. We
shall not review these methods here, but instead refer to Goodfellow et al. (2016,
Chapter 8) for an overview.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

16 Berner et al. The Modern Mathematics of Deep Learning

Figure 1.3 Examples of the dynamics of gradient descent (four panels on the left) and stochastic
gradient descent (four panels on the right) for an objective functionwith one non-globalminimum
next to the globalminimum.We see that depending on the initial condition and also onfluctuations
in the stochastic part of SGD the algorithm can fail or succeed in finding the global minimum.

Approximation
Generally speaking, NNs, even FC NNs (see Definition 1.4) with only L = 2 layers,
are universal approximators, meaning that under weak conditions on the activation
function % they can approximate any continuous function on a compact set up to
arbitrary precision (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989; Leshno
et al., 1993).

Theorem 1.16 (Universal approximation theorem). Let d ∈ N, let K ⊂ Rd be
compact, and let % ∈ L∞loc(R) be an activation function such that the closure of the
points of discontinuity of % is a Lebesgue null set. Further let

F̃ B
⋃
n∈N
F((d,n,1),%)

be the corresponding set of two-layer NN realizations. Then it follows that C(K) ⊂
cl(F̃) (where closure is taken with respect to the topology induced by the L∞(K)-
norm) if and only if there does not exist a polynomial p : R→ R with p = % almost
everywhere.

The theorem can be proven by the Hahn–Banach theorem, which implies that
F̃ being dense in some real normed vector space S is equivalent to the following
condition: for all non-trivial functionals F ∈ S′ \ {0} from the topological dual
space of S there exist parameters w ∈ Rd and b ∈ R such that

F(%(〈w, ·〉 + b)) , 0.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 17

In the case S = C(K) we have by the Riesz–Markov–Kakutani representation
theorem that S′ is the space of signed Borel measures on K; see Rudin (2006).
Therefore, Theorem 1.16 holds if % is such that, for a signed Borel measure µ,∫

K

%(〈w, x〉 + b) dµ(x) = 0 (1.9)

for all w ∈ Rd and b ∈ R implies that µ = 0. An activation function % satisfying
this condition is called discriminatory. It is not hard to see that any sigmoidal % is
discriminatory. Indeed, assume that % satisfies (1.9) for all w ∈ Rd and b ∈ R. Since
for every x ∈ Rd it follows that %(ax + b) → 1(0,∞)(x) + %(b)1{0}(x) for a → ∞,
we conclude by superposition and passing to the limit that for all c1, c2 ∈ R and
w ∈ Rd, b ∈ R, ∫

K

1[c1,c2](〈w, x〉 + b) dµ(x) = 0.

Representing the exponential function x 7→ e−2πix as the limit of sums of elemen-
tary functions yields that

∫
K

e−2πi(〈w,x 〉+b) dµ(x) = 0 for all w ∈ Rd, b ∈ R. Hence,
the Fourier transform of µ vanishes, which implies that µ = 0.

Theorem 1.16 addresses the uniform approximation problem on a general com-
pact set. If we are given a finite number of points and care about good approximation
only at these points, then one can ask if this approximation problem is potentially
simpler. Below we see that, if the number of neurons is larger than or equal to the
number of data points, then one can always interpolate, i.e., exactly fit the data to a
given finite number of points.

Proposition 1.17 (Interpolation). Let d,m ∈ N, let x(i) ∈ Rd, i ∈ [m], with x(i) ,
x(j) for i , j, let % ∈ C(R), and assume that % is not a polynomial. Then, there exist
parameters θ(1) ∈ Rm×d × Rm with the following property. For every k ∈ N and
every sequence of labels y(i) ∈ Rk , i ∈ [m], there exist parameters θ(2) = (W (2),0) ∈
Rk×m × Rk for the second layer of the NN architecture a = ((d,m, k), %) such that

Φa(x(i), (θ(1), θ(2))) = y(i), i ∈ [m].
We sketch the proof as follows. First, note that Theorem 1.16 also holds for

functions g ∈ C(K,Rm) with multi-dimensional output if we approximate each
one-dimensional component x 7→ (g(x))i and stack the resulting networks. Second,
one can add an additional row containing only zeros to the weight matrix W (1)

of the approximating neural network as well as an additional entry to the vector
b(1). The effect of this is that we obtain an additional neuron with constant output.
Since % , 0, we can choose b(1) such that the output of this neuron is not zero.
Therefore, we can include the bias vector b(2) of the second layer in theweightmatrix
W (2); see also Remark 1.5. Now choose g ∈ C(Rm,Rm) to be a function satisfying

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

18 Berner et al. The Modern Mathematics of Deep Learning

g(x(i)) = e(i), i ∈ [m], where e(i) ∈ Rm denotes the ith standard basis vector. By the
discussion above, there exists a neural network architecture ã = ((d,n,m), %) and
parameters θ̃ = ((W̃ (1), b̃(1)), (W̃ (2),0)) such that

‖Φã(·, θ̃) − g‖L∞(K) <
1
m
, (1.10)

where K is a compact set with x(i) ∈ K , i ∈ [m]. Let us abbreviate the output of the
activations in the first layer evaluated at the input features by

Ã B
[
%(W̃ (1)(x(1)) + b̃(1))) · · · %(W̃ (1)(x(m)) + b̃(1)))] ∈ Rn×m. (1.11)

The equivalence of the max and operator norm together with (1.10) establish that

‖W̃ (2) Ã− Im‖op ≤ m max
i, j∈[m]

��(W̃ (2) Ã− Im)i, j
�� = m max

j∈[m]
‖Φã(x(j), θ̃) − g(x(j))‖∞ < 1,

where Im denotes the m×m identity matrix. Thus, the matrix W̃ (2) Ã ∈ Rm×m needs
to have full rank and we can extract m linearly independent rows from Ã, resulting
in an invertible matrix A ∈ Rm×m. Now, we define the desired parameters θ(1)
for the first layer by extracting the corresponding rows from W̃ (1) and b̃(1) and the
parameters θ(2) of the second layer by

W (2) B
[
y(1)c . . . y(m)

]
A−1 ∈ Rk×m.

This proves that with any discriminatory activation function we can interpolate
arbitrary training data (x(i), y(i)) ∈ Rd × Rk , i ∈ [m], using a two-layer NN with m
hidden neurons, i.e., O(m(d + k)) parameters.
One can also first project the input features onto a one-dimensional line where

they are separated and then apply Proposition 1.17 with d = 1. For nearly all
activation functions, this argument shows that a three-layer NNwith onlyO(d+mk)
parameters can interpolate arbitrary training data.10

Beyond interpolation results, one can obtain a quantitative version of Theo-
rem 1.16 if one knows additional regularity properties of the Bayes optimal function
f ∗, such as its smoothness, compositionality, and symmetries. For surveys on such
results, we refer the reader to DeVore et al. (2021) and Chapter 3 in this book. For
instructive purposes we review one such result, which can be found in Mhaskar
(1996, Theorem 2.1), next.

Theorem 1.18 (Approximation of smooth functions). Let d, k ∈ N and p ∈ [1,∞].
Further, let % ∈ C∞(R) and assume that % is not a polynomial. Then there exists
a constant c ∈ (0,∞) with the following property. For every n ∈ N there exist
10 To avoid the m × d weight matrix (without using shared parameters as in Zhang et al., 2017) one interjects

an approximate one-dimensional identity (Petersen and Voigtlaender, 2018, Definition 2.5), which can be
arbitrarily well approximated by a NN with architecture a = ((1, 2, 1), %), given that %′(λ) , 0 for some
λ ∈ R; see (1.12) below.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 19

parameters θ(1) ∈ Rn×d×Rn for the first layer of the NN architecture a = ((d,n,1), %)
such that for every g ∈ Wk ,p((0,1)d) it holds true that

inf
θ(2)∈R1×n×R

‖Φa(·, (θ(1), θ(2))) − g‖Lp ((0,1)d) ≤ cn−d/k ‖g‖W k ,p ((0,1)d).

Theorem 1.18 shows that NNs achieve the same optimal approximation rates that,
for example, spline-based approximation yields for smooth functions. The idea be-
hind this theorem is based on a strategy that is employed repeatedly throughout the
literature. The strategy involves the re-approximation of classical approximation
methods by the use of NNs, thereby transferring the approximation rates of these
methods to NNs. In the example of Theorem 1.18, approximation by polynomials
is used. Thanks to the non-vanishing derivatives of the activation function,11 one
can approximate every univariate polynomial via divided differences of the acti-
vation function. Specifically, accepting unbounded parameter magnitudes, for any
activation function % : R→ R which is p-times differentiable at some point λ ∈ R
with %(p)(λ) , 0, one can approximate the monomial x 7→ xp on a compact set
K ⊂ R up to arbitrary precision by a fixed-size NN via rescaled pth-order difference
quotients as

lim
h→0

sup
x∈K

��� p∑
i=0

(−1)i (pi)
hp %(p)(λ) %

((p/2 − i)hx + λ
) − xp

��� = 0. (1.12)

Let us end this subsection by clarifying the connection of the approximation
results above to the error decomposition of (1.7). Consider, for simplicity, a re-
gression task with quadratic loss. Then, the approximation error εapprox equals a
common L2-error:

εapprox = R(f ∗F) − R∗
(∗)
=

∫
X
(f ∗F(x) − f ∗(x))2 dIX(x)

(∗)
= min

f ∈F
‖ f − f ∗‖2

L2(IX)

≤ min
f ∈F
‖ f − f ∗‖2L∞(X),

where the identities marked by (∗) follow from Lemma 1.13. Hence, Theorem 1.16
postulates that εapprox → 0 for increasing NN sizes, whereas Theorem 1.18 addi-
tionally explains how fast εapprox converges to 0.

Generalization
Towards bounding the generalization error εgen = sup f ∈F |R(f) − R̂S(f)|, one ob-
serves that, for every f ∈ F , Assumption 1.10 ensures that L(f , Z (i)), i ∈ [m],
11 The Baire category theorem ensures that for a non-polynomial % ∈ C∞(R) there exists λ ∈ Rwith %(p)(λ) , 0

for all p ∈ N; see, e.g., Donoghue (1969, Chapter 10).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

20 Berner et al. The Modern Mathematics of Deep Learning

are i.i.d. random variables. Thus, one can make use of concentration inequalities
to bound the deviation of the empirical risk R̂S(f) = 1

m

∑m
i=1 L(f , Z (i)) from its

expectation R(f). For instance, assuming boundedness12 of the loss, Hoeffding’s
inequality(Hoeffding, 1963) and a union bound directly imply the following gener-
alization guarantee for countable, weighted hypothesis sets F ; see, e.g., Bousquet
et al. (2003).

Theorem 1.19 (Generalization bound for countable, weighted hypothesis sets). Let
m ∈ N, δ ∈ (0,1) and assume that F is countable. Further, let p be a probability
distribution on F and assume that L(f , Z) ∈ [0,1] almost surely for every f ∈ F .
Then with probability 1 − δ (with respect to repeated sampling of Im

Z -distributed
training data S) it holds true for every f ∈ F that

|R(f) − R̂S(f)| ≤
√

ln(1/p(f)) + ln(2/δ)
2m

.

While the weighting p needs to be chosen before seeing the training data, one
could incorporate prior information on the learning algorithm A. For finite hy-
pothesis sets without prior information, setting p(f) = 1/|F | for every f ∈ F ,
Theorem 1.19 implies that, with high probability,

εgen .

√
ln(|F |)

m
. (1.13)

Again, one notices that, in line with the bias–variance trade-off, the generalization
bound increases with the size of the hypothesis set |F |. Although in practice the
parameters θ ∈ RP(N) of aNNare discretized according to floating-point arithmetic,
the corresponding quantities |Fa | or |Fa,sgn | would be huge and we need to find a
replacement for the finiteness condition.
We will focus on binary classification tasks and present a main result of VC

theory, which to a great extent is derived from the work of Vladimir Vapnik and
Alexey Chervonenkis (1971). While in (1.13) we counted the number of functions
in F , we now refine this analysis to count the number of functions in F , restricted
to a finite subset of X, given by the growth function

growth(m,F) B max
(x(i))m

i=1∈Xm
|{ f |(x(i))m

i=1
: f ∈ F }|.

The growth function can be interpreted as the maximal number of classifica-
tion patterns in {−1,1}m which functions in F can realize on m points; thus
12 Note that for our classification tasks in Definition 1.2 it follows that L(f , Z) ∈ {0, 1} for every f ∈ F. For

the regression tasks, one typically assumes boundedness conditions, such as |Y | ≤ c and sup f ∈F | f (X) | ≤ c

almost surely for some c ∈ (0,∞), which yields that sup f ∈F |L(f , Z) | ≤ 4c2.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 21

growth(m,F) ≤ 2m. The asymptotic behavior of the growth function is determined
by a single intrinsic dimension of our hypothesis set F , the so-called VC-dimension

VCdim(F) B sup
{
m ∈ N ∪ {0} : growth(m,F) = 2m

}
,

which defines the largest number of points such that F can realize any classification
pattern; see, e.g.,Anthony and Bartlett (1999), Bousquet et al. (2003). There exist
various results on the VC-dimensions of NNs with different activation functions;
see, for instance, Baum and Haussler (1989), Karpinski and Macintyre (1997),
Bartlett et al. (1998), Sakurai (1999). We present the result of Bartlett et al. (1998)
for piecewise polynomial activation functions %. It establishes a bound on the VC-
dimension of hypothesis sets of NNs for classification tasks F(N ,%),sgn that scales, up
to logarithmic factors, linearly in the number of parameters P(N) and quadratically
in the number of layers L.

Theorem 1.20 (VC-dimension of neural network hypothesis sets). Let % be a
piecewise polynomial activation function. Then there exists a constant c ∈ (0,∞)
such that for every L ∈ N and N ∈ NL+1,

VCdim(F(N ,%),sgn) ≤ c
(
P(N)L log(P(N)) + P(N)L2) .

Given (x(i))m
i=1 ∈ Xm, there exists a partition ofRP(N) such thatΦ(x(i), ·), i ∈ [m],

are polynomials on each region of the partition. The proof of Theorem 1.20 is based
on bounding the number of such regions and the number of classification patterns
of a set of polynomials.

A finite VC-dimension ensures the following generalization bound (Talagrand,
1994; Anthony and Bartlett, 1999):

Theorem 1.21 (VC-dimension generalization bound). There exists a constant c ∈
(0,∞) with the following property. For every classification task as in Definition 1.2,
every Z-valued random variable Z , and every m ∈ N, δ ∈ (0,1), then, with
probability 1 − δ (with respect to the repeated sampling of Im

Z -distributed training
data S), it follows that

sup
f ∈F
|R(f) − R̂S(f)| ≤ c

√
VCdim(F) + log(1/δ))

m
.

In summary, using NN hypothesis sets F(N ,%),sgn with a fixed depth and piecewise
polynomial activation % for a classification task, with high probability it follows
that

εgen .

√
P(N) log(P(N))

m
. (1.14)

In the remainder of this section we will sketch a proof of Theorem 1.21 and, in

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

22 Berner et al. The Modern Mathematics of Deep Learning

doing so, present further concepts and complexity measures connected with gener-
alization bounds. We start by observing that McDiarmid’s inequality (McDiarmid,
1989) ensures that εgen is sharply concentrated around its expectation, i.e., with
probability 1 − δ it holds true that13

��εgen − E[εgen] �� .
√

log(1/δ)
m

. (1.15)

To estimate the expectation of the uniform generalization error we employ a sym-
metrization argument (Giné and Zinn, 1984). Define G B L ◦ F B {L(f , ·) : f ∈
F }, let S̃ = (Z̃ (i))m

i=1 ∼ Im
Z be a test data set that is independent of S, and note

that R(f) = E[R̂S̃(f)]. By properties of the conditional expectation and Jensen’s
inequality it follows that

E
[
εgen] = E[sup

f ∈F
|R(f) − R̂S(f)|

]
= E

[
sup
g∈G

1
m

��� m∑
i=1
E
[
g(Z̃ (i)) − g(Z (i))|S] ���]

≤ E
[

sup
g∈G

1
m

��� m∑
i=1

g(Z̃ (i)) − g(Z (i))
���]

= E
[

sup
g∈G

1
m

��� m∑
i=1

τi
(
g(Z̃ (i)) − g(Z (i))) ���]

≤ 2E
[

sup
g∈G

1
m

��� m∑
i=1

τig(Z (i))
���],

where we have used that multiplications with Rademacher variables (τ1, . . . , τm) ∼
U({−1,1}m) only amount to interchanging Z (i) with Z̃ (i), which has no effect on
the expectation since Z (i) and Z̃ (i) have the same distribution. The quantity

Rm(G) B E
[

sup
g∈G

��� 1
m

m∑
i=1

τig(Z (i))
���]

is called the Rademacher complexity14 of G. One can also prove a corresponding
lower bound (van der Vaart and Wellner, 1997), i.e.,

Rm(G) − 1√
m
. E

[
εgen] . Rm(G). (1.16)

Now we use a chaining method to bound the Rademacher complexity of F by cov-
ering numbers on different scales. Specifically, Dudley’s entropy integral (Dudley,
13 For precise conditions to ensure that the expectation of εgen is well defined, we refer readers to van der Vaart

and Wellner (1997), Dudley (2014).
14 Due to our decomposition in (1.7), we want to uniformly bound the absolute value of the difference between

the risk and the empirical risk. It is also common just to bound sup f ∈F R(f) − R̂S (f) leading to a definition
of the Rademacher complexity without the absolute values, which can be easier to deal with.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 23

1967; Ledoux and Talagrand, 1991) implies that

Rm(G) . E
[∫ ∞

0

√
log Nα(G, dS)

m
dα

]
, (1.17)

where
Nα(G, dS) B inf

{
|G | : G ⊂ G, G ⊂

⋃
g∈G

BdS
α (g)

}

denotes the covering number with respect to the (random) pseudometric given by

dS(f ,g) = d(Z(i))m
i=1
(f ,g) B

√√
1
m

m∑
i=1

(
f (Z (i)) − g(Z (i)))2

.

For the 0–1 loss L(f , z) = 1(−∞,0)(y f (x)) = (1 − f (x)y)/2, we can get rid of the
loss function using the fact that

Nα(G, dS) = N2α(F , d(X(i))m
i=1
). (1.18)

The proof is completed by combining the inequalities in (1.15), (1.16), (1.17)
and (1.18) with a result of David Haussler (1995) which shows that, for α ∈ (0,1),
we have

log(Nα(F , d(X(i))m
i=1
)) . VCdim(F) log(1/α). (1.19)

We remark that this resembles a typical behavior of covering numbers. For
instance, the logarithm of the covering number log(Nα(M)) of a compact d-
dimensional Riemannian manifoldM essentially scales as d log(1/α). Finally, note
that there exists a bound similar to the one in (1.19) for bounded regression tasks
that makes use of the so-called fat-shattering dimension (Mendelson andVershynin,
2003, Theorem 1).

1.1.3 Do We Need a New Theory?
Despite the already substantial insight that the classical theories provide, a lot of
open questions remain. We will outline these questions below. The remainder of
this chapter then collects modern approaches to explain the following issues.

Why do large neural networks not overfit? In §1.1.2, we have observed that
three-layer NNs with commonly used activation functions and only O(d + m)
parameters can interpolate any training data (x(i), y(i)) ∈ Rd ×R, i ∈ [m]. While this
specific representation might not be found in practice (Zhang et al., 2017), indeed
trained convolutional15 NNs with ReLU activation function and about 1.6 million
15 The basic definition of a convolutional NNwill be given in §1.6. In Zhang et al. (2017) more elaborate versions

such as an inception architecture (Szegedy et al., 2015) are employed.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

24 Berner et al. The Modern Mathematics of Deep Learning

parameters to achieve zero empirical risk on m = 50,000 training images of the
CIFAR10 dataset (Krizhevsky and Hinton, 2009) with 32 × 32 pixels per image,
i.e., d = 1,024. For such large NNs, generalization bounds scaling with the number
of parameters P(N) as the VC-dimension bound in (1.14) are vacuous. However,
these workers observed close to state-of-the-art generalization performance.16

Generally speaking, NNs are observed in practice to generalize well despite hav-
ing more parameters than training samples (usually referred to as overparametriza-
tion) and approximately interpolating the training data (usually referred to as over-
fitting). As we cannot perform any better on the training data, there is no trade-off
between the fit to training data and the complexity of the hypothesis set F hap-
pening, seemingly contradicting the classical bias–variance trade-off of statistical
learning theory. This is quite surprising, especially given the following additional
empirical observations in this regime, see Neyshabur et al. (2014, 2017), Zhang
et al. (2017), Belkin et al. (2019b), Nakkiran et al. (2020):

(i) Zero training error on random labels: Zero empirical risk can also be achieved
for random labels using the same architecture and training scheme with only
slightly increased training time. This suggests that the considered hypothesis set
of NNs F can fit arbitrary binary labels, which would imply that VCdim(F) ≈ m
or Rm(F) ≈ 1, rendering our uniform generalization bounds in Theorem 1.21
and in (1.16) vacuous.

(ii) Lack of explicit regularization: The test error depends only mildly on explicit
regularization, such as norm-based penalty terms or dropout (see Géron, 2017,
for an explanation of different regularization methods). As such regularization
methods are typically used to decrease the complexity of F , one might ask if
there is any implicit regularization (see Figure 1.4), constraining the range of
our learning algorithm A to some smaller, potentially data-dependent, subset,
i.e., A(s) ∈ F̃s (F .

(iii) Dependence on the initialization: The same NN trained to zero empirical risk
but starting from different initializations can exhibit different test errors. This
indicates that properties of the local minimum at fs to which gradient descent
converges might be correlated with its generalization.

(iv) Interpolation of noisy training data: One still observes low test error when
training up to approximately zero empirical risk using a regression (or surrogate)
loss on noisy training data. This is particularly interesting, as the noise is captured
by the model but seems not to hurt the generalization performance.

16 In practice one usually cannot measure the risk R(fs) and instead one evaluates the performance of a trained
model fs by R̂ s̃ (fs) using test data s̃, i.e., realizations of i.i.d. random variables distributed according to IZ
and drawn independently of the training data. In this context one often calls Rs (fs) the training error and
R s̃ (fs) the test error.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 25

0 6 12 18
d

0.00

0.05

0.10 linear regression (= 0)

test
train

0 20 40
d

10 10

10 1

108

0 6 12 18
d

0.00

0.05

0.10 ridge regression (= 0.001)

test
train

0 20 40
d

10 2

10 1

0.5 0.0 0.5
x

0

1

2

d = 40
= 0
= 0.001

f *

training data

Figure 1.4 The left plot (and its semi-log inset) shows the median and interquartile range of the
test and training errors of ten independent linear regressions with m = 20 samples, polynomial
input features X = (1, Z , . . . , Zd) of degree d ∈ [40], and labels Y = f ∗(Z) + ν, where
Z ∼ U([−0.5, 0.5]), f ∗ is a polynomial of degree three, and ν ∼ N(0, 0.01). This clearly
reflects the classical ∪-shaped bias–variance curve with a sweet-spot at d = 3 and drastic
overfitting beyond the interpolation threshold at d = 20. However, the middle plot shows that we
can control the complexity of our hypothesis set of linear models by restricting the Euclidean
norm of their parameters using ridge regression with a small regularization parameter α = 10−3,
i.e., minimizing the regularized empirical risk 1

m

∑m
i=1(Φ(X(i), θ) − Y (i))2 + α ‖θ ‖22 , where

Φ(·, θ) = 〈θ, ·〉. Corresponding examples of f̂s are depicted in the right plot.

(v) Further overparametrization improves generalization performance: Further in-
creasing the NN size can lead to even lower test error. Together with the previous
item, this might require a different treatment of models that are complex enough
to fit the training data. According to the traditional lore “The training error tends
to decrease whenever we increase the model complexity; that is, whenever we
fit the data harder. However with too much fitting, the model adapts itself too
closely to the training data, and will not generalize well (i.e., it will have a large
test error)”, (Hastie et al., 2001). While this flawlessly describes the situation
for certain machine learning tasks (see Figure 1.4), it seems not to be directly
applicable here.

In summary, these observations suggest that the generalization performance of NNs
depends on an interplay of the data distribution IZ with properties of the learning
algorithm A, such as the optimization procedure and its range. In particular, clas-
sical uniform bounds as in Item (B) on page13 of our error decomposition might
deliver insufficient explanation; see also Nagarajan and Kolter (2019). The mis-
match between the predictions of classical theory and the practical generalization
performance of deep NNs is often referred to as the generalization puzzle. In §1.2
we will present possible explanations for this phenomenon.

What is the role of depth? We saw in §1.1.2 that NNs can closely approximate
every function if they are sufficiently wide (Cybenko, 1989; Funahashi, 1989;
Hornik et al., 1989). There are additional classical results that even provide a trade-
off between the width and the approximation accuracy (Chui et al., 1994; Mhaskar,

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

26 Berner et al. The Modern Mathematics of Deep Learning

1996; Maiorov and Pinkus, 1999). In these results, the central concept is the width
of a NN. In modern applications, however, at least as much focus if not more lies
on the depth of the underlying architectures, which can have more than 1000 layers
(He et al., 2016). After all, the depth of NNs is responsible for the name “deep
learning”.
This consideration begs the question of whether there is a concrete mathemati-

cally quantifiable benefit of deep architectures over shallow NNs. Indeed, we will
see the effects of depth at many places throughout this chapter. However, one as-
pects of deep learning that is most clearly affected by deep architectures is the
approximation-theoretical aspect. In this framework, we will discuss in §1.3 multi-
ple approaches that describe the effect of depth.

Whydo neural networks performwell in very high-dimensional environments?
We saw in §1.1.2 and will see in §1.3 that, from the perspective of approximation
theory, deep NNs match the performance of the best classical approximation tool in
virtually every task. In practice, we observe something that is evenmore astounding.
In fact, NNs seem to perform incredibly well on tasks that no classical, non-
specialized approximation method can even remotely handle. The approximation
problem that we are talking about here is that of approximation of high-dimensional
functions. Indeed, the classical curse of dimensionality (Bellman, 1952; Novak
and Woźniakowski, 2009) postulates that essentially every approximation method
deteriorates exponentially fast with increasing dimension.
For example, for the uniform approximation error of 1-Lipschitz continuous

functions on a d-dimensional unit cube in the uniform norm, we have a lower
bound of Ω(p−1/d), for p → ∞, when approximating with a continuous scheme17

of p free parameters (DeVore, 1998).
On the other hand, in most applications the input dimensions are massive. For

example, the following datasets are typically used as benchmarks in image clas-
sification problems: MNIST (LeCun et al., 1998) with 28 × 28 pixels per image,
CIFAR-10/CIFAR-100 (Krizhevsky and Hinton, 2009) with 32 × 32 pixels per im-
age, and ImageNet (Deng et al., 2009; Krizhevsky et al., 2012), which contains
high-resolution images that are typically down-sampled to 256 × 256 pixels. Nat-
urally, in real-world applications, the input dimensions may well exceed those of
these test problems. However, already for the simplest of the test cases above, the
input dimension is d = 784. If we use d = 784 in the aforementioned lower bound
for the approximation of 1-Lipschitz functions, thenwe requireO(ε−784) parameters

17 One can achieve better rates at the cost of discontinuous (with respect to the function to be approximated)
parameter assignment. This can be motivated by the use of space-filling curves. In the context of NNs
with piecewise polynomial activation functions, a rate of p−2/d can be achieved by very deep architectures
(Yarotsky, 2018a; Yarotsky and Zhevnerchuk, 2020).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 27

to achieve a uniform error of ε ∈ (0,1). Even for moderate ε this value will quickly
exceed the storage capacity of any conceivable machine in this universe. Consid-
ering the aforementioned curse of dimensionality, it is puzzling to see that NNs
perform adequately in this regime. In §1.4, we describe three approaches that offer
explanations as to why deep NN-based approximation is not rendered meaningless
in the context of high-dimensional input dimensions.

Whydoes stochastic gradient descent converge to good localminimadespite the
non-convexity of the problem? As mentioned in §1.1.2, a convergence guarantee
of stochastic gradient descent to a global minimum can typically be given only
if the underlying objective function admits some form of convexity. However, the
empirical risk of a NN, i.e., R̂s(Φ(·, θ)), is typically not a convex function with
respect to the parameters θ. For a simple intuitive explanation of why this function
fails to be convex, it is instructive to consider the following example.

Example 1.22. Consider the NN

Φ(x, θ) = θ1%R(θ3x + θ5) + θ2%R(θ4x + θ6), θ ∈ R6, x ∈ R,
with the ReLU activation function %R(x) = max{0, x}. It is not hard to see that
the two parameter values θ = (1,−1,1,1,1,0) and θ̄ = (−1,1,1,1,0,1) produce
the same realization function,18 i.e., Φ(·, θ) = Φ(·, θ̄). However, since (θ + θ̄)/2 =
(0,0,1,1,1/2,1/2), we conclude that Φ(·, (θ + θ̄)/2) = 0. Clearly, for the data
s = ((−1,0), (1,1)), we now have that

R̂s(Φ(·, θ)) = R̂s(Φ(·, θ̄)) = 0 and R̂s

(
Φ(·, (θ + θ̄)/2)) = 1

2
,

showing the non-convexity of R̂s.

Given this non-convexity, Algorithm 1.1 faces serious challenges. First, theremay
exist multiple suboptimal local minima. Second, the objective function may exhibit
saddle points, some of which may be of higher order, i.e., the Hessian vanishes.
Finally, even if no suboptimal local minima exist, there may be extensive areas of
the parameter space where the gradient is very small, so that escaping these regions
can take a very long time.

These issues are not mere theoretical possibilities, but will almost certainly arise
in practice. For example, Auer et al. (1996) and Safran and Shamir (2018) showed
the existence of many suboptimal local minima in typical learning tasks. Moreover,
for fixed-sized NNs, it was shown by Berner et al. (2019b) and Petersen et al. (2020)
that, with respect to Lp-norms, the set of NNs is generally very non-convex and
18 This corresponds to interchanging the two neurons in the hidden layer. In general the realization function of

an FC NN is invariant under permutations of the neurons in a given hidden layer.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

28 Berner et al. The Modern Mathematics of Deep Learning

Figure 1.5 Two-dimensional projection of the loss landscape of a neural network with four layers
and ReLU activation function on four different scales. From upper left to lower right, we zoom
into the global minimum of the landscape.

non-closed. Moreover, the map θ 7→ Φa(·, θ) is not a quotient map, i.e., it is not
continuously invertible when its non-injectivity is taken into account. Furthermore,
in various situations, finding the global optimum of the minimization problem has
been shown to be NP-hard in general (Blum and Rivest, 1989; Judd, 1990; Šíma,
2002). In Figure 1.5 we show the two-dimensional projection of a loss landscape,
i.e., a projection of the graph of the function θ 7→ R̂s(Φ(·, θ)). It is apparent from
the visualization that the problem exhibits more than one minimum. We also want
to add that in practice one neglects the fact that the loss is only almost everywhere
differentiable in the case of piecewise-smooth activation functions, such as the
ReLU, although one could resort to subgradient methods (Kakade and Lee, 2018).
In view of these considerations, the classical framework presented in §1.1.2 offers

no explanation as to why deep learning works in practice. Indeed, in the survey of
Orr and Müller (1998, Section 1.4) the state of the art in 1998 was summarized
by the following assessment: “There is no formula to guarantee that (1) the NN

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.1 Introduction 29

will converge to a good solution, (2) convergence is swift, or (3) convergence even
occurs at all.”

Nonetheless, in applications, not only would an explanation of when and why
SGD converges be extremely desirable, convergence is also quite often observed
even though there is little theoretical explanation for it in the classical set-up. In
§1.5 we collect modern approaches explaining why and when convergence occurs
and can be guaranteed.

Which aspects of a neural network architecture affect the performance of deep
learning? In the introduction to classical approaches to deep learning above, we
saw that, in classical results such as in Theorem 1.18, the effect of only a few
aspects of the NN architectures are considered. In Theorem 1.18 only the impact
of the width of the NN was studied. In further approximation theorems below, for
example, in Theorems 1.23 and 1.25, we will additionally have a variable depth
of NNs. However, for deeper architectures, there are many additional aspects of
the architecture that could potentially affect the performance of the model for the
associated learning task. For example, even for a standard FC NN with L layers
as in Definition 1.4, there is a lot of flexibility in choosing the number of neurons
(N1, . . . ,NL−1) ∈ NL−1 in the hidden layers. One would expect that certain choices
affect the capabilities of the NNs considerably and that some choices are preferable
to others. Note that one aspect of the neural network architecture that can have a
profound effect on performance, especially regarding the approximation-theoretic
aspects of performance, is the choice of the activation function. For example, in
Maiorov and Pinkus (1999) and Yarotsky (2021) activation functions were found
that allow the uniform approximation of continuous functions to arbitrary accu-
racy with fixed-size neural networks. In what follows we will focus, however, on
architectural aspects other than the activation function.

In addition, practitioners have invented an immense variety of NN architectures
for specific problems. These include NNs with convolutional blocks (LeCun et al.,
1998), with skip connections (He et al., 2016), sparse connections (Zhou et al., 2016;
Bourely et al., 2017), batch normalization blocks (Ioffe and Szegedy, 2015), and
many more. Furthermore, for sequential data, recurrent connections have been used
(Rumelhart et al., 1986) and these have often had forgetmechanisms (Hochreiter and
Schmidhuber, 1997) or other gates (Cho et al., 2014) included in their architectures.

The choice of an appropriate NN architecture is essential to the success of many
deep learning tasks. This is so important that frequently an architecture search is
applied to find themost suitable one (Zoph and Le, 2017; Pham et al., 2018). Inmost
cases, though, the design and choice of the architecture is based on the intuition of
the practitioner.

Naturally, from a theoretical point of view, this situation is not satisfactory.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

30 Berner et al. The Modern Mathematics of Deep Learning

Instead, it would be highly desirable to have a mathematical theory guiding the
choice of NN architectures. More concretely, one would wish for mathematical
theorems that identify those architectures that would work for a specific problem
and those that would yield suboptimal results. In §1.6, we discuss various results
that explain theoretically quantifiable effects of certain aspects, or building blocks,
of NN architectures.

Which features of data are learned by deep architectures? It is commonly
believed that the neurons of NNs constitute feature extractors at different levels
of abstraction that correspond to the layers. This belief is partially grounded in
experimental evidence as well as by drawing connections to the human visual
cortex; see Goodfellow et al. (2016, Chapter 9.10).
Understanding the features that are learned can be linked, in a way, to under-

standing the reasoning with which a NN-based model ended up with its result.
Therefore, analyzing the features that a NN learns constitutes a data-aware ap-
proach to understanding deep learning. Naturally, this falls outside of the scope of
the classical theory, which is formulated in terms of optimization, generalization,
and approximation errors.
One central obstacle towards understanding these features theoretically is that,

at least for practical problems, the data distribution is unknown. However, one
often has partial knowledge. One example is that in image classification it appears
reasonable to assume that any classifier is translation and rotation invariant as well
as invariant under small deformations. In this context, it is interesting to understand
under which conditions trained NNs admit the same invariances.
Biological NNs such as the visual cortex are believed to have evolved in a way

that is based on sparse multiscale representations of visual information (Olshausen
and Field, 1996). Again, a fascinating question is whether NNs trained in practice
can be shown to favor such multiscale representations based on sparsity or whether
the architecture is theoretically linked to sparse representations. We will discuss
various approaches studying the features learned by neural networks in §1.7.

Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences? Shortly after their successes in various data-driven
tasks in data science and AI applications, NNs started to be used also as a numerical
ansatz for solving highly complex models from the natural sciences that could be
combined with data-driven methods. This is per se not very surprising as many such
models can be formulated as optimization problems where the commonly used deep
learning paradigm can be directly applied. What might be considered surprising is
that this approach seems to be applicable to a wide range of problems which had
previously been tackled by highly specialized numerical methods.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.2 Generalization of Large Neural Networks 31

Particular successes include the data-driven solution of ill-posed inverse problems
(Arridge et al., 2019) which has, for example, led to a fourfold speedup in MRI
scantimes (Zbontar et al., 2018) igniting the research project fastmri.org. Deep-
learning-based approaches have also been very successful in solving a vast array
of partial differential equation (PDE) models, especially in the high-dimensional
regime (E and Yu, 2018; Raissi et al., 2019; Hermann et al., 2020; Pfau et al., 2020)
where most other methods would suffer from the curse of dimensionality.
Despite these encouraging applications, the foundational mechanisms governing

their workings and limitations are still not well understood. In §§1.4.3 and 1.8 we
discuss some theoretical and practical aspects of deep learning methods applied to
the solution of inverse problems and PDEs.

1.2 Generalization of Large Neural Networks
In the following we will shed light on the generalization puzzle of NNs as described
in §1.1.3. We focus on four different lines of research which, even so, do not cover
the wide range of available results. In fact, we had to omit a discussion of amultitude
of important works, some of which we reference in the following paragraph.

First, let us mention extensions of the generalization bounds presented in §1.1.2
that make use of local Rademacher complexities (Bartlett et al., 2005) or that
drop assumptions on boundedness or rapidly decaying tails (Mendelson, 2014).
Furthermore, there are approaches to generalization which do not focus on the
hypothesis setF , i.e., the range of the learning algorithmA, but on theway inwhich
A chooses its model fs. For instance, one can assume that fs does not depend too
strongly on each individual sample (algorithmic stability: Bousquet and Elisseeff,
2002, Poggio et al., 2004), but only on a subset of the samples (compression bounds:
Arora et al., 2018b), or that it satisfies local properties (algorithmic robustness: Xu
and Mannor, 2012). Finally, we refer the reader to Jiang et al. (2020) and the
references mentioned therein for an empirical study of various measures related to
generalization.
Note that many results on the generalization capabilities of NNs can still only

be proven in simplified settings, for example for deep linear NNs, i.e., %(x) = x,
or basic linear models, i.e., one-layer NNs. Thus, we start by emphasizing the
connection of deep, nonlinear NNs to linear models (operating on features given by
a suitable kernel) in the infinite-width limit.

1.2.1 Kernel Regime
We consider a one-dimensional prediction setting where the loss L(f , (x, y)) de-
pends on x ∈ X only through f (x) ∈ Y, i.e., there exists a function ` : Y ×Y → R

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

www.fastmri.org
https://doi.org/10.1017/9781009025096.002

32 Berner et al. The Modern Mathematics of Deep Learning

such that
L(f , (x, y)) = `(f (x), y).

For instance, in the case of quadratic loss we have that `(ŷ, y) = (ŷ − y)2. Further,
let Φ be a NN with architecture (N, %) = ((d,N1, . . . ,NL−1,1), %) and let Θ0 be
a RP(N)-valued random variable. For simplicity, we evolve the parameters of Φ
according to the continuous version of gradient descent, so-called gradient flow,
given by

dΘ(t)
dt
= −∇θ R̂s(Φ(·,Θ(t))) = − 1

m

m∑
i=1
∇θΦ(x(i),Θ(t))Di(t), Θ(0) = Θ0, (1.20)

where

Di(t) B ∂`(ŷ, y(i))
∂ ŷ

|ŷ=Φ(x(i),Θ(t))

is the derivative of the loss with respect to the prediction at input feature x(i) at time
t ∈ [0,∞). The chain rule implies the following dynamics of the NN realization

dΦ(·,Θ(t))
dt

= − 1
m

m∑
i=1

KΘ(t)(·, x(i))Di(t) (1.21)

and of its empirical risk

dR̂s(Φ(·,Θ(t))
dt

= − 1
m2

m∑
i=1

m∑
j=1

Di(t)KΘ(t)(x(i), x(j))Dj(t), (1.22)

where Kθ , θ ∈ RP(N), is the so-called neural tangent kernel (NTK):

Kθ : Rd × Rd → R, Kθ(x1, x2) =
(∇θΦ(x1, θ)

)T∇θΦ(x2, θ). (1.23)

Now let σw, σb ∈ (0,∞) and assume that the initialization Θ0 consists of indepen-
dent entries, where entries corresponding to the weight matrix and bias vector in
the `th layer follow a normal distribution with zero mean and variances σ2

w/N` and
σ2
b
, respectively. Under weak assumptions on the activation function, the central

limit theorem implies that the pre-activations converge to i.i.d. centered Gaussian
processes in the infinite-width limit N1, . . . ,NL−1 → ∞; see Lee et al. (2018) and
Matthews et al. (2018). Similarly, KΘ0 also converges to a deterministic kernel K∞

which stays constant in time and depends only on the activation function %, the
depth L, and the initialization parameters σw and σb (Jacot et al., 2018; Arora
et al., 2019b; Yang, 2019; Lee et al., 2020). Thus, within the infinite width limit,
gradient flow on the NN parameters as in (1.20) is equivalent to functional gradient
flow in the reproducing kernel Hilbert space (HK∞, ‖ · ‖K∞) corresponding to K∞;
see (1.21).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.2 Generalization of Large Neural Networks 33

By (1.22), the empirical risk converges to a global minimum as long as the kernel
evaluated at the input features, K̄∞ B (K∞(x(i), x(j)))m

i, j=1 ∈ Rm×m, is positive
definite (see, e.g., Jacot et al., 2018, Du et al., 2019, for suitable conditions) and the
`(·, y(i)) are convex and lower bounded. For instance, in the case of quadratic loss
the solution of (1.21) is then given by

Φ(·,Θ(t)) = C(t)(y(i))mi=1 +
(
Φ(·,Θ0) − C(t)(Φ(x(i),Θ0))mi=1

)
, (1.24)

where C(t) :=
((K∞(·, x(i)))m

i=1
)T (K̄∞)−1(Im − e−2K̄∞t/m). As the initial realization

Φ(·,Θ0) constitutes a centered Gaussian process, the second term in (1.24) follows
a normal distribution with zero mean at each input. In the limit t →∞, its variance
vanishes on the input features x(i), i ∈ [m], and the first term converges to the
minimum kernel-norm interpolator, i.e., to the solution of

min
f ∈HK∞

‖ f ‖K∞ s.t. f (x(i)) = y(i).

Therefore, within the infinite-width limit, the generalization properties of the NN
could be described by the generalization properties of the minimizer in the repro-
ducing kernel Hilbert space corresponding to the kernel K∞ (Belkin et al., 2018;
Liang and Rakhlin, 2020; Liang et al., 2020; Ghorbani et al., 2021; Li, 2021).

This so-called lazy training, where a NN essentially behaves like a linear model
with respect to the nonlinear features x 7→ ∇θΦ(x, θ), can already be observed
in the non-asymptotic regime; see also §1.5.2. For sufficiently overparametrized
(P(N) � m) and suitably initialized models, one can show that Kθ(0) is close to
K∞ at initialization and Kθ(t) stays close to Kθ(0) throughout training; see Du et al.
(2018b, 2019), Arora et al. (2019b), and Chizat et al. (2019). The dynamics of
the NN under gradient flow in (1.21) and (1.22) can thus be approximated by the
dynamics of the linearization of Φ at initialization Θ0, given by

Φlin(·, θ) B Φ(·,Θ0) + 〈∇θΦ(·,Θ0), θ − Θ0〉, (1.25)

which motivates studying the behavior of linear models in the overparametrized
regime.

1.2.2 Norm-Based Bounds and Margin Theory
For piecewise linear activation functions, one can improve upon the VC-dimension
bounds in Theorem 1.20 and show that, up to logarithmic factors, the VC-dimension
is asymptotically bounded both above and belowby P(N)L; seeBartlett et al. (2019).
The lower bound shows that the generalization bound in Theorem 1.21 can be non-
vacuous only if the number of samples m scales at least linearly with the number of
NN parameters P(N). However, the heavily overparametrized NNs used in practice
seem to generalize well outside of this regime.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

34 Berner et al. The Modern Mathematics of Deep Learning

One solution is to bound other complexity measures of NNs, taking into account
various norms on the parameters, and avoid the direct dependence on the num-
ber of parameters (Bartlett, 1998). For instance, we can compute bounds on the
Rademacher complexity of NNs with positively homogeneous activation function,
where the Frobenius norm of the weight matrices is bounded; see also Neyshabur
et al. (2015). Note that, for instance, the ReLU activation is positively homogeneous,
i.e., it satisfies that %R(λx) = λ%R(x) for all x ∈ R and λ ∈ (0,∞).
Theorem 1.23 (Rademacher complexity of neural networks). Let d ∈ N, assume
that X = B1(0) ⊂ Rd, and let % be a positively homogeneous activation function
with Lipschitz constant 1. We define the set of all biasless NN realizations with depth
L ∈ N, output dimension 1, and Frobenius norm of the weight matrices bounded
by C ∈ (0,∞) as

F̃L,C B
{
Φ(N ,%)(·, θ) : N ∈ NL+1, N0 = d, NL = 1,

θ = ((W (`),0))L`=1 ∈ RP(N), ‖W (`)‖F ≤ C
}
.

Then for every m ∈ N it follows that

Rm(F̃L,C) ≤ C(2C)L−1
√

m
.

The factor 2L−1, depending exponentially on the depth, can be reduced to
√

L or
completely omitted by invoking the spectral norm of the weight matrices (Golowich
et al., 2018). Further, observe that for L = 1, i.e., linear classifiers with bounded
Euclidean norm, this bound is independent of the input dimension d. Together
with (1.16), this motivates why the regularized linear model in Figure 1.4 did
perform well in the overparametrized regime.
The proof ofTheorem1.23 is based on the contraction property of theRademacher

complexity (Ledoux and Talagrand, 1991), which establishes that

Rm(% ◦ F̃`,C) ≤ 2Rm(F̃`,C), ` ∈ N.
We can iterate this together with the fact that for every τ ∈ {−1,1}m, and x ∈ RN`−1

it follows that

sup
‖W (`) ‖F ≤C

 m∑
i=1

τi %(W (`)x)

2
= C sup

‖w ‖2≤1

��� m∑
i=1

τi %(〈w, x〉)
���.

In summary, we have established that

Rm(F̃L,C) = C
m
E
[

sup
f ∈F̃L−1,C

 m∑
i=1

τi %(f (X (i)))

2

]
≤ C(2C)L−1

m
E
[

 m∑

i=1
τiX (i)

2

]
,

which by Jensen’s inequality yields the claim.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.2 Generalization of Large Neural Networks 35

Recall that for classification problems one typically minimizes a surrogate loss
Lsurr; see Remark 1.9. This suggests that there could be a trade-off happening
between the complexity of the hypothesis class Fa and the underlying regression
fit, i.e., the margin M(f , z) B y f (x) by which a training example z = (x, y) has
been classified correctly by f ∈ Fa; see Bartlett et al. (2017), Neyshabur et al.
(2018), and Jiang et al. (2019). For simplicity, let us focus on the ramp-function
surrogate loss with confidence γ > 0, i.e., Lsurr

γ (f , z) B `γ(M(f , z)), where

`γ(t) B 1(−∞,γ](t) −
t
γ

1[0,γ](t), t ∈ R.

Note that the ramp function `γ is 1/γ-Lipschitz continuous. Using McDiarmid’s
inequality and a symmetrization argument similar to the proof of Theorem 1.21,
combined with the contraction property of the Rademacher complexity, yields the
following bound on the probability of misclassification. With probability 1 − δ for
every f ∈ Fa we have

I[sgn(f (X)) , Y] ≤ E[Lsurr
γ (f , Z)

]
.

1
m

m∑
i=1
Lsurr
γ (f , Z (i)) + Rm(Lsurr

γ ◦ Fa) +
√

ln(1/δ)
m

.
1
m

m∑
i=1

1(−∞,γ)(Y (i) f (X (i))) +
Rm(M ◦ Fa)

γ
+

√
ln(1/δ)

m

=
1
m

m∑
i=1

1(−∞,γ)(Y (i) f (X (i))) +
Rm(Fa)

γ
+

√
ln(1/δ)

m
.

This shows the trade-off between the complexity of Fa measured byRm(Fa) and the
fraction of training data classified correctly with a margin of at least γ. In particular
this suggests, that (even if we classify the training data correctly with respect to the
0–1 loss) it might be beneficial to increase the complexity of Fa further, in order to
simultaneously increase the margins by which the training data has been classified
correctly and thus obtain a better generalization bound.

1.2.3 Optimization and Implicit Regularization
The optimization algorithm, which is usually a variant of SGD, seems to play an
important role in generalization performance. Potential indicators for good gener-
alization performance are high speed of convergence (Hardt et al., 2016) or flatness
of the local minimum to which SGD converges, which can be characterized by the
magnitude of the eigenvalues of the Hessian (or approximately by the robustness of
the minimizer to adversarial perturbations on the parameter space); see Keskar et al.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

36 Berner et al. The Modern Mathematics of Deep Learning

(2017). In Dziugaite and Roy (2017) and Neyshabur et al. (2017) generalization
bounds depending on a concept of flatness are established by employing a PAC-
Bayesian framework, which can be viewed as a generalization of Theorem 1.19;
see McAllester (1999). Further, one can also unite flatness and norm-based bounds
by the Fisher–Rao metric of information geometry (Liang et al., 2019).
Let us motivate the link between generalization and flatness in the case of simple

linear models: We assume that our model takes the form 〈θ, ·〉, θ ∈ Rd, and we will
use the abbreviations

r(θ) B R̂s(〈θ, ·〉) and γ(θ) B min
i∈[m]

M(〈θ, ·〉, z(i)) = min
i∈[m]

y(i)〈θ, x(i)〉

throughout this subsection to denote the empirical risk and the margin for given
training data s = ((x(i), y(i)))m

i=1. We assume that we are solving a classification task
with the 0–1 loss and that our training data is linearly separable. This means that
there exists a minimizer θ̂ ∈ Rd such that r(θ̂) = 0. We observe that δ-robustness
in the sense that

max
θ∈Bδ (0)

r(θ̂ + θ) = r(θ̂) = 0

implies that

0 < min
i∈[m]

y(i)
〈
θ̂ − δy(i) x(i)

‖x(i)‖2
, x(i)

〉
≤ γ(θ̂) − δ min

i∈[m]
‖x(i)‖2 ;

see also Poggio et al. (2017a). This lower bound on the margin γ(θ̂) then ensures
generalization guarantees, as described in §1.2.2.
Even without explicit19 control on the complexity of Fa, there do exist results

showing that SGD acts as an implicit regularization Neyshabur et al. (2014). This is
motivated by linear models where SGD converges to the minimal Euclidean norm
solution for a quadratic loss and in the direction of the hard-margin support vector
machine solution for the logistic loss on linearly separable data (Soudry et al.,
2018). Note that convergence to minimum-norm or maximum-margin solutions
in particular decreases the complexity of our hypothesis set and thus improves
generalization bounds; see §1.2.2.
While we have seen this behavior of gradient descent for linear regression already

in the more general context of kernel regression in §1.2.1, we want to motivate the
corresponding result for classification tasks as follows. We focus on the exponential
surrogate loss Lsurr(f , z) = `(M(f , z)) = e−y f (x) with `(z) = e−z , but similar
observations can be made for the logistic loss defined in Remark 1.9. We assume
19 Note also that different architectures can exhibit vastly different inductive biases (Zhang et al., 2020) and also

that, within an architecture, different parameters have different degrees of importance; see Frankle and Carbin
(2018), Zhang et al. (2019), and Proposition 1.29.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.2 Generalization of Large Neural Networks 37

that the training data is linearly separable, which guarantees the existence of θ̂ , 0
with γ(θ̂) > 0. Then for every linear model 〈θ, ·〉, θ ∈ Rd, it follows that

〈
θ̂,∇θr(θ)〉 = 1

m

m∑
i=1

`′(y(i)〈θ, x(i)〉)︸ ︷︷ ︸
<0

y(i)〈θ̂, x(i)〉︸ ︷︷ ︸
>0

.

A critical point ∇θr(θ) = 0 can therefore be approached if and only if for every
i ∈ [m] we have

`′(y(i)〈θ, x(i)〉) = −e−y
(i) 〈θ,x(i) 〉 → 0,

which is equivalent to ‖θ‖2 →∞ and γ(θ) > 0. Let us now define

rβ(θ) B `−1(r(βθ))
β

, θ ∈ Rd, β ∈ (0,∞),

and observe that

rβ(θ) = − log(r(βθ))
β

→ γ(θ), β→∞. (1.26)

Owing to this property, rβ is often referred to as the smoothed margin (Lyu and
Li, 2019; Ji and Telgarsky, 2019b). We evolve θ according to gradient flow with
respect to the smoothed margin r1, i.e.,

dθ(t)
dt
= ∇θr1(θ(t)) = − 1

r(θ(t))∇θr(θ(t)),

which produces the same trajectory as gradient flow with respect to the empirical
risk r under a rescaling of the time t. Looking at the evolution of the normalized
parameters θ̃(t) = θ(t)/‖θ(t)‖2, the chain rule establishes that

dθ̃(t)
dt
= Pθ̃(t)

∇θrβ(t)(θ̃(t))
β(t) with β(t) B ‖θ(t)‖2 and Pθ B Id − θθT , θ ∈ Rd .

This shows that the normalized parameters perform projected gradient ascent with
respect to the function rβ(t), which converges to the margin thanks to (1.26) and
the fact that β(t) = ‖θ(t)‖2 → ∞ when approaching a critical point. Thus, during
gradient flow, the normalized parameters implicitly maximize the margin. See
Gunasekar et al. (2018a), Gunasekar et al. (2018b), Lyu and Li (2019), Nacson
et al. (2019), Chizat and Bach (2020), and Ji and Telgarsky (2020) for a precise
analysis and various extensions, for example, to homogeneous or two-layer NNs
and other optimization geometries.

To illustrate one particular research direction, we now present a result by way
of example. Let Φ = Φ(N ,%) be a biasless NN with parameters θ = ((W (`),0))L`=0
and output dimension NL = 1. For given input features x ∈ RN0 , the gradient

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

38 Berner et al. The Modern Mathematics of Deep Learning

∇W (`)Φ = ∇W (`)Φ(x, θ) ∈ RN`−1×N` with respect to the weight matrix in the `th
layer satisfies that

∇W (`)Φ = %(Φ(`−1)) ∂Φ

∂Φ(`+1)
∂Φ(`+1)

∂Φ(`)
= %(Φ(`−1)) ∂Φ

∂Φ(`+1)W
(`+1) diag

(
%′(Φ(`))),

where the pre-activations (Φ(`))L`=1 are as in (1.1). Evolving the parameters ac-
cording to gradient flow as in (1.20) and using an activation function % with
%(x) = %′(x)x, such as the ReLU, this implies that

diag
(
%′(Φ(`)))W (`)(t)(dW (`)(t)

dt

)T
=

(dW (`+1)(t)
dt

)T
W (`+1)(t) diag

(
%′(Φ(`))) .

(1.27)
Note that this ensures the conservation of balancedness between the weight matrices
of adjacent layers, i.e.,

d
dt

(‖W (`+1)(t)‖2F − ‖W (`)(t)‖2F
)
= 0,

see Du et al. (2018a). Furthermore, for deep linear NNs, i.e., %(x) = x, the property
in (1.27) implies conservation of alignment of the left and right singular spaces
W (`) and W (`+1). This can then be used to show the implicit preconditioning and
convergence of gradient descent (Arora et al., 2018a, 2019a) and that, under addi-
tional assumptions, gradient descent converges to a linear predictor that is aligned
with the maximum margin solution (Ji and Telgarsky, 2019a).

1.2.4 Limits of Classical Theory and Double Descent
There is ample evidence that classical tools from statistical learning theory alone,
such as Rademacher averages, uniform convergence, or algorithmic stability, may
be unable to explain the full generalization capabilities of NNs (Zhang et al., 2017;
Nagarajan and Kolter, 2019). It is especially hard to reconcile the classical bias–
variance trade-off with the observation of good generalization performance when
achieving zero empirical risk on noisy data using a regression loss. On top of that,
this behavior of overparametrized models in the interpolation regime turns out
not to be unique to NNs. Empirically, one observes for various methods (decision
trees, random features, linear models) that the test error decreases even below the
sweet-spot in the ∪-shaped bias–variance curve when the number of parameters
is increased further (Belkin et al., 2019b; Geiger et al., 2020; Nakkiran et al.,
2020). This is often referred to as the double descent curve or benign overfitting;
see Figure 1.6. For special cases, for example linear regression or random feature
regression, such behavior can even be proven; see Hastie et al. (2019), Mei and
Montanari (2019), Bartlett et al. (2020), Belkin et al. (2020), and Muthukumar
et al. (2020).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.2 Generalization of Large Neural Networks 39

Figure 1.6 This illustration shows the classical, underparametrized regime in green, where
the ∪-shaped curve depicts the bias–variance trade-off as explained in §1.1.2. Starting with
a complexity of our algorithm A larger than the interpolation threshold we can achieve zero
empirical risk R̂s (fs) (the training error), where fs = A(s). Within this modern interpolation
regime, the risk R(fs) (the test error) might be even lower than at the classical sweet spot.
Whereas complexity(A) traditionally refers to the complexity of the hypothesis set F, there is
evidence that the optimization scheme and the data also influence the complexity, leading to
definitions such as complexity(A) B max

{
m ∈ N : E

[R̂S (A(S))
] ≤ ε with S ∼ Im

Z

}
, for

suitable ε > 0 (Nakkiran et al., 2020). This illustration is based on Belkin et al. (2019b).

In the following we analyze this phenomenon in the context of linear regression.
Specifically, we focus on a prediction task with quadratic loss, input features given
by a centered Rd-valued random variable X , and labels given by Y = 〈θ∗,X〉 + ν,
where θ∗ ∈ Rd and ν is a centered random variable that is independent of X .
For training data S = ((X (i),Y (i)))m

i=1, we consider the empirical risk minimizer
f̂S = 〈θ̂, ·〉 with minimum Euclidean norm of its parameters θ̂ or, equivalently, we
can consider the limit of gradient flow with zero initialization. Using (1.5) and a
bias–variance decomposition we can write

E[R(f̂S)|(X (i))mi=1] − R∗ = E[‖ f̂S − f ∗‖L2(IX) |(X (i))mi=1]
= (θ∗)T P E[X XT]Pθ∗ + E[ν2]Tr

(
Σ+ E[X XT]),

where Σ B
∑m

i=1 X (i)(X (i))T , Σ+ denotes the Moore–Penrose inverse of Σ, and
P B Id − Σ+Σ is the orthogonal projector onto the kernel of Σ. For simplicity,
we focus on the variance Tr

(
Σ+ E[X XT]) , which can be viewed as the result of

setting θ∗ = 0 and E[ν2] = 1. Assuming that X has i.i.d. entries with unit variance
and bounded fifth moment, the distribution of the eigenvalues of 1

mΣ
+ in the limit

d,m → ∞ with d
m → κ ∈ (0,∞) can be described via the Marchenko–Pastur law.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

40 Berner et al. The Modern Mathematics of Deep Learning

0 50 100 150
d

0.0

0.5

1.0 variance

Figure 1.7 The expected variance of the linear regression in (1.29) with d ∈ [150] and Xi ∼
U({−1, 1}), i ∈ [150], where Xi = X1 for i ∈ {10, . . . , 20} ∪ {30, . . . , 50} and all other
coordinates are independent.

Therefore, the asymptotic variance can be computed explicitly as

Tr
(
Σ+ E[X XT]) → 1 −max{1 − κ,0}

|1 − κ | for d,m→∞ with
d
m
→ κ,

almost surely; see Hastie et al. (2019). This shows that despite interpolating the
data we can decrease the risk in the overparametrized regime κ > 1. In the limit
d,m → ∞, such benign overfitting can also be shown for more general settings
(including lazy training of NNs), some of which even achieve their optimal risk
in the overparametrized regime (Mei and Montanari, 2019; Montanari and Zhong,
2020; Lin and Dobriban, 2021).
For normally distributed input features X such that E[X XT] has rank larger than

m, one can also compute the behavior of the variance in the non-asymptomatic
regime (Bartlett et al., 2020). Define

k∗ := min
{
k ≥ 0:

∑
i>k λi
λk+1

≥ cm
}
, (1.28)

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 are the eigenvalues of E[X XT] in decreasing order
and c ∈ (0,∞) is a universal constant. Assuming that k∗/m is sufficiently small,
with high probability we have

Tr
(
Σ+ E[X XT]) ≈ k∗

m
+

m
∑

i>k∗ λ
2
i

(∑i>k∗ λi)2
.

This precisely characterizes the regimes for benign overfitting in terms of the
eigenvalues of the covariance matrix E[X XT]. Furthermore, it shows that adding
new input feature coordinates and thus increasing the number of parameters d can
lead to either an increase or a decrease in the risk.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.3 The Role of Depth in the Expressivity of Neural Networks 41

To motivate this phenomenon, which is considered in much more depth in Chen
et al. (2020), let us focus on a single sample m = 1 and features X that take values
in X = {−1,1}d. Then it follows that

Σ+ =
X (1)(X (1))T
‖X (1)‖4 =

X (1)(X (1))T
d2

and thus

E
[
Tr

(
Σ+E[X XT])] = 1

d2

E[X XT
]

2

F
. (1.29)

In particular, this shows that by incrementing the input feature dimensions via
d 7→ d + 1 one can increase or decrease the risk depending on the correlation
of the coordinate Xd+1 with respect to the previous coordinates (Xi)di=1; see also
Figure 1.7.

Generally speaking, overparametrization and the perfect fitting of noisy data does
not exclude good generalization performance; see also Belkin et al. (2019a). How-
ever, the risk crucially depends on the data distribution and the chosen algorithm.

1.3 The Role of Depth in the Expressivity of Neural Networks
The approximation-theoretic aspect of a NN architecture, which is responsible for
the approximation component εapprox B R(f ∗F)−R∗ of the errorR(fS)−R∗ in (1.7),
is probably one of the most well-studied parts of the deep learning pipe-line. The
achievable approximation error of an architecture directly describes the power of
the architecture.

As mentioned in §1.1.3, many classical approaches study the approximation
theory of NNs with only a few layers, whereas modern architectures are typically
very deep. Afirst observation about the effect of depth is that it can often compensate
for insufficient width. For example, in the context of the universal approximation
theorem, it has been shown that very narrow NNs are still universal if, instead of
increasing the width, the number of layers can be chosen arbitrarily (Hanin and
Sellke, 2017; Hanin, 2019; Kidger and Lyons, 2020). However, if the width of a
NN falls below a critical number, then the universality will no longer hold.

Below, we discuss three additional observations that shed light on the effect of
depth on the approximation capacities, or alternative notions of expressivity, of
NNs.

1.3.1 Approximation of Radial Functions
One technique to study the impact of depth relies on the construction of specific
functions which can be well approximated by NNs of a certain depth, but require

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

42 Berner et al. The Modern Mathematics of Deep Learning

significantly more parameters when approximated to the same accuracy by NNs of
smaller depth. In the following we present one example of this type of approach,
which can be found in Eldan and Shamir (2016).

Theorem 1.24 (Power of depth). Let % ∈ {%R, %σ,1(0,∞)} be the ReLU, the logistic,
or the Heaviside function. Then there exist constants c,C ∈ (0,∞)with the following
property. For every d ∈ N with d ≥ C there exist a probability measure µ on Rd, a
three-layer NN architecture a = (N, %) = ((d,N1,N2,1), %) with ‖N ‖∞ ≤ Cd5, and
corresponding parameters θ∗ ∈ RP(N) with ‖θ∗‖∞ ≤ CdC and ‖Φa(·, θ∗)‖L∞(Rd) ≤
2 such that for every n ≤ cecd we have

inf
θ∈RP((d ,n ,1))

‖Φ((d,n,1),%)(·, θ) − Φa(·, θ∗)‖L2(µ) ≥ c.

In fact, the activation function in Theorem 1.24 is required to satisfy only mild
conditions and the result holds, for instance, also for more general sigmoidal func-
tions. The proof of Theorem 1.24 is based on the construction of a suitable radial
function g : Rd → R, i.e., g(x) = g̃(‖x‖22) for some g̃ : [0,∞) → R, which can
be efficiently approximated by three-layer NNs but for which approximation by
only a two-layer NN requires exponentially large complexity, i.e., a width that is
exponential in d.
The first observation of Eldan and Shamir (2016) was that g can typically be

well approximated on a bounded domain by a three-layer NN, if g̃ is Lipschitz
continuous. Indeed, for the ReLU activation function it is not difficult to show
that, emulating a linear interpolation, one can approximate a univariate C-Lipschitz
function uniformly on [0,1] up to precision ε by a two-layer architecture of width
O(C/ε). The same holds for smooth, non-polynomial activation functions, owing
to Theorem 1.18. This implies that the squared Euclidean norm, as a sum of
d univariate functions, i.e., [0,1]d 3 x 7→ ∑d

i=1 x2
i , can be approximated up to

precision ε by a two-layer architecture of width O(d2/ε). Moreover, this shows that
the third layer can efficiently approximate g̃, establishing the approximation of g
on a bounded domain up to precision ε using a three-layer architecture with the
number of parameters polynomial in d/ε.
The second step of Eldan and Shamir (2016) was to choose g in such a way

that the realization of any two-layer neural network Φ = Φ((d,n,1),%)(·, θ) with width
n and not exponential in d is on average (with respect to the probability measure
µ) a constant distance away from g. Their argument is heavily based on ideas
from Fourier analysis and will be outlined below. In this context, let us recall that
we denote by f̂ the Fourier transform of a suitable function, or, more generally,
tempered distribution. f .
Assuming that the square root ϕ of the density function associated with the

probability measure µ, as well asΦ and g, are well behaved, the Plancherel theorem

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.3 The Role of Depth in the Expressivity of Neural Networks 43

Figure 1.8 This illustration shows the largest possible support (blue) of Φ̂ϕ, where ϕ̂ = 1Br (0)
and Φ is a shallow neural network with architecture N = (2, 4, 1) and weight matrix W (1) =
[w1 · · ·w4]T in the first layer. Any radial function with too much of its L2-mass located at high
frequencies (indicated in red) cannot be well approximated by Φϕ.

yields

‖Φ − g‖2
L2(µ) = ‖Φϕ − gϕ‖2L2(Rd) =

Φ̂ϕ − ĝϕ

2
L2(Rd). (1.30)

Next, the specific structure of two-layer NNs is used, which implies that for every
j ∈ [n] there exists wj ∈ Rd with ‖wj ‖2 = 1 and %j : R → R (subsuming the
activation function %, the norm of wj , and the remaining parameters corresponding
to the jth neuron in the hidden layer) such that Φ is of the form

Φ =

n∑
j=1

%j(〈wj, ·〉) =
n∑
j=1
(%j ⊗ 1Rd−1) ◦ Rwj . (1.31)

The second equality follows by viewing the action of the jth neuron as a tensor
product of %j and the indicator function 1Rd−1(x) = 1, x ∈ Rd−1, composed with
a d-dimensional rotation Rwj ∈ SO(d) which maps wj to the first standard basis
vector e(1) ∈ Rd. Noting that the Fourier transform respects linearity, rotations, and
tensor products, we can compute

Φ̂ =

n∑
j=1
(%̂j ⊗ δRd−1) ◦ Rwj ,

where δRd−1 denotes the Dirac distribution on Rd−1. In particular, the support of
Φ̂ has a particular star-like shape, namely

⋃n
j=1 span{wj}, which represent lines

passing through the origin.
Now we choose ϕ to be the inverse Fourier transform of the indicator function

of a ball Br (0) ⊂ Rd with vol(Br (0)) = 1, ensuring that ϕ2 is a valid probability

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

44 Berner et al. The Modern Mathematics of Deep Learning

density for µ as

µ(Rd) = ‖ϕ2‖L1(Rd) = ‖ϕ‖2L2(Rd) = ‖ϕ̂‖2L2(Rd) = ‖1Br (0)‖2L2(Rd) = 1.

Using the convolution theorem, this choice of ϕ yields that

supp(Φ̂ϕ) = supp(Φ̂ ∗ ϕ̂) ⊂
n⋃
j=1

(
span{wj} + Br (0)

)
.

Thus the lines passing through the origin are enlarged to tubes. It is this particular
shape which allows the construction of some g such that ‖Φ̂ϕ − ĝϕ‖2

L2(Rd) can be
suitably lower bounded; see also Figure 1.8. Intriguingly, the peculiar behavior of
high-dimensional sets now comes into play. Owing to the well-known concentration
of measure principle, the variable n needs to be exponentially large for the set⋃n

j=1
(
span{wj} + Br (0)

)
not to be sparse. If it is smaller, one can construct a

function g such that the main energy content of ĝϕ has a certain distance from the
origin, yielding a lower bound for ‖Φ̂ϕ − ĝϕ‖2 and hence ‖Φ − g‖2

L2(µ); see (1.30).
One key technical problem is the fact that such a behavior for ĝ does not immediately
imply a similar behavior for ĝϕ, requiring a quite delicate construction of g.

1.3.2 Deep ReLU Networks
Perhaps for no activation function is the effect of depth clearer than for the ReLU
activation function %R(x) = max{0, x}. We refer to the corresponding NN architec-
tures (N, %R) as ReLU (neural) networks (ReLU NNs). A two-layer ReLU NN with
one-dimensional input and output is a function of the form

Φ(x) =
n∑
i=1

w
(2)
i %R(w(1)i x + b(1)i) + b(2), x ∈ R,

where w(1)i ,w
(2)
i , b(1)i , b

(2) ∈ R for i ∈ [n]. It is not hard to see that Φ is a continuous
piecewise affine linear function. Moreover, Φ has at most n + 1 affine linear pieces.
On the other hand, notice that the hat function

h : [0,1] → [0,1],

x 7→ 2%R(x) − 4%R(x − 1
2) =

{
2x, if 0 ≤ x < 1

2,

2(1 − x), if 1
2 ≤ x ≤ 1,

(1.32)

is a NN with two layers and two neurons. Telgarsky (2015) observed that the n-fold
convolution hn(x) B h ◦ · · · ◦ h produces a sawtooth function with 2n spikes. In
particular, hn admits 2n affine linear pieces with only 2n many neurons. In this
case, we see that deep ReLU NNs are in some sense exponentially more efficient in
generating affine linear pieces.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.3 The Role of Depth in the Expressivity of Neural Networks 45

0 1
8

2
8

3
8

4
8

5
8

6
8

7
8

1
0

1
32

2
32

3
32

4
32

5
32

6
32

7
32

8
32 g

I1
g I1
I2 I1
g I2
I3 I2

Figure 1.9 Interpolation In of [0, 1] 3 x 7→ g(x) B x − x2 on 2n + 1 equidistant points, which
can be represented as a sum In =

∑n
k=1 Ik − Ik−1 =

∑n
k=1 hk/22k of n sawtooth functions. Each

sawtooth function hk = hk−1 ◦ h in turn can be written as a k-fold composition of a hat function
h. This illustration is based on Elbrächter et al. (2019).

Moreover, it was noted in Yarotsky (2017) that the difference in interpolations
of [0,1] 3 x 7→ x − x2 at 2n + 1 and 2n−1 + 1 equidistant points equals the scaled
sawtooth function hn/22n; see Figure 1.9. This permits efficient implementation
of approximative squaring and, by polarization, also of approximate multiplication
using ReLUNNs. Composing these simple functions one can approximate localized
Taylor polynomials and thus smooth functions; see Yarotsky (2017).We state below
a generalization (Gühring et al., 2020) of Yarotsky’s result which includes more
general norms, but which for p = ∞ and s = 0 coincides with his original result.

Theorem 1.25 (Approximation of Sobolev-regular functions). Let d, k ∈ N with
k ≥ 2, let p ∈ [1,∞], s ∈ [0,1], B ∈ (0,∞), and let % be a piecewise-linear
activation function with at least one break point. Then there exists a constant
c ∈ (0,∞) with the following property. For every ε ∈ (0,1/2) there exists a NN
architecture a = (N, %) with

P(N) ≤ cε−d/(k−s) log(1/ε)

such that for every function g ∈ Wk ,p((0,1)d) with ‖g‖W k ,p ((0,1)d) ≤ B we have

inf
θ∈RP(N)

‖Φa(θ, ·) − g‖W s ,p ((0,1)d) ≤ ε.

The ability of deep ReLU neural networks to emulate multiplication has also
been employed to reapproximate wide ranges of high-order finite-element spaces. In
Opschoor et al. (2020) andMarcati et al. (2020) it was shown that deep ReLU neural
networks are capable of achieving the approximation rates of hp-finite-element
methods. Concretely, this means that for piecewise analytic functions, which appear,
for example, as solutions of elliptic boundary and eigenvalue problemswith analytic
data, exponential approximation rates can be achieved. In other words, the number

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

46 Berner et al. The Modern Mathematics of Deep Learning
depth

w
idth

Figure 1.10 Standard feed-forward neural network. For certain approximation results, depth and
width need to be in a fixed relationship to achieve optimal results.

of parameters of neural networks needed to approximate such a function in the
W1,2-norm up to an error of ε is logarithmic in ε.

Theorem 1.25 requires the depth of the NN to grow. In fact, it can be shown that
the same approximation rate cannot be achieved with shallow NNs. Indeed, there
exists a certain optimal number of layers, and if the architecture has fewer layers
than optimal then the NNs need to have significantly more parameters to achieve the
same approximation fidelity. This has been observed in many different settings in
Liang and Srikant (2017), Safran and Shamir (2017), Yarotsky (2017), Petersen and
Voigtlaender (2018), andElbrächter et al. (2019). We state here Yarotsky’s result:

Theorem 1.26 (Depth–width approximation trade-off). Let d, L ∈ N with L ≥ 2
and let g ∈ C2([0,1]d) be a function that is not affine linear. Then there exists a
constant c ∈ (0,∞) with the following property. For every ε ∈ (0,1) and every
ReLU NN architecture a = (N, %R) = ((d,N1, . . . ,NL−1,1), %R) with L layers and
‖N ‖1 ≤ cε−1/(2(L−1)) neurons it follows that

inf
θ∈RP(N)

‖Φa(·, θ) − g‖L∞([0,1]d) ≥ ε.

This results is based on the observation that ReLU NNs are piecewise affine
linear. The number of pieces they admit is linked to their capacity of approximating
functions that have non-vanishing curvature. Using a construction similar to the
example at the beginning of this subsection, it can be shown that the number of
pieces that can be generated using an architecture ((1,N1, . . . ,NL−1,1), %R) scales
roughly as

∏L−1
`=1 N` .

In the framework of the aforementioned results, we can speak of a depth–width
trade-off; see also Figure 1.10. A fine-grained estimate of achievable rates for freely
varying depths was also established in Shen (2020).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.3 The Role of Depth in the Expressivity of Neural Networks 47

1.3.3 Alternative Notions of Expressivity
Conceptual approaches to studying the approximation power of deep NNs beyond
the classical approximation framework usually aim to relate structural properties
of the NN to the “richness” of the set of possibly expressed functions. One early
result in this direction was by Montúfar et al. (2014) who described bounds on the
number of affine linear regions of a ReLU NN Φ(N ,%R)(·, θ). In a simplified setting,
we already saw estimates on the number of affine linear pieces at the beginning of
§1.3.2. Affine linear regions can be defined as the connected components ofRN0 \H,
where H is the set of non-differentiable parts of the realization20 Φ(N ,%R)(·, θ). A
refined analysis on the number of such regions was conducted, for example, by Hinz
and van de Geer (2019). It was found that deep ReLU neural networks can exhibit
significantly more of such regions than of their shallow counterparts.

The reason for this effectiveness of depth is described by the following analogy.
Through the ReLU each neuron Rd 3 x 7→ %R(〈x,w〉 + b), w ∈ Rd, b ∈ R, splits
the space into two affine linear regions separated by the hyperplane

{x ∈ Rd : 〈x,w〉 + b = 0}. (1.33)

A shallow ReLU NN Φ((d,n,1),%R)(·, θ) with n neurons in the hidden layer therefore
produces a number of regions defined through n hyperplanes.Using classical bounds
on the number of regions defined through hyperplane arrangements (Zaslavsky,
1975), one can bound the number of affine linear regions by

∑d
j=0

(n
j

)
. Deepening

the neural networks then corresponds to a certain folding of the input space. Through
this interpretation it can be seen that composing NNs can lead to a multiplication of
the number of regions of the individual NNs, resulting in an exponential efficiency
of deep neural networks in generating affine linear regions.21

This approach was further developed in Raghu et al. (2017) to a framework to
study expressivity that to some extent allows to include the training phase. One
central object studied in Raghu et al. (2017) are so-called trajectory lengths. In this
context, one analyzes how the length of a non-constant curve in the input space
changes in expectation through the layers of a NN. The authors found an exponential
dependence of the expected curve length on the depth. Let us motivate this in the
20 One can also study the potentially larger set of activation regions given by the connected components of
RN0 \ (⋃L−1

`=1
⋃N`

i=1 Hi ,`
)
, where

Hi ,` B {x ∈ RN0 : Φ(`)i (x, θ) = 0},

with Φ(`)i as in (1.1), is the set of non-differentiable parts of the activation of the ith neuron in the `th layer. In
contrast with the linear regions, the activation regions are necessarily convex (Raghu et al., 2017; Hanin and
Rolnick, 2019).

21 However, to exploit this efficiency with respect to the depth, one requires highly oscillating pre-activations snd
this in turn can only be achieved with a delicate selection of parameters. In fact, it can be shown that through
random initialization the expected number of activation regions per unit cube depends mainly on the number
of neurons in the NN, rather than its depth (Hanin and Rolnick, 2019).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

48 Berner et al. The Modern Mathematics of Deep Learning

input curve no hidden layer 3 hidden layers 10 hidden layers

Figure 1.11 Shape of the trajectory t 7→ Φ((2,n , . . . ,n ,2), %R)(γ(t), θ) of the output of a randomly
initialized network with 0, 3, or 10 hidden layers. The input curve γ is the circle given in the
leftmost image. The hidden layers have n = 20 neurons and the variance of the initialization is
taken as 4/n.

special case of a ReLU NN with architecture a = ((N0,n, . . . ,n,NL), %R) and depth
L ∈ N.
Given a non-constant continuous curve γ : [0,1] → RN0 in the input space, the

length of the trajectory in the `th layer of the NN Φa(·, θ) is then given by
Length(Φ̄(`)(γ(·), θ)), ` ∈ [L − 1],

where Φ̄(`)(·, θ) is the activation in the `th layer; see (1.1). Here the length of the
curve is well defined since Φ̄(`)(·, θ)) is continuous and therefore Φ̄(`)(γ(·), θ) is
continuous. Now, let the parameters Θ1 of the NN Φa be initialized independently
in such a way that the entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1, respectively.
It is not hard to see, for example by Proposition 1.17, that the probability that
Φ̄(`)(·,Θ1) will map γ to a non-constant curve is positive and hence, for fixed
` ∈ [L − 1],

E
[

Length(Φ̄(`)(γ(·),Θ1))
]
= c > 0.

Let σ ∈ (0,∞) and consider a second initialization Θσ , where we have changed
the variances of the entries corresponding to the weight matrices and bias vectors
to σ2/n and σ2, respectively. Recall that the ReLU is positively homogeneous, i.e.,
we have that %R(λx) = λ%R(x) for all λ ∈ (0,∞). Then it is clear that

Φ̄(`)(·,Θσ) ∼ σ`Φ̄(`)(·,Θ1),
i.e., the activations corresponding to the two initialization strategies are identically
distributed up to the factor σ` . Therefore, we immediately conclude that

E
[

Length(Φ̄(`)(γ(·),Θσ))
]
= σ`c.

This shows that the expected trajectory length depends exponentially on the depth
of the NN, which is in line with the behavior of other notions of expressivity (Poole

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.4 Deep Neural Networks Overcome the Curse of Dimensionality 49

M

Figure 1.12 Illustration of a one-dimensional manifold M embedded in R3. For every point
x ∈ M there exists a neighborhood in which the manifold can be linearly projected onto its
tangent space at x such that the corresponding inverse function is differentiable.

et al., 2016). In Raghu et al. (2017) this result is also extended to a tanh activation
function and the constant c is more carefully resolved. Empirically one also finds
that the shapes of the trajectories become more complex in addition to becoming
longer on average; see Figure 1.11.

1.4 Deep Neural Networks Overcome the Curse of Dimensionality
In §1.1.3, one of the main puzzles of deep learning that we identified was the
surprising performance of deep architectures on problems where the input dimen-
sions are very high. This performance cannot be explained in the framework of
classical approximation theory, since such results always suffer from the curse of
dimensionality (Bellman, 1952; DeVore, 1998; Novak and Woźniakowski, 2009).

In this section, we present three approaches that offer explanations of this phe-
nomenon. As before, we have had to omit certain ideas which have been very
influential in the literature to keep the length of this section under control. In par-
ticular, an important line of reasoning is that functions to be approximated often
have compositional structures which NNs may approximate very well, as reviewed
in Poggio et al. (2017b). Note that also a suitable feature descriptor, factoring out
invariances, might lead to a significantly reduced effective dimension; see §1.7.1.

1.4.1 Manifold Assumption

A first remedy for the high-dimensional curse of dimensionality is what we call
the manifold assumption. Here it is assumed that we are trying to approximate a

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

50 Berner et al. The Modern Mathematics of Deep Learning

function

g : Rd ⊃ X → R,
where d is very large. However, we are not seeking to optimize with respect to the
uniform norm or a regular Lp space; instead, we consider a measure µ which is
supported on a d ′-dimensional manifoldM ⊂ X. Then the error is measured in the
Lp(µ)-norm. Here we consider the case where d ′ � d. This setting is appropriate
if the data z = (x, y) of a prediction task is generated from a measure supported on
M × R.
This set-up or generalizations thereof was fundamental in Chui and Mhaskar

(2018), Shaham et al. (2018), Chen et al. (2019), Schmidt-Hieber (2019), Cloninger
and Klock (2020), Nakada and Imaizumi (2020). Let us outline an example-based
approach, where we consider locally Ck-regular functions and NNs with ReLU
activation functions below.

(i) The regularity of g on the manifold is described. Naturally, we need to quantify
the regularity of the function g restricted toM in an adequate way. The typical
approach would be to make a definition via local coordinate charts. If we assume
thatM is an embedded submanifold of X, then locally, i.e., in a neighborhood
of a point x ∈ M, the orthogonal projection of M onto the d ′-dimensional
tangent spaceTxM is a diffeomorphism. The situation is depicted in Figure 1.12.
Assuming M to be compact, we can choose a finite set of open balls (Ui)pi=1
that coverM and on which the local projections γi onto the respective tangent
spaces as described above exists and are diffeomorphisms. Nowwe can define the
regularity of g via classical regularity. In this example, we say that g ∈ Ck(M)
if g ◦ γ−1

i ∈ Ck(γi(M ∩Ui)) for all i ∈ [p].
(ii) Localization and charts are constructed via neural networks. According to the

construction of local coordinate charts in Step (i), we can write g as follows:

g(x) =
p∑
i=1

φi(x)
(
g ◦ γ−1

i (γi(x))
)
C

p∑
i=1

g̃i(γi(x), φi(x)), x ∈ M, (1.34)

where φi is a partition of unity such that supp(φi) ⊂ Ui. Note that γi is a linear
map, hence representable by a one-layer NN. Since multiplication is a smooth
operation, we have that if g ∈ Ck(M) then g̃i ∈ Ck(γi(M ∩Ui) × [0,1]).

The partition of unity φi needs to be emulated by NNs. For example, if
the activation function is the ReLU, then such a partition can be efficiently
constructed. Indeed, in He et al. (2020) it was shown that such NNs can represent
linear finite elements exactly with fixed-size NNs, and hence a partition of unity
subordinate to any given covering ofM can be constructed.

(iii) A classical approximation result is used on the localized functions. By some

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.4 Deep Neural Networks Overcome the Curse of Dimensionality 51

form of Whitney’s extension theorem (Whitney, 1934), we can extend each g̃i
to a function ḡi ∈ Ck(X × [0,1]) which by classical results can be approximated
up to an error of ε > 0 by NNs of size O(ε−(d′+1)/k) for ε → 0; see Mhaskar
(1996), Yarotsky (2017), and Shaham et al. (2018).

(iv) The compositionality of neural networks is used to build the final network. We
have seen that every component in the representation (1.34), i.e., g̃i, γi, and φi,
can be efficiently represented by NNs. In addition, composition and summation
are operations which can directly be implemented by NNs through increasing
their depth and widening their layers. Hence (1.34) is efficiently – i.e., with a rate
depending only on d ′ instead of the potentially much larger d – approximated
by a NN.

Overall, we see that NNs are capable of learning local coordinate transformations
and therefore of reducing the complexity of a high-dimensional problem to the
underlying low-dimensional problem given by the data distribution.

1.4.2 Random Sampling

As early as 1992, Andrew Barron showed that, under certain seemingly very nat-
ural assumptions on the function to be approximated, a dimension-independent
approximation rate by NNs can be achieved (Barron, 1992, 1993). Specifically, the
assumption is formulated as a condition on the Fourier transform of a function, and
the result is as follows.

Theorem 1.27 (Approximation of Barron-regular functions). Let % : R → R be
the ReLU or a sigmoidal function. Then there exists a constant c ∈ (0,∞) with the
following property. For every d,n ∈ N, every probability measure µ supported on
B1(0) ⊂ Rd, and every g ∈ L1(Rd) with Cg B

∫
Rd
‖ξ‖2 |ĝ(ξ)| dξ < ∞ it follows

that

inf
θ∈RP((d ,n ,1))

‖Φ((d,n,1),%)(·, θ) − g‖L2(µ) ≤
c√
n

Cg .

Note that the L2-approximation error can be replaced by an L∞-estimate over the
unit ball at the expense of a factor of the order of

√
d on the right-hand side.

The key idea behind Theorem 1.27 is the following application of the law of large
numbers. First, we observe that, as per the assumption, g can be represented via the

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

52 Berner et al. The Modern Mathematics of Deep Learning

inverse Fourier transform as

g − g(0) =
∫
Rd

ĝ(ξ)(e2πi 〈·,ξ 〉 − 1) dξ

= Cg

∫
Rd

1
‖ξ‖2 (e

2πi 〈·,ξ 〉 − 1) 1
Cg
‖ξ‖2ĝ(ξ) dξ

= Cg

∫
Rd

1
‖ξ‖2 (e

2πi 〈·,ξ 〉 − 1) dµg(ξ), (1.35)

where µg is a probability measure. Then it was further shown by Barron (1992) that
there exist (Rd × R)-valued random variables (Ξ, Ξ̃) such that (1.35) can be written
as

g(x) − g(0) = Cg

∫
Rd

1
‖ξ‖2 (e

2πi 〈x,ξ 〉 − 1) dµg(ξ) = CgE
[
Γ(Ξ, Ξ̃)(x)], x ∈ Rd,

(1.36)
where for every ξ ∈ Rd, ξ̃ ∈ R, the function Γ(ξ, ξ̃) : Rd → R is given by

Γ(ξ, ξ̃) B s(ξ, ξ̃)(1(0,∞)(−〈ξ/‖ξ‖2, ·〉 − ξ̃) − 1(0,∞)(〈ξ/‖ξ‖2, ·〉 − ξ̃))
with s(ξ, ξ̃) ∈ {−1,1}.

Now, let ((Ξ(i), Ξ̃(i)))i∈N be i.i.d. random variables with (Ξ(1), Ξ̃(1)) ∼ (Ξ, Ξ̃). Then
Bienaymé’s identity and Fubini’s theorem establish that

E

[

g − g(0) − Cg

n

n∑
i=1

Γ(Ξ(i), Ξ̃(i))

2

L2(µ)

]

=

∫
B1(0)
V

[
Cg

n

n∑
i=1

Γ(Ξ(i), Ξ̃(i))(x)
]

dµ(x)

=
C2
g

∫
B1(0)V

[
Γ(Ξ, Ξ̃)(x)] dµ(x)

n
≤ (2πCg)2

n
, (1.37)

where the last inequality follows from combining (1.36) with the fact that

|e2πi 〈x,ξ 〉 − 1|/‖ξ‖2 ≤ 2π, x ∈ B1(0).
This implies that there exists a realization ((ξ(i), ξ̃(i)))i∈N of the random variables
((Ξ(i), Ξ̃(i)))i∈N that achieves an L2-approximation error of n−1/2. Therefore, it re-
mains to show that NNs can well approximate the functions ((Γ(ξ(i), ξ̃(i)))i∈N. Now
it is not hard to see that the function 1(0,∞) and hence functions of the form Γ(ξ, ξ̃),
ξ ∈ Rd, ξ̃ ∈ R, can be arbitrarily well approximated with a fixed-size, two-layer NN
having a sigmoidal or ReLU activation function. Thus, we obtain an approximation
rate of n−1/2 when approximating functions with one finite Fourier moment by
two-layer NNs with n hidden neurons.
It was pointed out in the dissertation of Emmanuel Candès (1998) that the

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.4 Deep Neural Networks Overcome the Curse of Dimensionality 53

approximation rate of NNs for Barron-regular functions is also achievable by n-
termapproximationwith complex exponentials, as is apparent by considering (1.35).
However, for deeper NNs, the results also extend to high-dimensional non-smooth
functions, where Fourier-based methods are certain to suffer from the curse of
dimensionality (Caragea et al., 2020).

In addition, the random sampling idea above was extended in E et al. (2019d,
2020), and E and Wojtowytsch (2020b,c) to facilitate the dimension-independent
approximation of vastly more general function spaces. Basically, the idea is to
use (1.36) as an inspiration and define a generalized Barron space as comprising
all functions that may be represented as

E
[
1(0,∞)(〈Ξ, ·〉 − Ξ̃)

]
for any random variable (Ξ, Ξ̃). In this context, deep and compositional versions of
Barron spaces were introduced and studied in Barron and Klusowski (2018), E et al.
(2019a), and E and Wojtowytsch (2020a), which considerably extend the original
theory.

1.4.3 PDE Assumption
Another structural assumption that leads to the absence of the curse of dimen-
sionality in some cases is that the function we are trying to approximate is given
as the solution to a partial differential equation. It is by no means clear that this
assumption leads to approximation without the curse of dimensionality, since most
standard methods, such as finite elements, sparse grids, or spectral methods, typi-
cally do suffer from the curse of dimensionality.

This is not merely an abstract theoretical problem. Very recently, Al-Hamdani
et al. (2020) showed that two different gold standard methods for solving the multi-
electron Schrödinger equation produce completely different interaction energy pre-
dictions when applied to large delocalized molecules. Classical numerical repre-
sentations are simply not expressive enough to represent accurately complicated
high-dimensional structures such as wave functions with long-range interactions.

Interestingly, there exists an emerging body of work that shows that NNs do
not suffer from these shortcomings and enjoy superior expressivity properties as
compared to standard numerical representations. Such results include, for example,
Grohs et al. (2021), Gonon and Schwab (2020), and Hutzenthaler et al. (2020)
for (linear and semilinear) parabolic evolution equations, Elbrächter et al. (2019)
for stationary elliptic PDEs, Grohs and Herrmann (2021) for nonlinear Hamilton–
Jacobi–Bellman equations, and Kutyniok et al. (2019) for parametric PDEs. In all
these cases, the absence of the curse of dimensionality in terms of the theoretical
approximation power of NNs could be rigorously established.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

54 Berner et al. The Modern Mathematics of Deep Learning

One way to prove such results is via stochastic representations of the PDE
solutions, as well as associated sampling methods. We illustrate the idea for the
simple case of linear Kolmogorov PDEs; that is, the problem of representing the
function g : Rd × [0,∞) → R satisfying22

∂g

∂t
(x, t) = 1

2
Tr

(
σ(x, t)[σ(x, t)]∗∇2

xg(x, t)
)
+ 〈µ(x, t),∇xg(x, t)〉, g(x,0) = ϕ(x),

(1.38)
where the functions

ϕ : Rd → R (initial condition) and
σ : Rd → Rd×d, µ : Rd → Rd (coefficient functions)

are continuous and satisfy suitable growth conditions. A stochastic representation
of g is given via the Ito processes (Sx,t)t≥0 satisfying

dSx,t = µ(Sx,t)dt + σ(Sx,t)dBt, Sx,0 = x, (1.39)

where (Bt)t≥0 is a d-dimensional Brownian motion. Then g is described via the
Feynman–Kac formula, which states that

g(x, t) = E[ϕ(Sx,t)], x ∈ Rd, t ∈ [0,∞). (1.40)

Roughly speaking, a NN approximation result can be proven by first approximating,
via the law of large numbers, as follows:

g(x, t) = E[ϕ(Sx,t)] ≈ 1
n

n∑
i=1

ϕ(S(i)x,t), (1.41)

where (S(i)x,t)ni=1 are i.i.d. random variables with S(1)x,t ∼ Sx,t . Care has to be taken to
establish such an approximation uniformly in the computational domain, for exam-
ple, for every (x, t) in the unit cube [0,1]d × [0,1]; see (1.37) for a similar estimate
and Grohs et al. (2021) and Gonon and Schwab (2020) for two general approaches
to ensure this property. Aside from this issue, (1.41) represents a standard Monte
Carlo estimator which can be shown to be free of the curse of dimensionality.
As a next step, one needs to establish that realizations of the processes (x, t) 7→
Sx,t can be efficiently approximated by NNs. This can be achieved by emulating a
suitable time-stepping scheme for the SDE (1.39) by NNs; this, roughly speaking,
can be done without incurring the curse of dimensionality whenever the coefficient
functions µ,σ can be approximated by NNs without incurring the curse of dimen-
sionality and when some growth conditions hold true. In a final step one assumes
that the initial condition ϕ can be approximated by NNs without incurring the curse
22 The natural solution concept to this type of PDEs is the viscosity solution concept, a thorough study of which

can be found in Hairer et al. (2015).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.4 Deep Neural Networks Overcome the Curse of Dimensionality 55

of dimensionality which, by the compositionality of NNs and the previous step,
directly implies that realizations of the processes (x, t) 7→ ϕ(Sx,t) can be approxi-
mated by NNs without incurring the curse of dimensionality. By (1.41) this implies
a corresponding approximation result for the solution of the Kolmogorov PDE g

in (1.38).
Informally, we have discovered a regularity result for linear Kolmogorov equa-

tions, namely that (modulo some technical conditions on µ,σ), the solution g

of (1.38) can be approximated by NNs without incurring the curse of dimension-
ality whenever the same holds true for the initial condition ϕ, as well as for the
coefficient functions µ and σ. In other words, the property of being approximable
by NNs without curse of dimensionality is preserved under the flow induced by the
PDE (1.38). Some comments are in order.

Assumption on the initial condition. One may wonder if the assumption that the
initial condition ϕ can be approximated by NNs without incurring the curse of
dimensionality is justified. This is at least the case in many applications in compu-
tational finance where the function ϕ typically represents an option pricing formula
and (1.38) represents the famous Black–Scholes model. It turns out that nearly all
common option pricing formulas are constructed from iterative applications of lin-
ear maps and maximum/minimum functions – in other words, in many applications
in computational finance, the initial condition ϕ can be exactly represented by a
small ReLU NN.

Generalization and optimization error. The Feynman–Kac representation (1.40)
directly implies that g(·, t) can be computed as the Bayes optimal function of a
regression task with input features X ∼ U([0,1]d) and labels Y = ϕ(SX ,t), which
allows for an analysis of the generalization error as well as implementations based
on ERM algorithms (Beck et al., 2021; Berner et al., 2020a).

While it is in principle possible to analyze the approximation and generalization
errors, the analysis of the computational cost and/or convergence of the correspond-
ing SGD algorithms is completely open. Some promising numerical results exist –
see, for instance, Figure 1.13 – but the stable training of NNs approximating PDEs
to very high accuracy (which is needed in several applications such as quantum
chemistry) remains very challenging. Recent work (Grohs and Voigtlaender, 2021)
has even proved several impossibility results in that direction.

Extensions and abstract idea. Similar techniques may be used to prove expres-
sivity results for nonlinear PDEs, for example, using nonlinear Feynman–Kac-type
representations of Pardoux and Peng (1992) in place of (1.40) and multilevel Picard
sampling algorithms of E et al. (2019c) in place of (1.41).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

56 Berner et al. The Modern Mathematics of Deep Learning

101 102

input dimension

107

108

109

1010

1011

x cx2.36

#parameters avg. #steps
± 2 std.

Figure 1.13 Computational complexity as the number of neural network parameters times the
number of SGD steps needed to solve heat equations of varying dimensions up to a specified
precision. According to the fit above, the scaling is polynomial in the dimension (Berner et al.,
2020b).

We can also formulate the underlying idea in an abstract setting (a version of
which has also been used in §1.4.2). Assume that a high-dimensional function
g : Rd → R admits a probabilistic representation of the form

g(x) = E[Yx], x ∈ Rd, (1.42)

for some random variable Yx which can be approximated by an iterative scheme

Y(L)x ≈ Yx and Y(`)x = T`(Y(`−1)
x), ` = 1, . . . , L,

with dimension-independent convergence rate. If we can approximate realizations
of the initial mapping x 7→ Y0

x and the maps T` , ` ∈ [L], by NNs and if the
numerical scheme is stable enough, then we can also approximate Y(L)x using
compositionality. Emulating a uniform Monte-Carlo approximator of (1.42) then
leads to approximation results for g without the curse of dimensionality. In addition,
one can choose a Rd-valued random variable X as input features and define the
corresponding labels by YX to obtain a prediction task, which can be solved by
means of ERM.

Other methods. There exist a number of additional works related to the approxi-
mation capacities of NNs for high-dimensional PDEs, for example, Elbrächter et al.
(2018), Li et al. (2019a), and Schwab and Zech (2019). In most of these works, the
proof technique consists of emulating an existing method that does not suffer from
the curse of dimensionality. For instance, in the case of first-order transport equa-
tions, one can show in some cases that NNs are capable of emulating the method
of characteristics, which then also yields approximation results that are free of the
curse of dimensionality (Laakmann and Petersen, 2021).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.5 Optimization of Deep Neural Networks 57

1.5 Optimization of Deep Neural Networks
We recall from §§1.1.3 and 1.1.2 that the standard algorithm to solve the empirical
risk minimization problem over the hypothesis set of NNs is stochastic gradient
descent. This method would be guaranteed to converge to a global minimum of
the objective if the empirical risk were convex, viewed as a function of the NN
parameters. However, this function is severely non-convex; it may exhibit (higher-
order) saddle points, seriously suboptimal local minima, and wide flat areas where
the gradient is very small.

On the other hand, in applications, an excellent performance of SGD is observed.
This indicates that the trajectory of the optimization routine somehow misses sub-
optimal critical points and other areas that may lead to slow convergence. Clearly,
the classical theory does not explain this performance. Below we describe using
examples some novel approaches that give partial explanations of this success.

In keeping with the flavor of this chapter, the aim of this section is to present some
selected ideas rather than giving an overview of the literature. To give at least some
detail about the underlying ideas and to keep the length of this section reasonable,
a selection of results has had to be made and some ground-breaking results have
had to be omitted.

1.5.1 Loss Landscape Analysis
Given a NN Φ(·, θ) and training data s ∈ Zm, the function θ 7→ r(θ) B R̂s(Φ(·, θ))
describes, in a natural way through its graph, a high-dimensional surface. This
surfacemay have regions associated with lower values of R̂s which resemble valleys
of a landscape if they are surrounded by regions of higher values. The analysis of
the topography of this surface is called loss landscape analysis. Below we shall
discuss a couple of approaches that yield deep insights into the shape of such a
landscape.

Spin glass interpretation. One of the first discoveries about the shape of the loss
landscape comes from deep results in statistical physics. The Hamiltonian of the
spin glass model is a random function on the (n − 1)-dimensional sphere of radius√

n. Making certain simplifying assumptions, it was shown in Choromanska et al.
(2015a) that the loss associated with a NN with random inputs can be considered
as the Hamiltonian of a spin glass model, where the inputs of the model are the
parameters of the NN.

This connection has far-reaching implications for the loss landscape of NNs
because of the following surprising property of the Hamiltonian of spin glass
models. Consider the critical points of the Hamiltonian, and associate with each

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

58 Berner et al. The Modern Mathematics of Deep Learning

Index
Lo

ss

No negative curvature
at globally minimal
risk.

Critical points
with high risk
are unstable.

0 0.25 0.5

Figure 1.14 The distribution of critical points of the Hamiltonian of a spin glass model.

point an index that denotes the percentage of the eigenvalues of the Hessian at that
point which are negative. This index corresponds to the relative number of directions
in which the loss landscape has negative curvature. Then, with high probability, a
picture like that in Figure 1.14 emerges (Auffinger et al., 2013). More precisely,
the further away from the optimal loss we are, the more unstable the critical points
become. Conversely, if one finds oneself in a local minimum, it is reasonable to
assume that the loss is close to the global minimum.
While some of the assumptions establishing the connection between the spin

glass model and NNs are unrealistic in practice (Choromanska et al., 2015b), the
theoretical distribution of critical points in Figure 1.14 is visible in many practical
applications (Dauphin et al., 2014).

Paths and level sets. Another line of research is to understand the loss landscape
by analyzing paths through the parameter space, in particular, the existence of paths
in parameter space such that the associated empirical risks are monotone along the
path. Should there exist a path of non-increasing empirical risk from every point
to the global minimum, then we can be certain that no non-global minimum exists,
since no such path could escape such a minimum. An even stronger result holds:
the existence of such paths shows that the loss landscape has connected level sets
(Freeman and Bruna, 2017; Venturi et al., 2019).
A crucial ingredient of the analysis of such paths is linear substructures. Consider

a biasless two-layer NN Φ of the form

Rd 3 x 7→ Φ(x, θ) B
n∑
j=1

θ
(2)
j %

(〈
θ
(1)
j ,

[
x
1

] 〉)
, (1.43)

where θ(1)j ∈ Rd+1 for j ∈ [n], θ(2) ∈ Rn, % is a Lipschitz continuous activation
function, and we have augmented the vector x by a constant 1 in the last coordinate

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.5 Optimization of Deep Neural Networks 59

Φ(·, θmin)

Φ(·, θ)

F̃θ̂(1)

Φ(·, θ∗)γ1

Figure 1.15 Construction of a path from an initial point θ to the global minimum θmin that
does not have significantly higher risk than the initial point along the way. We depict here the
landscape as a function of the neural network realizations rather than of their parametrizations,
so that this landscape is convex.

as outlined in Remark 1.5. If we consider θ(1) to be fixed then it is clear that the
space

F̃θ(1) B {Φ(·, θ) : θ = (θ(1), θ(2)), θ(2) ∈ Rn} (1.44)

is a linear space. If the risk23 is convex, as is the case for the widely used quadratic
or logistic losses, then this implies that θ(2) 7→ r

((θ(1), θ(2))) is a convex map and
hence, for every parameter set P ⊂ Rn this map assumes its maximum on ∂P.
Therefore, within the vast parameter space, there are many paths one may travel
upon that do not increase the risk above the risk of the start and end points.

This idea was used in, for example, Freeman and Bruna (2017) in a way indicated
by the following simple sketch. Assume that, for two parameters θ and θmin, there
exists a linear subspace of NNs F̃θ̂(1) such that there are paths γ1 and γ2 connecting
Φ(·, θ) and Φ(·, θmin) respectively to F̃θ̂(1) . Further, assume that these paths are
such that, along them, the risk does not significantly exceed max{r(θ),r(θmin)}.
Figure 1.15 shows a visualization of these paths. In this case, a path from θ to θmin
not significantly exceeding r(θ) along the way is found by concatenating the path
γ1, a path along F̃θ̂(1) , and the path γ2. By the previous discussion, we know that
only γ1 and γ2 determine the extent to which the combined path exceeds r(θ) along
its way. Hence, we need to ask about the existence of anF̃θ̂(1) that facilitates the
construction of appropriate γ1 and γ2.

To understand why a good choice of F̃θ̂(1) , such that the risk along γ1 and γ2 will

23 As most statements in this subsection are valid for the empirical risk r(θ) = R̂s (Φ(·, θ)) as well as the risk
r(θ) = R(Φ(·, θ)), given a suitable data distribution of Z , we will just call r the risk.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

60 Berner et al. The Modern Mathematics of Deep Learning

not rise much higher than r(θ), is likely to be possible we set24

θ̂
(1)
j B

{
θ
(1)
j for j ∈ [n/2],
(θ(1)min)j for j ∈ [n] \ [n/2]. (1.45)

In other words, the first half of θ̂(1) is constructed from θ(1) and the second from
θ
(1)
min. If θ

(1)
j , j ∈ [N], are realizations of random variables distributed uniformly

on the d-dimensional unit sphere, then, by invoking standard covering bounds of
spheres (e.g., Corollary 4.2.13 of Vershynin, 2018), we expect that, for ε > 0 and a
sufficiently large number of neurons n, the vectors (θ(1)j)

n/2
j=1 already ε-approximate

all vectors (θ(1)j)nj=1. Replacing all vectors (θ(1)j)nj=1 by their nearest neighbor in
(θ(1)j)

n/2
j=1 can be done using a linear path in the parameter space, and, given that r is

locally Lipschitz continuous and ‖θ(2)‖1 is bounded, this operation will not increase
the risk by more than O(ε). We denote the vector resulting from this replacement
procedure by θ(1)∗ . Since for all j ∈ [n] \ [n/2] we now have that

%

(〈
(θ(1)∗)j,

[·
1

]〉)
∈

{
%

(〈
(θ(1)∗)k,

[·
1

]〉)
: k ∈ [n/2]

}
,

there exists a vector θ(2)∗ with (θ(2)∗)j = 0, j ∈ [n] \ [n/2], so that
Φ(·, (θ(1)∗ , θ(2))) = Φ(·, (θ(1)∗ , λθ(2)∗ + (1 − λ)θ(2))), λ ∈ [0,1].

In particular, this path does not change the risk between (θ(1)∗ , θ(2)) and (θ(1)∗ , θ(2)∗).
Now, since (θ(2)∗)j = 0 for j ∈ [n]\[n/2], the realizationΦ(·, (θ(1)∗ , θ(2)∗)) is computed
by a subnetwork consisting of the first n/2 hidden neurons, and we can replace the
parameters corresponding to the other neurons without any effect on the realization
function. Specifically, we have

Φ(·, (θ(1)∗ , θ(2)∗)) = Φ(·, (λθ̂(1) + (1 − λ)θ(1)∗ , θ(2)∗)), λ ∈ [0,1],
yielding a path of constant risk between (θ(1)∗ , θ(2)∗) and (θ̂(1), θ(2)∗). Connecting these
paths completes the construction of γ1 and shows that the risk along γ1 does not
exceed that at θ by more than O(ε). Of course, γ2 can be constructed in the same
way. The entire construction is depicted in Figure 1.15.
Overall, this derivation shows that for sufficiently wide NNs (appropriately ran-

domly initialized) it is very likely possible to connect a random parameter value to
the global minimum with a path which along the way does not need to climb much
higher than the initial risk.
In Venturi et al. (2019), a similar approach is taken and the convexity in the last

layer is used. However, the authors invoke the concept of intrinsic dimension to
24 We assume, without loss of generality, that n is a multiple of 2.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.5 Optimization of Deep Neural Networks 61

solve elegantly the nonlinearity of r((θ(1), θ(2))) with respect to θ(1). Also Safran
and Shamir (2016) had already constructed a path of decreasing risk from random
initializations. The idea here is that if one starts at a point of sufficiently high risk,
one can always find a path to the global optimum with strictly decreasing risk. The
intriguing insight behind this result is that if the initialization is sufficiently bad,
i.e., worse than that of a NN outputting only zero, then there exist two operations
that influence the risk directly. Multiplying the last layer with a number smaller than
1 will decrease the risk, whereas choosing a number larger than 1 will increase it.
Using this tuning mechanism, any given potentially non-monotone path from the
initialization to the global minimum can be modified so that it is strictly mono-
tonically decreasing. In a similar spirit, Nguyen and Hein (2017) showed that if a
deep NN has a layer with more neurons than training data points, then under cer-
tain assumptions the training data will typically be mapped to linearly independent
points in that layer. Of course, this layer could then be composed with a linear map
that maps the linearly independent points to any desirable output, in particular one
that achieves vanishing empirical risk; see also Proposition 1.17. As in the case of
two-layer NNs, the previous discussion on linear paths shows immediately that in
this situation a monotone path to the global minimum exists.

1.5.2 Lazy Training and Provable Convergence of Stochastic Gradient Descent
When training highly overparametrizedNNs, one often observes that the parameters
of the NNs barely change during training. In Figure 1.16, we show the relative
distance traveled by the parameters through the parameter space during the training
of NNs of varying numbers of neurons per layer.

The effect described above has been observed repeatedly and has been explained
theoretically: see e.g.,Du et al. (2018b, 2019), Li and Liang (2018), Allen-Zhu et al.
(2019), and Zou et al. (2020). In §1.2.1, we have already given a high-level overview
and, in particular, we discussed the function space perspective of this phenomenon
in the infinite-width limit. Belowwe present a short and highly simplified derivation
of this effect and show how it leads to the provable convergence of gradient descent
for sufficiently overparametrized deep NNs.

A simple learning model. We consider again the simple NN model of (1.43) with
a smooth activation function % which is not affine linear. For a quadratic loss and
training data s = ((x(i), y(i)))m

i=1 ∈ (Rd × R)m, where xi , xj for all i , j, the
empirical risk is given by

r(θ) = R̂s(θ) = 1
m

m∑
i=1
(Φ(x(i), θ) − y(i))2.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

62 Berner et al. The Modern Mathematics of Deep Learning

Figure 1.16 Four networks with architecture ((1, n, n, 1), %R) and n ∈ {20, 100, 500, 2500}
neurons per hidden layer were trained by gradient descent to fit the four points shown in the
top right figure as black dots. We depict on the top left the relative Euclidean distance of the
parameters from the initialization through the training process. In the top right, we show the final
trained NNs. On the bottom we show the behavior of the training error.

Let us further assume that Θ(1)j ∼ N(0,1/n)d+1, j ∈ [n], and Θ(2)j ∼ N(0,1/n),
j ∈ [n], are independent random variables.

A peculiar kernel. Next we would like to understand what the gradient ∇θr(Θ)
looks like, with high probability, over the initialization Θ = (Θ(1),Θ(2)). As with
Equation (1.22), by restricting the gradient to θ(2) and applying the chain rule, we
have that

‖∇θr(Θ)‖22 ≥
4

m2

 m∑
i=1
∇θ(2)Φ(x(i),Θ)(Φ(x(i),Θ) − y(i))

2

2

=
4

m2
((Φ(x(i),Θ) − y(i))mi=1

)T K̄Θ(Φ(x(j),Θ) − y(j))mj=1, (1.46)

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.5 Optimization of Deep Neural Networks 63

where K̄Θ is a random Rm×m-valued kernel given by

(K̄Θ)i, j B
(∇θ(2)Φ(x(i),Θ))T∇θ(2)Φ(x(j),Θ), i, j ∈ [m].

This kernel is closely related to the neural tangent kernel in (1.23) evaluated at the
features (x(i))m

i=1 and the random initialization Θ. It is a slightly simplified version
thereof because, in (1.23), the gradient is taken with respect to the full vector θ.
This can also be regarded as the kernel associated with a random features model
(Rahimi et al., 2007).

Note that for our two-layer NN we have that

(∇θ(2)Φ(x,Θ))k = %
(〈
Θ
(1)
k
,

[
x
1

]〉)
, x ∈ Rd, k ∈ [n]. (1.47)

Thus, we can write K̄Θ as the following sum of (random) rank-1 matrices:

K̄Θ =
n∑

k=1
vkv

T
k with vk =

(
%

(〈
Θ
(1)
k
,

[
x(i)

1

]〉))m
i=1
∈ Rm, k ∈ [n]. (1.48)

The kernel K̄Θ is symmetric and positive semi-definite by construction. It is positive
definite if it is non-singular, i.e., if at least m of the n vectors vk , k ∈ [n], are linearly
independent. Proposition 1.17 shows that for n = m the probability of that event is
non-zero, say δ, and is therefore at least 1 − (1 − δ) bn/mc for arbitrary n. In other
words, the probability increases rapidly with n. It is also clear from (1.48) that
E[K̄Θ] scales linearly with n.

From this intuitive derivation we conclude that, for sufficiently large n, with
high probability K̄Θ is a positive definite kernel with smallest eigenvalue λmin(K̄Θ)
scaling linearly with n. The properties of K̄Θ, in particular its positive definiteness,
have been studied much more rigorously, as already described in §1.2.1.

Control of the gradient. Applying the expected behavior of the smallest eigen-
value λmin(K̄Θ) of K̄Θ to (1.46), we conclude that with high probability

‖∇θr(Θ)‖22 ≥
4

m2 λmin(K̄Θ)‖(Φ(x(i),Θ) − y(i))mi=1‖22 &
n
m

r(Θ). (1.49)

To understand what will happen when applying gradient descent, we first need to
understand how the situation changes in a neighborhood of Θ. We fix x ∈ Rd and
observe that, by the mean value theorem for all θ̄ ∈ B1(0), we have

∇θΦ(x,Θ) − ∇θΦ(x,Θ + θ̄)

2

2 . sup
θ̂∈B1(0)

∇2
θΦ(x,Θ + θ̂)

2
op, (1.50)

where ‖∇2
θΦ(x,Θ+θ̂)‖op denotes the operator norm of theHessian ofΦ(x, ·) atΘ+θ̂.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

64 Berner et al. The Modern Mathematics of Deep Learning

By inspecting (1.43), it is not hard to see that, for all i, j ∈ [n] and k, ` ∈ [d + 1],

E

[(∂2Φ(x,Θ)
∂θ
(2)
i ∂θ

(2)
j

)2
]
= 0, E

[(∂2Φ(x,Θ)
∂θ
(2)
i ∂(θ(1)j)k

)2
]
. δi, j, and

E

[(∂2Φ(x,Θ)
∂(θ(1)i)k∂(θ

(1)
j)`

)2
]
.
δi, j

n
,

where δi, j = 0 if i , j and δi,i = 1 for all i, j ∈ [n]. For sufficiently large n,
we have that ∇2

θΦ(x,Θ) is in expectation approximately a block-band matrix with
bandwidth d + 1. Therefore we conclude that E

[‖∇2
θΦ(x,Θ)‖2op

]
. 1. Hence we

obtain by the concentration of Gaussian random variables that with high probability,
‖∇2

θΦ(x,Θ)‖2op . 1. By the block-banded form of∇2
θΦ(x,Θ)we have that, even after

perturbation ofΘ by a vector θ̂ with norm bounded by 1, the term ‖∇2
θΦ(x,Θ+ θ̂)‖2op

is still bounded, which yields that the right-hand side of (1.50) is bounded with
high probability.
Using (1.50), we can extend (1.49), which holds with high probability, to a

neighborhood of Θ by the following argument. Let θ̄ ∈ B1(0); then

‖∇θr(Θ + θ̄)‖22 ≥
4

m2

 m∑
i=1
∇θ(2)Φ(x(i),Θ + θ̄)(Φ(x(i),Θ + θ̄) − y(i))

2

2

=
(1.50)

4
m2

 m∑
i=1
(∇θ(2)Φ(x(i),Θ) + O(1))(Φ(x(i),Θ + θ̄) − y(i))

2

2

&
(∗)

1
m2 (λmin(K̄Θ) + O(1))‖(Φ(x(i),Θ + θ̄) − y(i))mi=1‖22

&
n
m

r(Θ + θ̄), (1.51)

where the estimate marked by (∗) uses the positive definiteness of K̄Θ again and
only holds for n sufficiently large, so that the O(1) term is negligible.
We conclude that, with high probability over the initialization Θ, on a ball of

fixed radius around Θ the squared Euclidean norm of the gradient of the empirical
risk is lower bounded by n/m times the empirical risk.

Exponential convergence of gradient descent. For sufficiently small step sizes η,
the observation in the previous paragraph yields the following convergence rate for
gradient descent as in Algorithm 1.1, specifically (1.8), with m′ = m and Θ(0) = Θ:

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 65

if ‖Θ(k) − Θ‖ ≤ 1 for all k ∈ [K + 1], then25

r(Θ(K+1)) ≈ r(Θ(K))−η‖∇θr(Θ(K))‖22 ≤
(
1− cηn

m

)
r(Θ(K)) .

(
1− cηn

m

)K
, (1.52)

for c ∈ (0,∞) so that ‖∇θr(Θ(k))‖22 ≥ cn
m r(Θ(k)) for all k ∈ [K].

Let us assume without proof that the estimate (1.51) could be extended to an
equivalence. In other words, we assume that we additionally have that ‖∇θr(Θ +
θ̄)‖22 . n

mr(Θ+θ̄). This, of course, could have been shownwith tools similar to those
used for the lower bound. Then we have that ‖Θ(k)−Θ‖2 ≤ 1 for all k .

√
m/(η2n).

Setting t =
√

m/(η2n) and using the limit definition of the exponential function,
i.e., limt→∞(1 − x/t)t = e−x , yields, for sufficiently small η, that (1.52) is bounded
by e−c

√
n/m.

We conclude that, with high probability over the initialization, gradient descent
converges at an exponential rate to an arbitrarily small empirical risk if the width
n is sufficiently large. In addition, the iterates of the descent algorithm even stay
in a small fixed neighborhood of the initialization during training. Because the
parameters only move very little, this type of training has also been coined lazy
training (Chizat et al., 2019).

Ideas similar to those above have led to groundbreaking convergence results of
SGD for overparametrized NNs in much more complex and general settings; see,
e.g., Du et al. (2018b), Li and Liang (2018), and Allen-Zhu et al. (2019).

In the infinite-width limit, NN training is practically equivalent to kernel regres-
sion; see §1.2.1. If we look at Figure 1.16 we see that the most overparametrized
NN interpolates the data in the same way as a kernel-based interpolator would. In
a sense, which was also highlighted in Chizat et al. (2019), this shows that, while
overparametrized NNs in the lazy training regime have very nice properties, they
essentially act like linear methods.

1.6 Tangible Effects of Special Architectures
In this section we describe results that isolate the effects of certain aspects of NN
architectures. As discussed in §1.1.3, typically only either the depth or the number
of parameters is used to study theoretical aspects of NNs. We have seen instances
of this throughout §§1.3 and 1.4. Moreover, in §1.5, we saw that wider NNs enjoy
certain very favorable properties from an optimization point of view.

Below, we introduce certain specialized NN architectures. We start with one
of the most widely used types of NNs, the convolutional neural network (CNN).
In §1.6.2 we introduce skip connections and in §1.6.3 we discuss a specific class
25 Note that the step size η needs to be small enough to facilitate the approximation step in (1.52). Hence, we

cannot simply put η = m/(cn) in (1.52) and have convergence after one step.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

66 Berner et al. The Modern Mathematics of Deep Learning

of CNNs equipped with an encoder–decoder structure that is frequently used in
image processing techniques.We introduce the batch normalization block in §1.6.4.
Then, in §1.6.5, we discuss the sparsely connected NNs that typically result as an
extraction from fully connected NNs. Finally, we briefly comment on recurrent
neural networks in §1.6.6.
As we have noted repeatedly throughout this chapter, it is impossible to give a

full account of the literature in a short introductory article. In this section this issue
is especially severe since the number of special architectures studied in practice
is enormous. Therefore, we have had to omit many very influential and widely
used neural network architectures. Among those are graph neural networks, which
handle data from non-Euclidean input spaces. We refer to the survey articles by
Bronstein et al. (2017) and Wu et al. (2021) for a discussion. Another highly suc-
cessful type of architecture comprises (variational) autoencoders (Ackley et al.,
1985; Hinton and Zemel, 1994). These are neural networks with a bottleneck that
enforce a more efficient representation of the data. Similarly, generative adversarial
networks (Goodfellow et al., 2014), which are composed of two neural networks
– one generator and one discriminator – could not be discussed here. Yet another
widely used component of architectures used in practice is the so-called dropout
layer. This layer functions through removing some neurons randomly during train-
ing. This procedure empirically prevents overfitting. An in-detail discussion of the
mathematical analysis behind this effect is beyond the scope of this chapter. Instead,
we refer to Wan et al. (2013), Srivastava et al. (2014), Haeffele and Vidal (2017),
and Mianjy et al. (2018). Finally, the very successful attention mechanism (Bah-
danau et al., 2015; Vaswani et al., 2017), which is the basis of transformer neural
networks, had to be omitted.
Before we start describing certain effects of special NN architectures, a word

of warning is required. The special building blocks that will be presented below
have been developed on the basis of a specific need in applications and are used
and combined in a very flexible way. To describe these tools theoretically without
completely inflating the notational load, some simplifying assumptions need to be
made. It is very likely that the building blocks thus simplified do not accurately
reflect the practical applications of these tools in all use cases.

1.6.1 Convolutional Neural Networks
Especially for very high-dimensional inputswhere the input dimensions are spatially
related, fully connected NNs seem to require unnecessarily many parameters. For
example, in image classification problems, neighboring pixels very often share
information and the spatial proximity should be reflected in the architecture. From
this observation, it appears reasonable to have NNs that have local receptive fields in

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 67

the sense that they collect information jointly from spatially close inputs. In addition,
in image processingwe are not necessarily interested in a universal hypothesis set. A
good classifier is invariant under many operations, such as the translation or rotation
of images. It seems reasonable to hard-code such invariances into the architecture.

These two principles suggest that the receptive field of a NN should be the
same on different translated patches of the input. In this sense, the parameters
of the architecture can be reused. Together, these arguments make up the three
fundamental principles of convolutional NNs: local receptive fields, parameter
sharing, and equivariant representations, as introduced in LeCun et al. (1989a).
We will provide a mathematical formulation of convolutional NNs below and then
revisit these concepts.

A convolutional NN corresponds to multiple convolutional blocks, which are
special types of layers. For a group G, which typically is either [d] � Z/(dZ)
or [d]2 � (Z/(dZ))2 for d ∈ N, depending on whether we are performing one-
dimensional or two-dimensional convolutions, the convolution of two vectors a, b ∈
RG is defined as

(a ∗ b)i =
∑
j∈G

ajbj−1i, i ∈ G.

Now we can define a convolutional block as follows. Let G̃ be a subgroup of G, let
p : G → G̃ be a so-called pooling operator, and let C ∈ N denote the number of
channels. Then, for a series of kernels κi ∈ RG , i ∈ [C], the output of a convolutional
block is given by

RG 3 x 7→ x ′ B (p(x ∗ κi))Ci=1 ∈ (RG̃)C . (1.53)

A typical example of a pooling operator is, for G = (Z/(2dZ))2 and G̃ = (Z/(dZ))2,
the 2 × 2 subsampling operator

p : RG → RG̃, x 7→ (x2i−1,2j−1)di, j=1.

Popular alternatives are average pooling or max pooling. These operations then
either compute the average or the maximum over patches of similar size. The
convolutional kernels correspond to the aforementioned receptive fields. They can
be thought of as local if they have small supports, i.e., few non-zero entries.

As explained earlier, a convolutional NN is built by stacking multiple convolu-
tional blocks one after another.26 At some point, the output can be flattened, i.e.,
mapped to a vector, and is then fed into an FC NN (see Definition 1.4). We depict
this set-up in Figure 1.17.
26 We assume that the definition of a convolutional block is suitably extended to input data in the Cartesian

product (RG)C . For instance, one can take an affine linear combination ofC mappings as in (1.53) acting on
each coordinate. Moreover, one may also interject an activation function between the blocks.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

68 Berner et al. The Modern Mathematics of Deep Learning

Convolution Pooling Convolution Pooling Fully connected NN

Figure 1.17 Illustration of a convolutional neural network with two-dimensional convolutional
blocks and 2 × 2 subsampling as the pooling operation.

Owing to the fact that convolution is a linear operation, depending on the pooling
operation, one may write a convolutional block (1.53) as an FC NN. For example,
if G = (Z/(2dZ))2 and the 2 × 2 subsampling pooling operator is used, then the
convolutional block could be written as x 7→ W x for a block-circulant matrix
W ∈ R(Cd2)×(2d)2 . Since we require W to have a special structure, we can interpret
a convolutional block as a special, restricted, feed-forward architecture.
After these considerations, it is natural to ask how the restriction of a NN to a pure

convolutional structure, i.e., one consisting only of convolutional blocks, will affect
the resulting hypothesis set. The first natural question is whether the set of such NNs
is still universal in the sense of Theorem 1.16. The answer to this question depends
strongly on the type of pooling and convolution that is allowed. If the convolution
is performed with padding then the answer is yes (Oono and Suzuki, 2019; Zhou,
2020b). On the other hand, for circular convolutions and without pooling, universal-
ity does not hold but the set of translation-equivariant functions can be universally
approximated (Yarotsky, 2018b; Petersen and Voigtlaender, 2020). Furthermore,
Yarotsky (2018b) illuminates the effect of subsample pooling by showing that if
no pooling is applied then universality cannot be achieved, whereas if pooling is
applied then universality is possible. The effect of subsampling in CNNs from the
viewpoint of approximation theory is further discussed in Zhou (2020a). The role
of other types of pooling in enhancing invariances of the hypothesis set will be
discussed in §1.7.1 below.

1.6.2 Residual Neural Networks
Let us first illustrate a potential obstacle when training deep NNs. Consider for
L ∈ N the product operation

RL 3 x 7→ π(x) =
L∏
`=1

x` .

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 69

It is clear that
∂

∂xk
π(x) =

L∏
`,k

x`, x ∈ RL .

Therefore, for sufficiently large L, we expect that
�� ∂π
∂xk

�� will be exponentially small,
if |x` | < λ < 1 for all ` ∈ [L]; or exponentially large, if |x` | > λ > 1 for all ` ∈ [L].
The output of a general NN, considered as a directed graph, is found by repeatedly
multiplying the input with parameters in every layer along the paths that lead from
the input to the output neuron. Owing to the aforementioned phenomenon, it is
often observed that training the NNs suffers from either an exploding-gradient or
a vanishing-gradient problem, which may prevent the lower layers from training at
all. The presence of an activation function is likely to exacerbate this effect. The
exploding- or vanishing-gradient problem seems to be a serious obstacle to the
efficient training of deep NNs.

In addition to the exploding- and vanishing-gradient problems, there is an em-
pirically observed degradation problem (He et al., 2016). This phrase describes the
fact that FC NNs seem to achieve lower accuracy on both the training and test data
when increasing their depth.

From an approximation-theoretic perspective, deep NNs should always be su-
perior to shallow NNs. The reason for this is that NNs with two layers can either
exactly represent the identity map or approximate it arbitrarily well. Concretely, for
the ReLU activation function %R we have that x = %R(x + b) − b for x ∈ Rd with
xi > −bi, where b ∈ Rd. In addition, for any activation function % which is contin-
uously differentiable on a neighborhood of some point λ ∈ R with %′(λ) , 0 one
can approximate the identity arbitrary well; see (1.12). Because of this, extending
a NN architecture by one layer can only enlarge the associated hypothesis set.

Therefore, one may expect that the degradation problem is more associated with
the optimization aspect of learning. This problem is addressed by a small change
to the architecture of a feed-forward NN in He et al. (2016). Instead of defining an
FC NN Φ as in (1.1), one can insert a residual block in the `th layer by redefining27

Φ̄(`)(x, θ) = %(Φ(`)(x, θ)) + Φ̄(`−1)(x, θ), (1.54)

where we assume that N` = N`−1. Such a block can be viewed as the sum of a regular
FCNNand the identity and is referred to as a skip connection or residual connection.
A schematic diagram of aNNwith residual blocks is shown in Figure 1.18. Inserting
a residual block in all layers leads to a so-called residual NN.

A prominent approach to analyzing residual NNs is to establish a connection
with optimal control problems and dynamical systems (E, 2017; Thorpe and van
27 One can also skip multiple layers – e.g., in He et al. (2016) two or three layers were skipped – use a simple

transformation instead of the identity (Srivastava et al., 2015), or randomly drop layers (Huang et al., 2016).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

70 Berner et al. The Modern Mathematics of Deep Learning
idR3 idR3 idR3 idR3

Figure 1.18 Illustration of a neural network with residual blocks.

Gennip, 2018; E et al., 2019b; Li et al., 2019b; Ruthotto and Haber, 2019; Lu et al.,
2020). Concretely, if each layer of a NN Φ is of the form (1.54) then we have that

Φ̄(`) − Φ̄(`−1) = %(Φ(`)) C h(`,Φ(`)),
where for brevity we write Φ̄(`) = Φ̄(`)(x, θ) and set Φ̄(0) = x. Hence, (Φ̄(`))L−1

`=0
corresponds to an Euler discretization of the ODE

Ûφ(t) = h(t, φ(t)), φ(0) = x,

where t ∈ [0, L − 1] and h is an appropriate function.
Using this relationship, deep residual NNs can be studied in the framework

of the well-established theory of dynamical systems, where strong mathematical
guarantees can be derived.

1.6.3 Framelets and U-Nets
One of the most prominent application areas of deep NNs is inverse problems,
particularly those in the field of imaging science; see also §1.8.1. A specific ar-
chitectural design of CNNs, namely so-called U-nets, introduced in Ronneberger
et al. (2015), seems to perform best for this range of problems. We sketch a U-net in
Figure 1.19. However, a theoretical understanding of the success of this architecture
was lacking.
Recently, an innovative approach called deep convolutional framelets was sug-

gested in Ye et al. (2018), which we now briefly explain. The core idea is to take a
frame-theoretic viewpoint, see, e.g., Casazza et al. (2012), and regard the forward
pass of a CNN as a decomposition in terms of a frame (in the sense of a generalized
basis). A similar approach will be taken in §1.7.2 for understanding the learned ker-
nels using sparse coding. However, based on the analysis and synthesis operators of
the corresponding frame, the usage of deep convolutional framelets naturally leads
to a theoretical understanding of encoder–decoder architectures, such as U-nets.
Let us describe this approach for one-dimensional convolutions on the group

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 71

Figure 1.19 Illustration of a simplified U-net neural network. Down arrows stand for pooling, up
arrows for deconvolution or upsampling, right-pointing arrows for convolution or fully connected
steps. Lines without arrows are skip connections.

G B Z/(dZ) with kernels defined on the subgroup H B Z/(nZ), where d,n ∈ N
with n < d; see also §1.6.1. We define the convolution between u ∈ RG and
v ∈ RH by zero-padding v, i.e., g ∗◦ v B g ∗ v̄, where v̄ ∈ RG is defined by v̄i = vi
for i ∈ H and v̄i = 0 else. As an important tool, we consider the Hankel matrix
Hn(x) = (xi+j)i∈G, j∈H ∈ Rd×n associated with x ∈ RG . As one key property,
matrix–vector multiplications with Hankel matrices are translated to convolutions
via28

〈e(i),Hn(x)v〉 =
∑
j∈H

xi+jvj = 〈x, e(i) ∗◦ v〉, i ∈ G, (1.55)

where e(i) B 1{i } ∈ RG and v ∈ RH ; see Yin et al. (2017). Further, we can recover
the kth coordinate of x by the Frobenius inner product between Hn(x) and the
Hankel matrix associated with e(k), i.e.,

1
n

Tr
(
Hn(e(k))THn(x)

)
=

1
n

∑
j∈H

∑
i∈G

e(k)i+j xi+j =
1
n
|H |xk = xk . (1.56)

This allows us to construct global and local bases as follows. Let p,q ∈ N, let
U =

[
u1 · · · up

] ∈ Rd×p, V =
[
v1 · · · vq

] ∈ Rn×q, Ũ =
[
ũ1 · · · ũp

] ∈ Rd×p, and
28 Here and in the following we naturally identify elements in RG and RH with the corresponding vectors in Rd

and Rn .

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

72 Berner et al. The Modern Mathematics of Deep Learning

Ṽ =
[
ṽ1 · · · ṽq

] ∈ Rn×q, and assume that

Hn(x) = ŨUTHn(x)VṼT . (1.57)

For p ≥ d and q ≥ n, this is satisfied if, for instance, U and V constitute frames
whose dual frames are respectively Ũ and Ṽ , i.e., ŨUT = Id and VṼT = In.
As a special case, one can consider orthonormal bases U = Ũ and V = Ṽ with
p = d and q = n. In the case p = q = r ≤ n, where r is the rank of Hn(x), one
can establish (1.57) by choosing the left and right singular vectors of Hn(x) as
U = Ũ and V = Ṽ , respectively. The identity in (1.57) in turn ensures the following
decomposition:

x =
1
n

p∑
i=1

q∑
j=1
〈x,ui ∗◦ vj〉ũi ∗◦ ṽj . (1.58)

Observing that the vector vj ∈ RH interacts locally with x ∈ RG owing to the
fact that H ⊂ G, whereas ui ∈ RG acts on the entire vector x, we refer to (vj)qj=1
as a local basis and (ui)pi=1 as a global basis. In the context of CNNs, vi can be
interpreted as a local convolutional kernel and ui as a pooling operation.29 The
proof of (1.58) follows directly from properties (1.55), (1.56), and (1.57):

xk =
1
n

Tr
(
Hn(e(k))THn(x)

)
=

1
n

Tr
(
Hn(e(k))T ŨUTHn(x)VṼT)

=
1
n

p∑
i=1

q∑
j=1
〈ui,Hn(x)vj〉〈ũi,Hn(e(k))ṽj〉.

The decomposition in (1.58) can now be interpreted as the composition of an
encoder and a decoder,

x 7→ C = (〈x,ui ∗◦ vj〉)i∈[p], j∈[q] and C 7→ 1
n

p∑
i=1

q∑
j=1

Ci, j ũi ∗◦ ṽj, (1.59)

which relates it to CNNs equipped with an encoder–decoder structure such as U-
nets; see Figure 1.19. Generalizing this approach to multiple channels, it is possible
to stack such encoders and decoders leading to a layered version of (1.58). Ye et al.
(2018) show that one can make an informed decision on the number of layers on the
basis of the rank of Hn(x), i.e., the complexity of the input features x. Moreover,
an activation function such as the ReLU or bias vectors can also be included.
The key question one can then ask is how the kernels can be chosen to obtain
sparse coefficients C in (1.59) and a decomposition such as (1.58), i.e., perfect
29 Note that 〈x, ui ∗◦ vj 〉 can also be interpreted as 〈ui , vj ? x 〉, where? denotes the cross-correlation between

the zero-padded vj and x. This is in line with software implementations for deep learning applications, for
example TensorFlow and PyTorch, where typically cross-correlations are used instead of convolutions.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 73
µb σb

β γ

ŷ =
y−µb
σb

z = γ ŷ + β

Figure 1.20 A batch normalization block after a fully connected neural network. The parameters
µb , σb are the mean and the standard deviation of the output of the fully connected network
computed over a batch s, i.e., a set of inputs. The parameters β, γ are learnable parts of the batch
normalization block.

reconstruction. IfU andV are chosen as the left and right singular vectors ofHn(x),
one obtains a very sparse, however input-dependent, representation in (1.58) owing
to the fact that

Ci, j = 〈x,ui ∗◦ vj〉 = 〈ui,Hn(x)vj〉 = 0, i , j .

Finally, using the framework of deep convolutional framelets, theoretical reasons
for including skip connections can be derived, since they aid in obtaining a perfect
reconstruction.

1.6.4 Batch Normalization
Batch normalization involves a building block of NNs that was invented in Ioffe
and Szegedy (2015) with the goal of reducing so-called internal covariance shift.
In essence, this phrase describes the (undesirable) situation where, during training,
each layer receives inputs with different distributions. A batch normalization block
is defined as follows. For points b = (y(i))m

i=1 ∈ (Rn)m and β, γ ∈ R, we define

BN(β,γ)
b
(y) B γ

y − µb
σb

+ β, y ∈ Rn,

with µb =
1
m

m∑
i=1

y(i) and σ2
b =

1
m

m∑
i=1
(y(i) − µb)2,

(1.60)

where all operations are to be understood componentwise; see Figure 1.20.
Such a batch normalization block can be added into a NN architecture. Then

b is the output of the previous layer over a batch or the whole training data.30

30 In practice, one typically uses a moving average to estimate the mean µ, and the standard deviation σ of the
output of the previous layer, over the whole training data by using only batches.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

74 Berner et al. The Modern Mathematics of Deep Learning

Furthermore, the parameters β, γ are variable and can be learned during training.
Note that if one sets β = µb and γ = σb then BN(β,γ)

b
(y) = y for all y ∈ Rn.

Therefore, a batch normalization block does not negatively affect the expressivity
of the architecture. On the other hand, batch normalization does have a tangible
effect on the optimization aspects of deep learning. Indeed, in Santurkar et al. (2018,
Theorem 4.1), the following observation was made.

Proposition 1.28 (Smoothening effect of batch normalization). Let m ∈ N with
m ≥ 2, and for every β, γ ∈ R define B(β,γ) : Rm → Rm by

B(β,γ)(b) = (BN(β,γ)
b
(y(1)), . . . ,BN(β,γ)

b
(y(m))), b = (y(i))mi=1 ∈ Rm, (1.61)

where BN(β,γ)
b

is as given in (1.60). Let β, γ ∈ R and let r : Rm → R be a differen-
tiable function. Then, for every b ∈ Rm, we have

‖∇(r ◦ B(β,γ))(b)‖22 =
γ2

σ2
b

(
‖∇r(b)‖2 − 1

m
〈1,∇r(b)〉2 − 1

m
〈B(0,1)(b),∇r(b)〉2

)
,

where 1 = (1, . . . ,1) ∈ Rm and σ2
b
is as given in (1.60).

For multi-dimensional y(i) ∈ Rn, i ∈ [m], the same statement holds for all
components as, by definition, the batch normalization block acts componentwise.
Proposition 1.28 follows from a convenient representation of the Jacobian of the
mapping B(β,γ), given by

∂B(β,γ)(b)
∂b

=
γ

σb

(
Im − 1

m
11T − 1

m
B(0,1)(b)(B(0,1)(b))T

)
, b ∈ Rm,

and the fact that { 1√
m
, 1√

m
B(0,1)(b)} constitutes an orthonormal set.

Choosing r to mimic the empirical risk of a learning task, Proposition 1.28 shows
that, in certain situations – for instance, if γ is smaller than σb or if m is not too
large – a batch normalization block can considerably reduce the magnitude of the
derivative of the empirical risk with respect to the input of the batch normalization
block. By the chain rule, this implies that also the derivative of the empirical risk
with respect to NN parameters influencing the input of the batch normalization
block is reduced.
Interestingly, a similar result holds for second derivatives (Santurkar et al., 2018,

Theorem 4.2) if r is twice differentiable. One can conclude that adding a batch
normalization block increases the smoothness of the optimization problem. Since
the parameters β and γ were introduced, including a batch normalization block also
increases the dimension of the optimization problem by 2.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 75

Figure 1.21 A neural network with sparse connections.

1.6.5 Sparse Neural Networks and Pruning
For deep FC NNs, the number of trainable parameters usually scales as the square
of the number of neurons. For reasons of computational complexity and memory
efficiency, it appears sensible to seek for techniques that reduce the number of
parameters or extract sparse subnetworks (see Figure 1.21) without much affecting
the output of a NN. One way to do it is by pruning (LeCun et al., 1989b; Han et al.,
2016). Here, certain parameters of a NN are removed after training. This is done
by, for example, setting these parameters to zero.

In this context, the lottery ticket hypothesiswas formulated in Frankle and Carbin
(2018). It states that “A randomly-initialized, dense NN contains a subnetwork that
is initialized such that – when trained in isolation – it can match the test accuracy
of the original NN after training for at most the same number of iterations.” In
Ramanujan et al. (2020) a similar hypothesis was made and empirically studied.
There, it was claimed that, for a sufficiently overparametrized NN, there exists a
subnetwork that matches the performance of the large NN after training without
being trained itself, i.e., it already does so at initialization.

Under certain simplifying assumptions, the existence of favorable subnetworks
is quite easy to prove. We can use a technique that was indirectly used in §1.4.2 –
the Carathéodory lemma. This result states the following. Let n ∈ N, C ∈ (0,∞),
and (H, ‖ · ‖) be a Hilbert space. Let F ⊂ H with sup f ∈F ‖ f ‖ ≤ C and let g ∈ H
be in the convex hull of F. Then there exist fi ∈ F, i ∈ [n], and c ∈ [0,1]n with
‖c‖1 = 1, such that

g −

n∑
i=1

ci fi

 ≤ C√
n

;

see, e.g., Vershynin (2018, Theorem 0.0.2).

Proposition 1.29 (Carathéodory pruning). Let d,n ∈ N with n ≥ 100 and let µ be
a probability measure on the unit ball B1(0) ⊂ Rd. Let a = ((d,n,1), %R) be the
architecture of a two-layer ReLU network and let θ ∈ RP((d,n,1)) be corresponding

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

76 Berner et al. The Modern Mathematics of Deep Learning

parameters such that

Φa(·, θ) =
n∑
i=1

w
(2)
i %R

(〈w(1)i , ·〉 + b(1)i
)
,

where
(
w
(1)
i , b(1)i

) ∈ Rd × R, i ∈ [n], and w(2) ∈ Rn. Assume that for every i ∈ [n]
it holds true that ‖w(1)i ‖2 ≤ 1/2 and b(1)i ≤ 1/2. Then there exists a parameter
θ̃ ∈ RP((d,n,1)) with at least 99% of its entries zero such that

‖Φa(·, θ) − Φa(·, θ̃)‖L2(µ) ≤
15‖w(2)‖1√

n
.

Specifically, there exists an index set I ⊂ [n] with |I | ≤ n/100 such that θ̃ satisfies

w̃
(2)
i = 0, if i < I, and (w̃(1)i , b̃(1)i) =

{
(w(1)i , b(1)i), if i ∈ I,

(0,0), if i < I .

The result is clear if w(2) = 0. Otherwise, define

fi B ‖w(2)‖1%R(〈w(1)i , ·〉 + b(1)i), i ∈ [n], (1.62)

and observe that Φa(·, θ) is in the convex hull of { fi}ni=1 ∪ {− fi}ni=1. Moreover, by
the Cauchy–Schwarz inequality, we have

‖ fi ‖L2(µ) ≤ ‖w(2)‖1‖ fi ‖L∞(B1(0)) ≤ ‖w(2)‖1.
We conclude with the Carathéodory lemma that there exists I ⊂ [n] with |I | =
bn/100c ≥ n/200 and ci ∈ [−1,1], i ∈ I, such that

Φa(·, θ) −

∑
i∈I

ci fi

L2(µ)

≤ ‖w
(2)‖1√
|I |
≤
√

200‖w(2)‖1√
n

,

which yields the result.
Proposition 1.29 shows that certain, very wide NNs can be approximated very

well by sparse subnetworks in which only the output weight matrix needs to be
changed. The argument of Proposition 1.29 was inspired by Barron and Klusowski
(2018), where a much more refined result is shown for deep NNs.

1.6.6 Recurrent Neural Networks
Recurrent NNs are NNs where the underlying graph is allowed to exhibit cycles,
as in Figure 1.22; see Hopfield (1982), Rumelhart et al. (1986), Elman (1990), and
Jordan (1990). Above, we excluded cyclic computational graphs. For a feed-forward
NN, the computation of internal states is naturally performed step by step through
the layers. Since the output of a layer does not affect the previous layers, the order

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.6 Tangible Effects of Special Architectures 77

Figure 1.22 Sketch of a recurrent neural network. The cycles in the computational graph incor-
porate the sequential structure of the input and output.

in which the computations of the NN are performed corresponds to the order of
the layers. For recurrent NNs the concept of layers does not exist, and the order of
operations is much more delicate. Therefore, one considers time steps. In each time
step, all possible computations of the graph are applied to the current state of the
NN. This yields a new internal state. Given that time steps arise naturally from the
definition of recurrent NNs, this NN type is typically used for sequential data.

If the input to a recurrent NN is a sequence, then every input determines the
internal state of the recurrent NN for the following inputs. Therefore, one can claim
that theseNNs exhibit amemory. This fact is extremely desirable in natural language
processing, which is why recurrent NNs are widely used in this application.

Recurrent NNs can be trained in a way similar to regular feed-forward NNs
by an algorithm called backpropagation through time (Minsky and Papert, 1969;
Werbos, 1988; Williams and Zipser, 1995). This procedure essentially unfolds
the recurrent structure to yield a classical NN structure. However, the algorithm
may lead to very deep structures. Owing to the vanishing- and exploding-gradient
problem discussed earlier, very deep NNs are often hard to train. Because of this,
special recurrent structures have been introduced that include gates that prohibit
too many recurrent steps; these include the widely used long short-term memory
gates, LSTMs, (Hochreiter and Schmidhuber, 1997).

The application area of recurrent NNs is typically quite different from that of
regular NNs since they are specialized on sequential data. Therefore, it is hard to
quantify the effect of a recurrent connection on a fully connected NN. However, it
is certainly true that with recurrent connections certain computations can be per-
formed much more efficiently than with feed-forward NN structures. A particularly
interesting construction can be found in Bohn and Feischl (2019, Theorem 4.4),
where it is shown that a fixed size, recurrent NN with ReLU activation function,
can approximate the function x 7→ x2 to any desired accuracy. The reason for this
efficient representation can be seen when considering the self-referential definition
of the approximant to x − x2 shown in Figure 1.9.

On the other hand, with feed-forward NNs, it transpires from Theorem 1.26 that

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

78 Berner et al. The Modern Mathematics of Deep Learning

the approximation error of fixed-sized ReLU NNs for any non-affine function is
greater than a positive lower bound.

1.7 Describing the Features that a Deep Neural Network Learns
This section presents two viewpoints which help in understanding the nature of the
features that can be described by NNs. Section 1.7.1 summarizes aspects of the
so-called scattering transform, which constitutes a specific NN architecture that
can be shown to satisfy desirable properties such as translation and deformation
invariance. Section 1.7.2 relates NN features to the current paradigm of sparse
coding.

1.7.1 Invariances and the Scattering Transform

One of the first theoretical contributions to the understanding of the mathematical
properties of CNNs was by Mallat (2012). Their approach was to consider spe-
cific CNN architectures with fixed parameters that result in a stand-alone feature
descriptor whose output may be fed into a subsequent classifier (for example, a
kernel support vector machine or a trainable FC NN). From an abstract point of
view, a feature descriptor is a function Ψ mapping from a signal space, such as
L2(Rd) or the space of piecewise smooth functions, to a feature space. In an ideal
world, such a classifier should “factor” out invariances that are irrelevant to a sub-
sequent classification problem while preserving all other information of the signal.
A very simple example of a classifier which is invariant under translations is the
Fourier modulus Ψ : L2(Rd) → L2(Rd), u 7→ |û|. This follows from the fact that
a translation of a signal u results in a modulation of its Fourier transform, i.e.,�u(· − τ)(ω) = e−2πi 〈τ,ω〉û(ω), τ,ω ∈ Rd. Furthermore, in most cases – for example,
if u is a generic compactly supported function (Grohs et al., 2020), u can be recon-
structed up to a translation from its Fourier modulus (Grohs et al., 2020) and an
energy conservation property of the form ‖Ψ(u)‖L2 = ‖u‖L2 holds true. Translation
invariance is, for example, typically exhibited by image classifiers, where the label
of an image does not change if it is translated.
In practical problems many more invariances arise. Providing an analogous rep-

resentation that factors out general invariances would lead to a significant reduction
in the problem dimensionality and constitutes an extremely promising route to-
wards dealing with the very high dimensionality that is commonly encountered in
practical problems (Mallat, 2016). This program was carried out by Mallat (2012)
for additional invariances with respect to deformations u 7→ uτ := u(·−τ(·)), where
τ : Rd → Rd is a smooth mapping. Such transformations may occur in practice,

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.7 Describing the Features that a Deep Neural Network Learns 79

for instance, as image warpings. In particular, a feature descriptor Ψ is designed so
that, with a suitable norm ‖ · ‖ on the image of Ψ, it

(a) is Lipschitz continuous with respect to deformations in the sense that

‖Ψ(u) − Ψ(uτ)‖ . K(τ,∇τ,∇2τ)
holds for some K that only mildly depends on τ and essentially grows linearly
in ∇τ and ∇2τ,

(b) is almost (i.e., up to a small and controllable error) invariant under translations
of the input data, and

(c) contains all relevant information on the input data in the sense that an energy
conservation property

‖Ψ(u)‖ ≈ ‖u‖L2

holds true.

Observe that, while the action of translations only represents a d-parameter group,
the action of deformations/warpings represents an infinite-dimensional group. Thus,
a deformation invariant feature descriptor represents a big potential for dimension-
ality reduction. Roughly speaking, the feature descriptor Ψ of Mallat (2012) (also
coined the scattering transform) is defined by collecting features that are com-
puted by iteratively applying a wavelet transform followed by a pointwise modulus
nonlinearity and a subsequent low-pass filtering step, i.e.,

| | |u ∗ ψj1 | ∗ ψj2 ∗ · · · | ∗ ψj` | ∗ ϕJ,
where ψj refers to a wavelet at scale j and ϕJ refers to a scaling function at scale
J. The collection of all these so-called scattering coefficients can then be shown
to satisfy the properties listed above in a suitable (asymptotic) sense. The proof
of this result relies on a subtle interplay between the “deformation covariance”
property of the wavelet transform and the “regularizing” property of the operation
of convolution with the modulus of a wavelet. For a much more detailed exposition
of the resulting scattering transform, we refer to Chapter 8 in this book. We remark
that similar results can be shown also for different systems, such as Gabor frames
(Wiatowski et al., 2017; Czaja and Li, 2019).

1.7.2 Hierarchical Sparse Representations
The previous approachmodeled the learned features by a specific dictionary, namely
wavelets. It is well known that one of the striking properties of wavelets is to
provide sparse representations for functions belonging to certain function classes.
More generally, we speak of sparse representations with respect to a representation

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

80 Berner et al. The Modern Mathematics of Deep Learning

system. For a vector x ∈ Rd, a sparsifying representation system D ∈ Rd×p –
also called a dictionary – is such that x = Dφ where the coefficients φ ∈ Rp are
sparse in the sense that ‖φ‖0 B | supp(φ)| = |{i ∈ [p] : φi , 0}| is small compared
with p. A similar definition can be made for signals in infinite-dimensional spaces.
Taking sparse representations into account, the theory of sparse coding provides an
approach to a theoretical understanding of the features that a deep NN learns.
One common method in image processing is the utilization of not the entire

image but overlapping patches of it, coined patch-based image processing. Thus
of particular interest are local dictionaries which sparsify those patches but, pre-
sumably, not the global image. This led to the introduction of the convolutional
sparse coding (CSC) model, which links such local and global behaviors. Let us
describe this model for one-dimensional convolutions on the group G := Z/(dZ)
with kernels supported on the subgroup H := Z/(nZ), where d,n ∈ N with n < d;
see also §1.6.1. The corresponding CSC model is based on the decomposition of a
global signal x ∈ (RG)c with c ∈ N channels as

xi =
C∑
j=1

κi, j ∗ φ j, i ∈ [c], (1.63)

where φ ∈ (RG)C is taken to be a sparse representation with C ∈ N channels, and
κi, j ∈ RG , i ∈ [c], j ∈ [C], are local kernels with supp(κi, j) ⊂ H. Let us consider
a patch ((xi)g+h)i∈[c],h∈H of n adjacent entries, starting at position g ∈ G, in each
channel of x. The condition on the support of the kernels κi, j and the representation
in (1.63) imply that this patch is affected only by a stripe of at most (2n− 1) entries
in each channel of φ. The local, patch-based sparsity of the representation φ can
thus be appropriately measured via

‖φ‖(n)0,∞ B max
g∈G
‖((φ j)g+k)j∈[C],k∈[2n−1]‖0;

see Papyan et al. (2017b). Furthermore, note that we can naturally identify x and
φ with vectors in Rdc and RdC and write x = Dφ, where D ∈ Rdc×dC is a matrix
consisting of circulant blocks, typically referred to as a convolutional dictionary.
The relation between the CSC model and deep NNs is revealed by applying

the CSC model in a layer-wise fashion (Papyan et al., 2017a; Sulam et al., 2018;
Papyan et al., 2018). To see this, let C0 ∈ N and for every ` ∈ [L] let C`, k` ∈ N
and let D(`) ∈ RdC`−1×dC` be a convolutional dictionary with kernels supported
on Z/(n`Z). A signal x = φ(0) ∈ RdC0 is said to belong to the corresponding
multi-layered CSC (ML-CSC) model if there exist coefficients φ(`) ∈ RdC` with

φ(`−1) = D(`)φ(`) and ‖φ(`)‖(n`)0,∞ ≤ k`, ` ∈ [L]. (1.64)

We now consider the problem of reconstructing the sparse coefficients (φ(`))L`=1

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.8 Effectiveness in Natural Sciences 81

from a noisy signal x̃ B x + ν, where the noise ν ∈ RdC0 is assumed to have small
`2-norm and x is assumed to follow the ML-CSC model in (1.64). In general, this
problem is NP-hard. However, under suitable conditions on the ML-CSC model, it
can be solved approximately, for instance by a layered thresholding algorithm.

More precisely, for D ∈ Rdc×dC and b ∈ RdC , we define a soft-thresholding
operator by

TD,b(x) B %R(DT x − b) − %R(−DT x − b), x ∈ Rdc, (1.65)

where %R(x) = max{0, x} is applied componentwise. If x = Dφ as in (1.63), we
obtain φ ≈ TD,b(x) roughly under the following conditions. The distance of φ
from ψ B DT x = DT Dφ can be bounded using the local sparsity of φ and the
mutual coherence and locality of the kernels of the convolutional dictionary D. For
a suitable threshold b, the mapping ψ 7→ %R(ψ − b) − %R(−ψ − b) further recovers
the support of φ by nullifying those entries of ψ with ψi ≤ |bi |. Utilizing the
soft-thresholding operator (1.65) iteratively for corresponding vectors b(`) ∈ RdC` ,
` ∈ [L], then suggests the following approximations:

φ(`) ≈ (TD(`),b(`) ◦ · · · ◦ TD(1),b(1))(x̃), ` ∈ [L].

The resemblance to the realization of a CNN with ReLU activation function is
evident. The transposed dictionary (D(`))T can be regarded as modeling the learned
convolutional kernels, the threshold b(`) models the bias vector, and the soft-
thresholding operator TD(`),b(`) mimics the application of a convolutional block
with an ReLU nonlinearity in the `th layer.

Using this model, a theoretical understanding of CNNs from the perspective of
sparse coding is now at hand. This novel perspective gives a precise mathematical
meaning of the kernels in a CNN as sparsifying dictionaries of an ML-CSC model.
Moreover, the forward pass of a CNN can be understood as a layered thresholding
algorithm for decomposing a noisy signal x̃. The results derived then have the
following flavor. Given a suitable reconstruction procedure such as thresholding or
`1-minimization, the sparse coefficients (φ(`))L`=1 of a signal x following an ML-
CSCmodel can be stably recovered from the noisy signal x̃ under certain hypotheses
on the ingredients of the ML-CSC model.

1.8 Effectiveness in Natural Sciences
The theoretical insights of the previous sections do not always accurately describe
the performance of NNs in applications. Indeed, there often exists a considerable
gap between the predictions of approximation theory and the practical performance
of NNs (Adcock and Dexter, 2020).

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

82 Berner et al. The Modern Mathematics of Deep Learning

In this section, we consider concrete applications which have been very success-
fully solved with deep-learning-based methods. In §1.8.1 we present an overview
of deep-learning-based algorithms applied to inverse problems. Section 1.8.2 then
continues by describing how NNs can be used as a numerical ansatz for solv-
ing PDEs, highlighting their use in the solution of the multi-electron Schrödinger
equation.

1.8.1 Deep Neural Networks Meet Inverse Problems
The area of inverse problems, predominantly in imaging, was probably the first class
of mathematical methods embracing deep learning with overwhelming success. Let
us consider a forward operator K : Y → X where X,Y are Hilbert spaces, and the
associated inverse problem of finding y ∈ Y such that Ky = x for given features
x ∈ X. The classical model-based approach to regularization aims to approximate
K by invertible operators, and is hence strongly based on functional analytic prin-
ciples. Today, such approaches take the well-posedness of the approximation and
its convergence properties, as well as the structure of regularized solutions, into ac-
count. The last item allows to incorporate prior information of the original solution
such as regularity, sharpness of edges, or – in the case of sparse regularization (Jin
et al., 2017a) – a sparse coefficient sequence with respect to a prescribed represen-
tation system. Such approaches are typically realized in a variational setting and
hence aim to minimize functionals of the form

‖Ky − x‖2 + αR(y), (1.66)

where α ∈ (0,∞) is a regularization parameter, R : Y → [0,∞) is a regularization
term, and ‖ · ‖ denotes the norm on Y. As already stated, the regularization term
aims to model structural information about the desired solution. However, one
main hurdle in this approach is the problem that, typically, solution classes such as
images from computed tomography cannot be modeled accurately enough to allow,
for instance, reconstruction under the constraint of a significant amount of missing
features.
This has opened the door to data-driven approaches, and recently, deep NNs.

Solvers of inverse problems that are based on deep learning techniques can be
roughly categorized into three classes:

(i) Supervised approaches. The most straightforward approach is to train a NN
Φ(·, θ) : X → Y end-to-end, i.e., to completely learn the map from data x to the
solution y. More advanced approaches in this direction incorporate information
about the operator K into the NN as in Adler and Öktem (2017), Gilton et al.
(2019), and Monga et al. (2021). Yet another type of approach aims to combine

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.8 Effectiveness in Natural Sciences 83

deep NNs with classical model-based approaches. The first suggestion in this
realm was that one should start by applying a standard solver and then use a deep
NN,Φ(·, θ) : Y → Y, which serves as a denoiser for specific reconstruction arti-
facts; e.g., Jin et al. (2017b). This approach was followed by more sophisticated
methods such as plug-and-play frameworks for coupling inversion and denoising
(Romano et al., 2017).

(ii) Semi-supervised approaches. This type of approach aims to encode the regular-
ization by a deep NN Φ(·, θ) : Y → [0,∞). The underlying idea often requires
stronger regularization on those solutions y(i) that are more prone to artifacts or
other effects of the instability of the problem. On solutions where typically few
artifacts are observed less regularization can be used. Therefore, the learning
algorithm requires only a set of labels (y(i))m

i=1 as well as a method for assessing
how hard the inverse problem for this label would be. In this sense, the algo-
rithm can be considered semi-supervised. This idea was followed, for example,
in Lunz et al. (2018), and Li et al. (2020). Taking a Bayesian viewpoint, one
can also learn prior distributions as deep NNs; this was done in Barbano et al.
(2020).

(iii) Unsupervised approaches. One highlight of what we might call unsupervised
approaches in our problem setting has been the introduction of deep image priors
in Dittmer et al. (2020), and Ulyanov et al. (2018). The key idea is to parametrize
the solutions y as the output of a NN Φ(ξ, ·) : P → Y with parameters in a
suitable space P applied to a fixed input ξ. Then, for given features x, one tries
to solve minθ∈P ‖KΦ(ξ, θ) − x‖2 in order to obtain parameters θ̂ ∈ P that yield
a solution candidate y = Φ(ξ, θ̂). Here early stopping is often applied in the
training of the network parameters.

As can be seen, one key conceptual question is how to “take the best out of
both worlds,” in the sense of optimally combining classical (model-based) methods
– in particular the forward operator K – with deep learning. This is certainly
sensitively linked to all characteristics of the particular application at hand, such as
the availability and accuracy of training data, properties of the forward operator,
and requirements for the solution. And each of the three classes of hybrid solvers
follows a different strategy.

Let us now discuss the advantages and disadvantages of methods from the three
categories with a particular focus on a mathematical foundation. Supervised ap-
proaches suffer on the one hand from the problem that often ground-truth data is
not available or only in a very distorted form, leading to the use of synthetic data as
a significant part of the training data. Thus the learned NN will mainly perform as
well as the algorithm which generated the data, but will not significantly improve
on it – except from an efficiency viewpoint. On the other hand, the inversion is often

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

84 Berner et al. The Modern Mathematics of Deep Learning

highly ill posed, i.e., the inversion map has a large Lipschitz constant, which nega-
tively affects the generalization ability of the NN. Improved approaches incorporate
knowledge about the forward operator K , which helps to circumvent this issue.
One significant advantage of semi-supervised approaches is that the underlying

mathematicalmodel of the inverse problem ismerely augmented by neural-network-
based regularization.Assuming that the learned regularizer satisfies natural assump-
tions, convergence proofs or stability estimates for the resulting regularizedmethods
are still available.
Finally, unsupervised approaches have the advantage that the regularization is

then fully due to the specific architecture of the deep NN. This makes these methods
slightly easier to understand theoretically, although, for instance, the deep prior
approach in its full generality is still lacking a profound mathematical analysis.

1.8.2 PDE-Based Models
Besides applications in image processing and artificial intelligence, deep learning
methods have recently strongly impacted the field of numerical analysis. In partic-
ular, regarding the numerical solution of high-dimensional PDEs. These PDEs are
widely used as a model for complex processes and their numerical solution presents
one of the biggest challenges in scientific computing. We mention examples from
three problem classes.

(i) Black–Scholes model. TheNobel award-winning theory of Fischer Black, Robert
Merton, and Myron Scholes proposes a linear PDE model for the determination
of a fair price of a (complex) financial derivative. The dimensionality of the
model corresponds to the number of financial assets, which is typically quite
large. The classical linear model, which can be solved efficiently viaMonte Carlo
methods, is quite limited. In order to take into account more realistic phenomena
such as default risk, the PDE that models a fair price becomes nonlinear and
much more challenging to solve. In particular (with the notable exception of
multi-level Picard algorithms E et al., 2019c) no general algorithm exists that
provably scales well with the dimension.

(ii) Schrödinger equation. The electronic Schrödinger equation describes the sta-
tionary non-relativistic behavior of a quantum mechanical electron system in
the electric field generated by the nuclei of a molecule. A numerical solution is
required to obtain stable molecular configurations, compute vibrational spectra,
or obtain forces governing molecular dynamics. If the number of electrons is
large, this is again a high-dimensional problem and to date there exist no satis-
factory algorithms for its solution. It is well known that different gold standard
methods may produce completely different energy predictions, for example,

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.8 Effectiveness in Natural Sciences 85

when applied to large delocalized molecules, rendering these methods useless
for those problems.

(iii) Hamilton–Jacobi–Bellman equation. The Hamilton–Jacobi–Bellman (HJB)
equation models the value function of (deterministic or stochastic) optimal con-
trol problems. The underlying dimensionality of the model corresponds to the
dimension of the space of states to be controlled and tends to be rather high in
realistic applications. This high dimensionality, together with the fact that HJB
equations typically tend to be fully nonlinear with non-smooth solutions, renders
the numerical solution of HJB equations extremely challenging, and no general
algorithms exist for this problem.

Thanks to the favorable approximation results of NNs for high-dimensional func-
tions (see especially §§1.4.3), it might not come as a surprise that a NN ansatz
has proven to be quite successful in solving the aforementioned PDE models. Pi-
oneering work in this direction was by Han et al. (2018) who used the backwards
SDE reformulation of semi-linear parabolic PDEs to reformulate the evaluation
of such a PDE, at a specific point, as an optimization problem that can be solved
by the deep learning paradigm. The resulting algorithm proves quite successful
in the high-dimensional regime and, for instance, enables the efficient modeling
of complex financial derivatives including nonlinear effects such as default risk.
Another approach specifically tailored to the numerical solution of HJB equations
is Nakamura-Zimmerer et al. (2021). In this work, the Pontryagin principle was
used to generate samples of the PDE solution along solutions of the corresponding
boundary value problem. Other numerical approaches include the deep Ritz method
(E and Yu, 2018), where a Dirichlet energy is minimized over a set of NNs; or
so-called physics informed neural networks (Raissi et al., 2019), where typically
the PDE residual is minimized along with some natural constraints, for instance, to
enforce boundary conditions.

Deep-learning-based methods arguably work best if they are combined with do-
main knowledge to inspire NN architecture choices. We would like to illustrate
this interplay at the hand of a specific and extremely relevant example: the elec-
tronic Schrödinger equation (under the Born–Oppenheimer approximation), which
amounts to finding the smallest non-zero eigenvalue of the eigenvalue problem

HRψ = λψψ, (1.67)

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

86 Berner et al. The Modern Mathematics of Deep Learning

for ψ : R3×n → R, where the Hamiltonian

(HRψ)(r) = −
n∑
i=1

1
2
(∆riψ)(r)−

(
n∑
i=1

p∑
j=1

Z j

‖ri − Rj ‖2 −
p−1∑
i=1

p∑
j=i+1

ZiZ j

‖Ri − Rj ‖2

−
n−1∑
i=1

n∑
j=i+1

1
‖ri − rj ‖2

)
ψ(r)

describes the kinetic energy (first term) as well as the Coulomb attraction force
between electrons and nuclei (second and third terms) and the Coulomb repul-
sion force between different electrons (fourth term). Here, the coordinates R =[
R1, . . . ,Rp

] ∈ R3×p refer to the positions of the nuclei, (Zi)pi=1 ∈ Np denote the
atomic numbers of the nuclei, and the coordinates r =

[
r1, . . . ,rn

] ∈ R3×n re-
fer to the positions of the electrons. The associated eigenfunction ψ describes the
so-called wave function, which can be interpreted in the sense that |ψ(r)|2/‖ψ‖2

L2

describes the joint probability density of the n electrons to be located at r . The
smallest solution λψ of (1.67) describes the ground state energy associated with the
nuclear coordinates R. It is of particular interest to know the ground state energy
for all nuclear coordinates, the so-called potential energy surface, whose gradient
determines the forces governing the dynamic motions of the nuclei. The numerical
solution of (1.67) is complicated by the Pauli principle, which states that the wave
function ψ must be antisymmetric in all coordinates representing electrons of equal
spin. We need to clarify that every electron is defined not only by its location but
also by its spin, which may be positive or negative. Depending on whether two
electrons have the same spin or not, their interaction changes considerably. This
is reflected in the Pauli principle mentioned above. Suppose that electrons i and j
have equal spin; then the wave function must satisfy

Pi, jψ = −ψ, (1.68)

where Pi, j denotes the operator that swaps ri and rj , i.e.,

(Pi, jψ)(r) = ψ(r1, . . . ,rj, . . . ,ri, . . . ,rn).
In particular, no two electrons with the same spin can occupy the same location. The
challenges associated with solving the Schrödinger equation inspired the following
famous quote of Paul Dirac (1929):

“The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to equations that are too
complex to be solved.”

We now describe how deep learning methods might help to mitigate this claim

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.8 Effectiveness in Natural Sciences 87

to a certain extent. Let X be a random variable with density |ψ(r)|2/‖ψ‖2
L2 . Using

the Rayleigh–Ritz principle, finding the minimal non-zero eigenvalue of (1.67) can
be reformulated as minimizing the Rayleigh quotient∫

R3×n ψ(r)(HRψ)(r) dr

‖ψ‖2
L2

= E

[(HRψ)(X)
ψ(X)

]
(1.69)

over all ψ’s satisfying the Pauli principle; see Szabo and Ostlund (2012). Since this
represents a minimization problem it can in principle be solved via a NN ansatz by
generating training data distributed according to X usingMCMC sampling.31 Since
the wave function ψ will be parametrized as a NN, the minimization of (1.69) will
require the computation of the gradient of (1.69) with respect to the NN parameters
(the method in Pfau et al., 2020, even requires second-order derivatives), which,
at first sight, might seem to require the computation of third-order derivatives.
However, due to the Hermitian structure of the Hamiltonian, one does not need
to compute the derivative of the Laplacian of ψ; see, for example Hermann et al.
(2020, Equation (8)).

Compared with the other PDE problems we have discussed, an additional com-
plication arises from the need to incorporate structural properties and invariances
such as the Pauli principle. Furthermore, empirical evidence shows that it is also
necessary to hard-code the so-called cusp conditions which describe the asymp-
totic behavior of nearby electrons and of electrons close to a nucleus into the NN
architecture. A first attempt in this direction was made by Han et al. (2019), and sig-
nificantly improvedNN architectures have been developed in Hermann et al. (2020),
Pfau et al. (2020), and Scherbela et al. (2021) opening the possibility of accurate ab
initio computations for previously intractable molecules. The mathematical proper-
ties of this exciting line of work remain largely unexplored. We briefly describe the
main ideas behind the NN architecture of Hermann et al. (2020); Scherbela et al.
(2021). Standard numerical approaches (notably the multireference Hartree–Fock
method; see Szabo and Ostlund, 2012) use a low-rank approach to minimize (1.69).
Such an approach would approximate ψ by sums of products of one-electron or-
bitals

∏n
i=1 ϕi(ri) but clearly this would not satisfy the Pauli principle (1.68). In

order to accommodate the Pauli principle, one constructs so-called Slater determi-
nants from one-electron orbitals with equal spin. More precisely, suppose that the
first n+ electrons with coordinates r1, . . . ,rn+ have positive spin and the last n − n+
electrons have negative spin. Then any function of the form

det
((
ϕi(rj)

)n+
i, j=1

)
× det

((
ϕi(rj)

)n
i, j=n++1

)
(1.70)

31 Observe that for such sampling methods one can just use the unnormalized density |ψ(r) |2 and thus avoid the
computation of the normalization ‖ψ ‖2

L2 .

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

88 Berner et al. The Modern Mathematics of Deep Learning

Figure 1.23 By sharing layers across different nuclear geometries one can efficiently compute
different geometries in one single training step (Scherbela et al., 2021). Top: potential energy
surface of an H10 chain computed by the deep-learning-based algorithm from Scherbela et al.
(2021). The lowest energy is achieved when pairs of H atoms enter into a covalent bond to
form five H2 molecules. Bottom: the method of Scherbela et al. (2021) is capable of accurately
computing forces between nuclei, which allows for molecular dynamics simulations from first
principles.

satisfies (1.68) and is typically called a Slater determinant. While the Pauli prin-
ciple establishes a (non-classical) interaction between electrons of equal spin, the
so-called exchange correlation, in the representation (1.70) electrons with opposite
spins are uncorrelated. In particular, (1.70) ignores interactions between electrons
that arise through Coulomb forces, implying that no non-trivial wave function can
be accurately represented by a single Slater determinant. To capture the physical
interactions between different electrons, one needs to use sums of Slater determi-
nants as an ansatz. However, it turns out that the number of such determinants that
are needed to guarantee a given accuracy scales very badly with the system size
n (to our knowledge the best currently known approximation results are contained
in Yserentant (2010), where an n-independent error rate is shown; however, the
implicit constant in this rate depends at least exponentially on the system size n).
We would like to highlight the approach of Hermann et al. (2020), whose main

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

1.8 Effectiveness in Natural Sciences 89

idea was to use NNs to incorporate interactions into Slater determinants of the
form (1.70) using what is called the backflow trick (Ríos et al., 2006). The basic
building blocks would now consist of functions of the form

det
((
ϕi(rj)Ψj(r, θ j)

)n+
i, j=1

)
× det

((
ϕi(rj)Ψj(r, θ j)

)n
i, j=n++1

)
, (1.71)

where the Ψk(·, θk), k ∈ [n], are NNs. If these are arbitrary NNs, it is easy to see
that the Pauli principle (1.68) will not be satisfied. However, if we require the NNs
to be symmetric, for example, in the sense that for i, j, s ∈ [n+] it holds true that

Pi, jΨk(·, θk) =


Ψk(·, θk), if k < {i, j},
Ψi(·, θi), if k = j,

Ψj(·, θ j), if k = i,

(1.72)

and analogous conditions hold for i, j, k ∈ [n] \ [n+], the expression (1.71) does
actually satisfy (1.68). The construction of such symmetric NNs can be achieved
by using a modification of the so-called SchNet architecture (Schütt et al., 2017)
which can be considered as a specific residual NN.

We describe a simplified construction inspired by Han et al. (2019) and used in a
slightly more complex form in Scherbela et al. (2021). We restrict ourselves to the
case of positive spin (for example, the first n+ coordinates), the case of negative spin
being handled in the same way. Let Υ(·, θ+emb) be a univariate NN (with possibly
multivariate output) and denote

Embk(r, θ+emb) B
n+∑
i=1

Υ(‖rk − ri ‖2, θ+emb), k ∈ [n+],

as the kth embedding layer. For k ∈ [n+], we can now define

Ψk (r, θk) = Ψk

(
r, (θk ,fc, θ+emb)

)
= Γk

((
Embk(r, θ+emb), (rn++1, . . . ,rn)

)
, θk ,fc

)
,

where Γk(·, θk ,fc) denotes a standard FCNNwith input dimension equal to the output
dimension of Ψ+ plus the dimension of the negative-spin electrons. The networks
Ψk , k ∈ [n] \ [n+], are defined analogously using different parameters θ−emb for the
embeddings. It is straightforward to check that the NNs Ψk , k ∈ [n], satisfy (1.72)
so that the backflow determinants (1.71) satisfy the Pauli principle (1.68).

In Hermann et al. (2020) the backflow determinants (1.71) are further augmented
by a multiplicative correction term, the so-called Jastrow factor, which is also
represented by a specific symmetric NN, as well as a correction term that ensures the
validity of the cusp conditions. The results of Hermann et al. (2020) show that this
ansatz (namely using linear combinations of backflow determinants (1.71) instead
of plain Slater determinants (1.70)) is vastly more efficient in terms of the number
of determinants needed to obtain chemical accuracy. The full architecture provides

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

90 Berner et al. The Modern Mathematics of Deep Learning

a general purpose NN architecture to represent complicated wave functions. A
distinct advantage of this approach is that some parameters (for example, regarding
the embedding layers) may be shared across different nuclear geometries R ∈ R3×p,
which allows for the efficient computation of potential energy surfaces (Scherbela
et al., 2021); see Figure 1.23.
Finally, we would like to highlight the need for customized NN design that

incorporates physical invariances, domain knowledge (for example, in the form of
cusp conditions), and existing numerical methods, all of which are required for the
method to reach its full potential.

Acknowledgments
The research of JB was supported by the Austrian Science Fund (FWF) under grant
I3403-N32. GK acknowledges support from DFG-SPP 1798 Grants KU 1446/21-2
and KU 1446/27-2, DFG-SFB/TR 109 Grant C09, BMBF Grant MaGriDo, and
NSF-Simons Foundation Grant SIMONS 81420. The authors would like to thank
Héctor Andrade Loarca, Dennis Elbrächter, Adalbert Fono, Pavol Harar, Lukas
Liehr, Duc Anh Nguyen, Mariia Seleznova, and Frieder Simon for their helpful
feedback on an early version of this chapter. In particular, Dennis Elbrächter pro-
vided help for several theoretical results.

References
Ackley, David H., Hinton, Geoffrey E., and Sejnowski, Terrence J. 1985. A learning

algorithm for Boltzmann machines. Cognitive Science, 9(1), 147–169.
Adcock, Ben, and Dexter, Nick. 2020. The gap between theory and prac-

tice in function approximation with deep neural networks. ArXiv preprint
arXiv:2001.07523.

Adler, Jonas, and Öktem, Ozan. 2017. Solving ill-posed inverse problems using
iterative deep neural networks. Inverse Problems, 33(12), 124007.

Al-Hamdani, Yasmine S., Nagy, Péter R., Barton, Dennis, Kállay, Mihály, Bran-
denburg, Jan Gerit, and Tkatchenko, Alexandre. 2020. Interactions between
large molecules: Puzzle for reference quantum-mechanical methods. ArXiv
preprint arXiv:2009.08927.

Allen-Zhu, Zeyuan, Li, Yuanzhi, and Song, Zhao. 2019. A convergence theory for
deep learning via over-parameterization. Pages 242–252 of: Proc. Interna-
tional Conference on Machine Learning.

Anthony,Martin, and Bartlett, Peter L. 1999. Neural Network Learning: Theoretical
Foundations. Cambridge University Press.

Arora, Sanjeev, Cohen, Nadav, and Hazan, Elad. 2018a. On the optimization of

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 91

deep networks: Implicit acceleration by overparameterization. Pages 372–389
of: Proc. International Conference on Machine Learning.

Arora, Sanjeev, Ge, Rong, Neyshabur, Behnam, and Zhang, Yi. 2018b. Stronger
generalization bounds for deep nets via a compression approach. Pages 254–
263 of: Proc. International Conference on Machine Learning.

Arora, Sanjeev,Cohen,Nadav,Golowich,Noah, andHu,Wei. 2019a. A convergence
analysis of gradient descent for deep linear neural networks. In: International
Conference on Learning Representations.

Arora, Sanjeev, Du, Simon S., Hu, Wei, Li, Zhiyuan, Salakhutdinov, Ruslan, and
Wang, Ruosong. 2019b. On exact computation with an infinitely wide neural
net. Pages 8139–8148 of:Advances in Neural Information Processing Systems.

Arridge, Simon, Maass, Peter, Öktem, Ozan, and Schönlieb, Carola-Bibiane. 2019.
Solving inverse problems using data-driven models. Acta Numerica, 28, 1–
174.

Auer, Peter, Herbster, Mark, and Warmuth, Manfred K. 1996. Exponentially many
local minima for single neurons. Page 316–322 of: Advances in Neural Infor-
mation Processing Systems.

Auffinger, Antonio, Arous, Gérard Ben, and Černỳ, Jiří. 2013. Random matri-
ces and complexity of spin glasses. Communications on Pure and Applied
Mathematics, 66(2), 165–201.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. 2015. Neural machine
translation by jointly learning to align and translate. In: Proc. International
Conference on Learning Representations.

Baldi, Pierre, Sadowski, Peter, and Whiteson, Daniel. 2014. Searching for exotic
particles in high-energy physics with deep learning. Nature Communications,
5(1), 1–9.

Barbano, Riccardo, Zhang, Chen, Arridge, Simon, and Jin, Bangti. 2020. Quantify-
ing model uncertainty in inverse problems via Bayesian deep gradient descent.
ArXiv preprint arXiv:2007.09971.

Barron, Andrew R. 1992. Neural net approximation. Pages 69–72 of: Proc. Yale
Workshop on Adaptive and Learning Systems, vol. 1.

Barron, Andrew R. 1993. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930–
945.

Barron, Andrew R., and Klusowski, Jason M. 2018. Approximation and es-
timation for high-dimensional deep learning networks. ArXiv preprint
arXiv:1809.03090.

Bartlett, Peter L. 1998. The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory, 44(2), 525–536.

Bartlett, Peter L,Maiorov,Vitaly, andMeir, Ron. 1998. Almost linearVC-dimension
bounds for piecewise polynomial networks. Neural Computation, 10(8), 2159–
2173.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

92 Berner et al. The Modern Mathematics of Deep Learning

Bartlett, Peter L., Bousquet, Olivier, and Mendelson, Shahar. 2005. Local
Rademacher complexities. Annals of Statistics, 33(4), 1497–1537.

Bartlett, Peter L., Foster, Dylan J., and Telgarsky, Matus. 2017. Spectrally-
normalized margin bounds for neural networks. Pages 6240–6249 of: Ad-
vances in Neural Information Processing Systems.

Bartlett, Peter L., Harvey, Nick, Liaw, Christopher, and Mehrabian, Abbas. 2019.
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear
neural networks. Journal of Machine Learning Research, 20, 63–1.

Bartlett, Peter L., Long, Philip M., Lugosi, Gábor, and Tsigler, Alexander. 2020.
Benign overfitting in linear regression. Proceedings of the National Academy
of Sciences, 117(48), 30063–30070.

Baum, Eric B., and Haussler, David. 1989. What size net gives valid generalization?
Neural Computation, 1(1), 151–160.

Beck, Christian, Becker, Sebastian, Grohs, Philipp, Jaafari, Nor, and Jentzen, Ar-
nulf. 2021. Solving the Kolmogorov PDE by means of deep learning. Journal
of Scientific Computing, 83(3), 1–28.

Belkin, Mikhail, Ma, Siyuan, and Mandal, Soumik. 2018. To understand deep
learning we need to understand kernel learning. Pages 541–549 of: Proc.
International Conference on Machine Learning.

Belkin, Mikhail, Rakhlin, Alexander, and Tsybakov, Alexandre B. 2019a. Does
data interpolation contradict statistical optimality? Pages 1611–1619 of: Proc.
International Conference on Artificial Intelligence and Statistics.

Belkin, Mikhail, Hsu, Daniel, Ma, Siyuan, and Mandal, Soumik. 2019b. Rec-
onciling modern machine-learning practice and the classical bias–variance
trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–
15854.

Belkin, Mikhail, Hsu, Daniel, and Xu, Ji. 2020. Two models of double descent for
weak features. SIAM Journal on Mathematics of Data Science, 2(4), 1167–
1180.

Bellman, Richard. 1952. On the theory of dynamic programming. Proceedings of
the National Academy of Sciences, 38(8), 716.

Berner, Christopher, Brockman, Greg, Chan, Brooke, Cheung, Vicki, Debiak, Prze-
myslaw, Dennison, Christy, Farhi, David, Fischer, Quirin, Hashme, Shariq,
and Hesse, Chris. 2019a. Dota 2 with large scale deep reinforcement learning.
ArXiv preprint arXiv:1912.06680.

Berner, Julius, Elbrächter, Dennis, and Grohs, Philipp. 2019b. How degenerate is
the parametrization of neural networks with the ReLU activation function?
Pages 7790–7801 of: Advances in Neural Information Processing Systems.

Berner, Julius, Grohs, Philipp, and Jentzen, Arnulf. 2020a. Analysis of the general-
ization error: Empirical risk minimization over deep artificial neural networks
overcomes the curse of dimensionality in the numerical approximation of
Black–Scholes partial differential equations. SIAM Journal on Mathematics
of Data Science, 2(3), 631–657.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 93

Berner, Julius, Dablander, Markus, and Grohs, Philipp. 2020b. Numerically solv-
ing parametric families of high-dimensional Kolmogorov partial differential
equations via deep learning. Pages 16615–16627 of: Advances in Neural
Information Processing Systems.

Blum, Avrim, and Rivest, Ronald L. 1989. Training a 3-node neural network is
NP-complete. Pages 494–501 of: Advances in Neural Information Processing
Systems.

Bohn, Jan, and Feischl, Michael. 2019. Recurrent neural networks as optimal mesh
refinement strategies. ArXiv preprint arXiv:1909.04275.

Bourely, Alfred, Boueri, John Patrick, and Choromonski, Krzysztof. 2017. Sparse
neural networks topologies. ArXiv preprint arXiv:1706.05683.

Bousquet, Olivier, and Elisseeff, André. 2002. Stability and generalization. Journal
of Machine Learning Research, 2(March), 499–526.

Bousquet, Olivier, Boucheron, Stéphane, and Lugosi, Gábor. 2003. Introduction
to statistical learning theory. Pages 169–207 of: Proc. Summer School on
Machine Learning.

Bronstein, Michael M, Bruna, Joan, LeCun, Yann, Szlam, Arthur, and Van-
dergheynst, Pierre. 2017. Geometric deep learning: Going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4), 18–42.

Brown, Tom, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared D,
Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish,
Askell, Amanda, Agarwal, Sandhini, Herbert-Voss, Ariel, Krueger, Gretchen,
Henighan, Tom, Child, Rewon, Ramesh, Aditya, Ziegler, Daniel, Wu, Jeffrey,
Winter, Clemens, Hesse, Chris, Chen, Mark, Sigler, Eric, Litwin, Mateusz,
Gray, Scott, Chess, Benjamin, Clark, Jack, Berner, Christopher, McCandlish,
Sam, Radford, Alec, Sutskever, Ilya, and Amodei, Dario. 2020. Language
models are few-shot learners. Pages 1877–1901 of: Advances in Neural Infor-
mation Processing Systems.

Candès, Emmanuel J. 1998. Ridgelets: Theory and Applications. Ph.D. thesis,
Stanford University.

Caragea, Andrei, Petersen, Philipp, and Voigtlaender, Felix. 2020. Neural network
approximation and estimation of classifiers with classification boundary in a
Barron class. ArXiv preprint arXiv:2011.09363.

Casazza, Peter G., Kutyniok, Gitta, and Philipp, Friedrich. 2012. Introduction to
finite frame theory. Pages 1–53 of: Finite Frames: Theory and Applications.
Birkhäuser Boston.

Chen, Lin,Min, Yifei, Belkin,Mikhail, and Karbasi, Amin. 2020. Multiple descent:
Design your own generalization curve. ArXiv preprint arXiv:2008.01036.

Chen, Minshuo, Jiang, Haoming, Liao, Wenjing, and Zhao, Tuo. 2019. Efficient
approximation of deep ReLU networks for functions on low dimensional man-
ifolds. Pages 8174–8184 of: Advances in Neural Information Processing
Systems.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

94 Berner et al. The Modern Mathematics of Deep Learning

Chizat, Lenaic, and Bach, Francis. 2020. Implicit bias of gradient descent for wide
two-layer neural networks trained with the logistic loss. Pages 1305–1338 of:
Proc. Conference on Learning Theory.

Chizat, Lenaic, Oyallon, Edouard, and Bach, Francis. 2019. On lazy training
in differentiable programming. Pages 2937–2947 of: Advances in Neural
Information Processing Systems.

Cho, Kyunghyun, van Merriënboer, Bart, Gulcehre, Caglar, Bahdanau, Dzmitry,
Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua. 2014. Learning
phrase representations using RNN encoder–decoder for statistical machine
translation. Pages 1724–1734 of: Proc. 2014 Conference on Empirical Meth-
ods in Natural Language Processing.

Choromanska, Anna, Henaff, Mikael, Mathieu, Michael, Arous, Gérard Ben, and
LeCun, Yann. 2015a. The loss surfaces of multilayer networks. Pages 192–204
of: Proc. International Conference on Artificial Intelligence and Statistics.

Choromanska, Anna, LeCun, Yann, and Arous, Gérard Ben. 2015b. Open problem:
rhe landscape of the loss surfaces of multilayer networks. Pages 1756–1760
of: Proc. Conference on Learning Theory.

Chui, Charles K., and Mhaskar, Hrushikesh N. 2018. Deep nets for local manifold
learning. Frontiers in Applied Mathematics and Statistics, 4, 12.

Chui, Charles K., Li, Xin, and Mhaskar, Hrushikesh N. 1994. Neural networks for
localized approximation. Mathematics of Computation, 63(208), 607–623.

Cloninger, Alexander, and Klock, Timo. 2020. ReLU nets adapt to intrinsic dimen-
sionality beyond the target domain. ArXiv preprint arXiv:2008.02545.

Cucker, Felipe, and Smale, Steve. 2002. On the mathematical foundations of
learning. Bulletin of the American Mathematical Society, 39(1), 1–49.

Cucker, Felipe, and Zhou, Ding-Xuan. 2007. Learning Theory: An Approximation
Theory Viewpoint. Cambridge University Press.

Cybenko, George. 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4), 303–314.

Czaja, Wojciech, and Li, Weilin. 2019. Analysis of time–frequency scattering
transforms. Applied and Computational Harmonic Analysis, 47(1), 149–171.

Dauphin, Yann N., Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, Ganguli,
Surya, and Bengio, Yoshua. 2014. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. Pages 2933–2941 of:
Advances in Neural Information Processing Systems.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. 2009.
Imagenet: A large-scale hierarchical image database. Pages 248–255 of: Proc.
IEEE Conference on Computer Vision and Pattern Recognition.

DeVore, Ronald A. 1998. Nonlinear approximation. Acta Numerica, 7, 51–150.
DeVore, Ronald, Hanin, Boris, and Petrova, Guergana. 2021. Neural network

approximation. Acta Numerica, 30, 327–444.
Devroye, Luc, Györfi, László, and Lugosi, Gábor. 1996. A Probabilistic Theory of

Pattern Recognition. Springer.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 95

Dirac, Paul Adrien Maurice. 1929. Quantum mechanics of many-electron systems.
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 123(792), 714–733.

Dittmer, Sören, Kluth, Tobias, Maass, Peter, and Baguer, Daniel Otero. 2020. Regu-
larization by architecture: A deep prior approach for inverse problems. Journal
of Mathematical Imaging and Vision, 62(3), 456–470.

Donoghue, William F. 1969. Distributions and Fourier Transforms. Academic
Press.

Dreyfus, Stuart. 1962. The numerical solution of variational problems. Journal of
Mathematical Analysis and Applications, 5(1), 30–45.

Du, Simon S., Hu, Wei, and Lee, Jason D. 2018a. Algorithmic regularization in
learning deep homogeneous models: Layers are automatically balanced. Pages
384–395 of: Advances in Neural Information Processing Systems.

Du, Simon S., Zhai, Xiyu, Poczos, Barnabas, and Singh, Aarti. 2018b. Gradient
descent provably optimizes over-parameterized neural networks. In: Proc.
International Conference on Learning Representations.

Du, Simon S., Lee, Jason D., Li, Haochuan, Wang, Liwei, and Zhai, Xiyu. 2019.
Gradient descent finds global minima of deep neural networks. Pages 1675–
1685 of: Proc. International Conference on Machine Learning.

Dudley, Richard M. 1967. The sizes of compact subsets of Hilbert space and
continuity of Gaussian processes. Journal of Functional Analysis, 1(3), 290–
330.

Dudley, Richard M. 2014. Uniform Central Limit Theorems. Cambridge University
Press.

Dziugaite, Gintare Karolina, and Roy, Daniel M. 2017. Computing nonvacuous
generalization bounds for deep (stochastic) neural networks with many more
parameters than training data. In:Proc. Conference onUncertainty in Artificial
Intelligence.

E, Weinan. 2017. A proposal on machine learning via dynamical systems. Com-
munications in Mathematics and Statistics, 5(1), 1–11.

E,Weinan, andWojtowytsch, Stephan. 2020a. On theBanach spaces associatedwith
multi-layer ReLU networks: Function representation, approximation theory
and gradient descent dynamics. ArXiv preprint arXiv:2007.15623.

E, Weinan, and Wojtowytsch, Stephan. 2020b. A priori estimates for classification
problems using neural networks. ArXiv preprint arXiv:2009.13500.

E, Weinan, and Wojtowytsch, Stephan. 2020c. Representation formulas and point-
wise properties for Barron functions. ArXiv preprint arXiv:2006.05982.

E, Weinan, and Yu, Bing. 2018. The deep Ritz method: A deep learning-based
numerical algorithm for solving variational problems. Communications in
Mathematics and Statistics, 6(1), 1–12.

E, Weinan, Ma, Chao, and Wu, Lei. 2019a. Barron spaces and the compositional
function spaces for neural network models. ArXiv preprint arXiv:1906.08039.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

96 Berner et al. The Modern Mathematics of Deep Learning

E, Weinan, Han, Jiequn, and Li, Qianxiao. 2019b. A mean-field optimal control
formulation of deep learning. Research in the Mathematical Sciences, 6(1),
1–41.

E, Weinan, Hutzenthaler, Martin, Jentzen, Arnulf, and Kruse, Thomas. 2019c. On
multilevel Picard numerical approximations for high-dimensional nonlinear
parabolic partial differential equations and high-dimensional nonlinear back-
ward stochastic differential equations. Journal of Scientific Computing, 79(3),
1534–1571.

E, Weinan, Ma, Chao, and Wu, Lei. 2019d. A priori estimates of the population
risk for two-layer neural networks. Communications inMathematical Sciences,
17(5), 1407–1425.

E, Weinan, Ma, Chao, Wojtowytsch, Stephan, and Wu, Lei. 2020. Towards a
mathematical understanding of neural network-based machine learning: what
we know and what we don’t. ArXiv preprint arXiv:2009.10713.

Elbrächter, Dennis, Grohs, Philipp, Jentzen, Arnulf, and Schwab, Christoph. 2018.
DNNexpression rate analysis of high-dimensional PDEs:Application to option
pricing. ArXiv preprint arXiv:1809.07669.

Elbrächter, Dennis, Perekrestenko, Dmytro, Grohs, Philipp, and Bölcskei, Hel-
mut. 2019. Deep neural network approximation theory. ArXiv preprint
arXiv:1901.02220.

Eldan, Ronen, and Shamir, Ohad. 2016. The power of depth for feedforward neural
networks. Pages 907–940 of: Proc. Conference on Learning Theory, vol. 49.

Elman, Jeffrey L. 1990. Finding structure in time. Cognitive Science, 14(2), 179–
211.

Faber, Felix A., Hutchison, Luke, Huang, Bing, Gilmer, Justin, Schoenholz,
Samuel S., Dahl, George E., Vinyals, Oriol, Kearnes, Steven, Riley, Patrick F.,
and Von Lilienfeld, O. Anatole. 2017. Prediction errors of molecular machine
learning models lower than hybrid DFT error. Journal of Chemical Theory
and Computation, 13(11), 5255–5264.

Frankle, Jonathan, and Carbin, Michael. 2018. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In: proc. International Conference on
Learning Representations.

Freeman, Daniel C., and Bruna, Joan. 2017. Topology and geometry of half-
rectified network optimization. In:Proc. InternationalConference onLearning
Representations.

Funahashi, Ken-Ichi. 1989. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2(3), 183–192.

Ge, Rong, Huang, Furong, Jin, Chi, and Yuan, Yang. 2015. Escaping from saddle
points – online stochastic gradient for tensor decomposition. Pages 797–842
of: Proc. Conference on Learning Theory.

Geiger, Mario, Jacot, Arthur, Spigler, Stefano, Gabriel, Franck, Sagun, Levent,
d’Ascoli, Stéphane, Biroli, Giulio, Hongler, Clément, and Wyart, Matthieu.
2020. Scaling description of generalization with number of parameters in

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 97

deep learning. Journal of Statistical Mechanics: Theory and Experiment,
2(2), 023401.

Géron, Aurelien. 2017. Hands-OnMachine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media.

Ghadimi, Saeed, and Lan, Guanghui. 2013. Stochastic first- and zeroth-order meth-
ods for nonconvex stochastic programming. SIAM Journal on Optimization,
23(4), 2341–2368.

Ghorbani, Behrooz, Mei, Song, Misiakiewicz, Theodor, and Montanari, Andrea.
2021. Linearized two-layers neural networks in high dimension. Annals of
Statistics, 49(2), 1029–1054.

Gilton, Davis, Ongie, Greg, and Willett, Rebecca. 2019. Neumann networks for
linear inverse problems in imaging. IEEE Transactions on Computational
Imaging, 6, 328–343.

Giné, Evarist, and Zinn, Joel. 1984. Some limit theorems for empirical processes.
Annals of Probability, 929–989.

Golowich, Noah, Rakhlin, Alexander, and Shamir, Ohad. 2018. Size-independent
sample complexity of neural networks. Pages 297–299 of: Proc. Conference
On Learning Theory.

Gonon, Lukas, and Schwab, Christoph. 2020. Deep ReLU network expression rates
for option prices in high-dimensional, exponential Lévy models. ETH Zurich
SAM Research Report.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley,
David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. 2014. Genera-
tive adversarial nets. Pages 2672–2680 of: Advances in Neural Information
Processing Systems.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. 2016. Deep Learning.
MIT Press.

Griewank, Andreas, andWalther, Andrea. 2008. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. SIAM.

Grohs, Philipp, and Herrmann, Lukas. 2021. Deep neural network approximation
for high-dimensional parabolic Hamilton–Jacobi–Bellman equations. ArXiv
preprint arXiv:2103.05744.

Grohs, Philipp, and Voigtlaender, Felix. 2021. Proof of the theory-to-practice
gap in deep learning via sampling complexity bounds for neural network
approximation spaces. ArXiv preprint arXiv:2104.02746.

Grohs, Philipp, Koppensteiner, Sarah, and Rathmair, Martin. 2020. Phase retrieval:
Uniqueness and stability. SIAM Review, 62(2), 301–350.

Grohs, Philipp, Hornung, Fabian, Jentzen, Arnulf, and von Wurstemberger,
Philippe. 2021. A proof that artificial neural networks overcome the curse
of dimensionality in the numerical approximation of Black–Scholes partial
differential equations. Memoirs of the American Mathematical Society, to
appear.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

98 Berner et al. The Modern Mathematics of Deep Learning

Gühring, Ingo, Kutyniok, Gitta, and Petersen, Philipp. 2020. Error bounds for
approximations with deep ReLU neural networks in W s,p norms. Analysis
and Applications, 18(05), 803–859.

Gunasekar, Suriya, Lee, Jason D., Soudry, Daniel, and Srebro, Nathan. 2018a.
Characterizing implicit bias in terms of optimization geometry. Pages 1832–
1841 of: Proc. International Conference on Machine Learning.

Gunasekar, Suriya, Lee, Jason D., Soudry, Daniel, and Srebro, Nathan. 2018b.
Implicit bias of gradient descent on linear convolutional networks. Pages
9461–9471 of: Advances in Neural Information Processing Systems.

Haeffele, Benjamin D., and Vidal, René. 2017. Global optimality in neural network
training. Pages 7331–7339 of: Proc. IEEE Conference on Computer Vision
and Pattern Recognition.

Hairer, Martin, Hutzenthaler, Martin, and Jentzen, Arnulf. 2015. Loss of regularity
for Kolmogorov equations. Annals of Probability, 43(2), 468–527.

Han, Song, Mao, Huizi, and Dally, William J. 2016. Deep compression: com-
pressing deep neural network with pruning, trained quantization and Huffman
coding. In: Proc. International Conference on Learning Representations.

Han, Jiequn, Jentzen, Arnulf, and E, Weinan. 2018. Solving high-dimensional
partial differential equations using deep learning. Proceedings of the National
Academy of Sciences, 115(34), 8505–8510.

Han, Jiequn, Zhang, Linfeng, and E, Weinan. 2019. Solving many-electron
Schrödinger equation using deep neural networks. Journal of Computational
Physics, 399, 108929.

Hanin, Boris. 2019. Universal function approximation by deep neural nets with
bounded width and ReLU activations. Mathematics, 7(10), 992.

Hanin, Boris, and Rolnick, David. 2019. Deep ReLU networks have surprisingly
few activation patterns. Pages 359–368 of: Advances in Neural Information
Processing Systems.

Hanin, Boris, and Sellke, Mark. 2017. Approximating continuous functions by
ReLU nets of minimal width. ArXiv preprint arXiv:1710.11278.

Hardt, Moritz, Recht, Ben, and Singer, Yoram. 2016. Train faster, generalize better:
Stability of stochastic gradient descent. Pages 1225–1234 of: Proc. Interna-
tional Conference on Machine Learning.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. 2001. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Hastie, Trevor, Montanari, Andrea, Rosset, Saharon, and Tibshirani, Ryan J. 2019.
Surprises in high-dimensional ridgeless least squares interpolation. ArXiv
preprint arXiv:1903.08560.

Haussler, David. 1995. Sphere packing numbers for subsets of the Boolean n-cube
with bounded Vapnik–Chervonenkis dimension. Journal of Combinatorial
Theory, Series A, 2(69), 217–232.

He, Juncai, Li, Lin, Xu, Jinchao, and Zheng, Chunyue. 2020. ReLU deep neural

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 99

networks and linear finite elements. Journal of Computational Mathematics,
38(3), 502–527.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2015. Delving deep
into rectifiers: surpassing human-level performance on imagenet classifica-
tion. Pages 1026–1034 of: Proc. IEEE International Conference on Computer
Vision.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2016. Deep residual
learning for image recognition. Pages 770–778 of: Proc. IEEE Conference on
Computer Vision and Pattern Recognition.

Hermann, Jan, Schätzle, Zeno, andNoé, Frank. 2020. Deep-neural-network solution
of the electronic Schrödinger equation. Nature Chemistry, 12(10), 891–897.

Higham, Catherine F., and Higham, Desmond J. 2019. Deep learning: An intro-
duction for applied mathematicians. SIAM Review, 61(4), 860–891.

Hinton, Geoffrey E., and Zemel, Richard S. 1994. Autoencoders, minimum de-
scription length, and Helmholtz free energy. Advances in Neural Information
Processing Systems, 6, 3–10.

Hinz, Peter, and van de Geer, Sara. 2019. A framework for the construction of upper
bounds on the number of affine linear regions of ReLU feed-forward neural
networks. IEEE Transactions on Information Theory, 65, 7304–7324.

Hochreiter, Sepp, and Schmidhuber, Jürgen. 1997. Long short-termmemory.Neural
Computation, 9(8), 1735–1780.

Hoeffding, Wassily. 1963. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301), 13–30.

Hopfield, John J. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences, 79(8), 2554–2558.

Hornik, Kurt, Stinchcombe,Maxwell, andWhite, Halbert. 1989. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5), 359–366.

Huang, Gao, Sun, Yu, Liu, Zhuang, Sedra, Daniel, andWeinberger, Kilian Q. 2016.
Deep networks with stochastic depth. Pages 646–661 of: Proc. European
Conference on Computer Vision.

Hutzenthaler, Martin, Jentzen, Arnulf, Kruse, Thomas, and Nguyen, Tuan Anh.
2020. A proof that rectified deep neural networks overcome the curse of
dimensionality in the numerical approximation of semilinear heat equations.
SN Partial Differential Equations and Applications, 1(2), 1–34.

Ioffe, Sergey, and Szegedy, Christian. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. Pages 448–456 of:
Proc. International Conference on Machine Learning.

Jacot, Arthur, Gabriel, Franck, and Hongler, Clément. 2018. Neural tangent kernel:
Convergence and generalization in neural networks. Pages 8571–8580 of:
Advances in Neural Information Processing Systems.

Jentzen,Arnulf, Kuckuck, Benno,Neufeld, Ariel, and vonWurstemberger, Philippe.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

100 Berner et al. The Modern Mathematics of Deep Learning

2020. Strong error analysis for stochastic gradient descent optimization algo-
rithms. IMA Journal of Numerical Analysis, 41(1), 455–492.

Ji, Ziwei, and Telgarsky, Matus. 2019a. Gradient descent aligns the layers of deep
linear networks. In: Proc. International Conference on Learning Representa-
tions.

Ji, Ziwei, and Telgarsky, Matus. 2019b. A refined primal–dual analysis of the
implicit bias. ArXiv preprint arXiv:1906.04540.

Ji, Ziwei, and Telgarsky, Matus. 2020. Directional convergence and alignment
in deep learning. Pages 17176–17186 of: Advances in Neural Information
Processing Systems.

Jiang, Yiding, Krishnan, Dilip, Mobahi, Hossein, and Bengio, Samy. 2019. Pre-
dicting the generalization gap in deep networks with margin distributions. In:
Proc. International Conference on Learning Representations.

Jiang, Yiding, Neyshabur, Behnam,Mobahi, Hossein, Krishnan, Dilip, and Bengio,
Samy. 2020. Fantastic generalization measures and where to find them. In:
International Conference on Learning Representations.

Jin, Bangti, Maaß, Peter, and Scherzer, Otmar. 2017a. Sparsity regularization in
inverse problems. Inverse Problems, 33(6), 060301.

Jin, Kyong Hwan, McCann, Michael T., Froustey, Emmanuel, and Unser, Michael.
2017b. Deep convolutional neural network for inverse problems in imaging.
IEEE Transactions on Image Processing, 26(9), 4509–4522.

Jordan, Michael I. 1990. Attractor dynamics and parallelism in a connectionist
sequential machine. Pages 112–127 of: Artificial Neural Networks: Concept
Learning. IEEE Press.

Judd, Stephen J. 1990. Neural Network Design and the Complexity of Learning.
MIT Press.

Kakade, Sham M., and Lee, Jason D. 2018. Provably correct automatic subdif-
ferentiation for qualified programs. Pages 7125–7135 of: Advances in Neural
Information Processing Systems.

Karpinski, Marek, and Macintyre, Angus. 1997. Polynomial bounds for VC dimen-
sion of sigmoidal and general Pfaffian neural networks. Journal of Computer
and System Sciences, 54(1), 169–176.

Kelley, Henry J. 1960. Gradient theory of optimal flight paths. Ars Journal, 30(10),
947–954.

Keskar, Nitish Shirish, Mudigere, Dheevatsa, Nocedal, Jorge, Smelyanskiy,
Mikhail, and Tang, Ping Tak Peter. 2017. On large-batch training for deep
learning: Generalization gap and sharp minima. In: Proc. International Con-
ference on Learning Representations.

Kidger, Patrick, and Lyons, Terry. 2020. Universal approximation with deep narrow
networks. Pages 2306–2327 of: Proc. Conference on Learning Theory.

Kiefer, Jack, and Wolfowitz, Jacob. 1952. Stochastic estimation of the maximum
of a regression function. Annals of Mathematical Statistics, 23(3), 462–466.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 101

Krizhevsky, Alex, and Hinton, Geoffrey. 2009. Learning multiple layers of features
from tiny images. Technical Report. University of Toronto.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. 2012. ImageNet clas-
sification with deep convolutional neural networks. Pages 1097–1105 of:
Advances in Neural Information Processing Systems.

Kutyniok, Gitta, Petersen, Philipp, Raslan, Mones, and Schneider, Reinhold. 2019.
A theoretical analysis of deep neural networks and parametric PDEs. ArXiv
preprint arXiv:1904.00377.

Laakmann, Fabian, and Petersen, Philipp. 2021. Efficient approximation of solu-
tions of parametric linear transport equations by ReLU DNNs. Advances in
Computational Mathematics, 47(1), 1–32.

Lample, Guillaume, and Charton, François. 2019. Deep learning For symbolic
mathematics. In:Proc. InternationalConference onLearningRepresentations.

LeCun, Yann, Boser, Bernhard, Denker, John S., Henderson, Donnie, Howard,
Richard E., Hubbard, Wayne, and Jackel, Lawrence D. 1989a. Backpropaga-
tion applied to handwritten zip code recognition. Neural Computation, 1(4),
541–551.

LeCun, Yann, Denker, John S., and Solla, Sara A. 1989b. Optimal brain damage.
Pages 598–605 of: Advances in Neural Information Processing Systems.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner, Patrick. 1998. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278–2324.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. 2015. Deep learning. Nature,
521(7553), 436–444.

Ledoux, Michel, and Talagrand, Michel. 1991. Probability in Banach Spaces:
Isoperimetry and Processes. Springer Science & Business Media.

Lee, Jason D., Simchowitz, Max, Jordan, Michael I., and Recht, Benjamin. 2016.
Gradient descent only converges to minimizers. Pages 1246–1257 of: Proc.
Conference on Learning Theory.

Lee, Jaehoon, Bahri, Yasaman, Novak, Roman, Schoenholz, Samuel S., Pennington,
Jeffrey, and Sohl-Dickstein, Jascha. 2018. Deep neural networks as Gaussian
processes. In: Proc. International Conference on Learning Representations.

Lee, Jaehoon, Xiao, Lechao, Schoenholz, Samuel S., Bahri, Yasaman, Novak, Ro-
man, Sohl-Dickstein, Jascha, and Pennington, Jeffrey. 2020. Wide neural
networks of any depth evolve as linear models under gradient descent. Journal
of Statistical Mechanics: Theory and Experiment, 2020(12), 124002.

Leshno, Moshe, Lin, Vladimir Ya., Pinkus, Allan, and Schocken, Shimon. 1993.
Multilayer feedforward networks with a nonpolynomial activation function can
approximate any function. Neural Networks, 6(6), 861–867.

Lewin, Kurt. 1943. Psychology and the process of group living. The Journal of
Social Psychology, 17(1), 113–131.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

102 Berner et al. The Modern Mathematics of Deep Learning

Li, Bo, Tang, Shanshan, and Yu, Haijun. 2019a. Better approximations of high-
dimensional smooth functions by deep neural networks with rectified power
units. Communications in Computational Physics, 27(2), 379–411.

Li, Housen, Schwab, Johannes, Antholzer, Stephan, and Haltmeier, Markus. 2020.
NETT: Solving inverse problemswith deep neural networks. InverseProblems,
36(6), 065005.

Li, Qianxiao, Lin, Ting, and Shen, Zuowei. 2019b. Deep learning via dynamical
systems: An approximation perspective. ArXiv preprint arXiv:1912.10382.

Li, Weilin. 2021. Generalization error of minimum weighted norm and kernel
interpolation. SIAM Journal on Mathematics of Data Science, 3(1), 414–438.

Li, Yuanzhi, and Liang, Yingyu. 2018. Learning overparameterized neural net-
works via stochastic gradient descent on structured data. Pages 8157–8166 of:
Advances in Neural Information Processing Systems.

Liang, Shiyu, and Srikant, R. 2017. Why deep neural networks for function approx-
imation? In: Proc. International Conference on Learning Representations.

Liang, Tengyuan, andRakhlin,Alexander. 2020. Just interpolate:Kernel “ridgeless”
regression can generalize. Annals of Statistics, 48(3), 1329–1347.

Liang, Tengyuan, Poggio, Tomaso, Rakhlin, Alexander, and Stokes, James. 2019.
Fisher–Rao metric, geometry, and complexity of neural networks. Pages 888–
896 of: Proc. International Conference on Artificial Intelligence and Statistics.

Liang, Tengyuan, Rakhlin, Alexander, and Zhai, Xiyu. 2020. On the multiple de-
scent of minimum-norm interpolants and restricted lower isometry of kernels.
Pages 2683–2711 of: Proc. Conference on Learning Theory.

Lin, Licong, and Dobriban, Edgar. 2021. What causes the test error? Going beyond
bias-variance via anova. Journal of Machine Learning Research, 22(155),
1–82.

Linnainmaa, Seppo. 1970. Alogritmin Kumulatiivinen Pyöristysvirhe Yksittäisten
Pyöristysvirheiden Taylor-Kehitelmänä. M.Phil. thesis, University ofHelsinki.

Lu, Yiping, Ma, Chao, Lu, Yulong, Lu, Jianfeng, and Ying, Lexing. 2020. A mean
field analysis of deep ResNet and beyond: Towards provable optimization via
overparameterization from depth. Pages 6426–6436 of: Proc. International
Conference on Machine Learning.

Lunz, Sebastian, Öktem, Ozan, and Schönlieb, Carola-Bibiane. 2018. Adversarial
regularizers in inverse problems. Pages 8507–8516 of: Advances in Neural
Information Processing Systems.

Lyu, Kaifeng, and Li, Jian. 2019. Gradient descent maximizes the margin of ho-
mogeneous neural networks. In: Proc. International Conference on Learning
Representations.

Ma, Junshui, Sheridan, Robert P., Liaw, Andy, Dahl, George E., and Svetnik,
Vladimir. 2015. Deep neural nets as a method for quantitative structure–
activity relationships. Journal of Chemical Information and Modeling, 55(2),
263–274.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 103

Maiorov, Vitaly, and Pinkus, Allan. 1999. Lower bounds for approximation byMLP
neural networks. Neurocomputing, 25(1-3), 81–91.

Mallat, Stéphane. 2012. Group invariant scattering. Communications on Pure and
Applied Mathematics, 65(10), 1331–1398.

Mallat, Stéphane. 2016. Understanding deep convolutional networks. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 374(2065), 20150203.

Marcati, Carlo, Opschoor, Joost, Petersen, Philipp, and Schwab, Christoph. 2020.
Exponential ReLU neural network approximation rates for point and edge
singularities. ETH Zurich SAM Research Report.

Matthews, Alexander G. de G., Hron, Jiri, Rowland, Mark, Turner, Richard E., and
Ghahramani, Zoubin. 2018. Gaussian process behaviour in wide deep neural
networks. In: Proc. International Conference on Learning Representations.

McAllester, David A. 1999. PAC-Bayesian model averaging. Pages 164–170 of:
Prc. Conference on Learning Theory.

McCulloch, Warren S., and Pitts, Walter. 1943. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4),
115–133.

McDiarmid, Colin. 1989. On the method of bounded differences. Pages 148–188
of: Surveys in Combinatorics. London Mathematical Society Lecture Notes,
vol. 141. Cambridge University Press.

Mei, Song, and Montanari, Andrea. 2019. The generalization error of random
features regression: Precise asymptotics and double descent curve. ArXiv
preprint arXiv:1908.05355.

Mendelson, Shahar. 2014. Learning without concentration. Pages 25–39 of: Proc.
Conference on Learning Theory.

Mendelson, Shahar, and Vershynin, Roman. 2003. Entropy and the combinatorial
dimension. Inventiones Mathematicae, 152(1), 37–55.

Mhaskar, Hrushikesh N. 1996. Neural networks for optimal approximation of
smooth and analytic functions. Neural Computation, 8(1), 164–177.

Mianjy, Poorya, Arora, Raman, and Vidal, Rene. 2018. On the implicit bias of
dropout. Pages 3540–3548 of: Proc. International Conference on Machine
Learning.

Minsky, Marvin, and Papert, Seymour A. 1969. Perceptrons. MIT Press.
Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou,

Ioannis, Wierstra, Daan, and Riedmiller, Martin. 2013. Playing Atari with
deep reinforcement learning. ArXiv preprint arXiv:1312.5602.

Monga, Vishal, Li, Yuelong, and Eldar, Yonina C. 2021. Algorithm unrolling:
Interpretable, efficient deep learning for signal and image processing. IEEE
Signal Processing Magazine, 38(2), 18–44.

Montanari, Andrea, and Zhong, Yiqiao. 2020. The interpolation phase transition in
neural networks: Memorization and generalization under lazy training. ArXiv
preprint arXiv:2007.12826.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

104 Berner et al. The Modern Mathematics of Deep Learning

Montúfar, Guido, Pascanu, Razvan, Cho, Kyunghyun, and Bengio, Yoshua. 2014.
On the number of linear regions of deep neural networks. Pages 2924–2932
of: Advances in Neural Information Processing Systems.

Muthukumar, Vidya, Vodrahalli, Kailas, Subramanian, Vignesh, and Sahai, Anant.
2020. Harmless interpolation of noisy data in regression. IEEE Journal on
Selected Areas in Information Theory, 1(1), 67–83.

Nacson, Mor Shpigel, Lee, Jason D., Gunasekar, Suriya, Savarese, Pedro Hen-
rique Pamplona, Srebro, Nathan, and Soudry, Daniel. 2019. Convergence
of gradient descent on separable data. Pages 3420–3428 of: International
Conference on Artificial Intelligence and Statistics.

Nagarajan, Vaishnavh, and Kolter, J. Zico. 2019. Uniform convergence may be
unable to explain generalization in deep learning. Pages 11615–11626 of:
Advances in Neural Information Processing Systems.

Nakada, Ryumei and Imaizumi, Masaaki. 2020. Adaptive approximation and gen-
eralization of deep neural network with intrinsic dimensionality. Journal of
Machine Learning Research, 21(174), 1–38.

Nakamura-Zimmerer, Tenavi, Gong, Qi, and Kang, Wei. 2021. Adaptive deep
learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM
Journal on Scientific Computing, 43(2), A1221–A1247.

Nakkiran, Preetum, Kaplun, Gal, Bansal, Yamini, Yang, Tristan, Barak, Boaz, and
Sutskever, Ilya. 2020. Deep double descent: Where bigger models and more
data hurt. In: Proc. International Conference on Learning Representations.

Nemirovski, Arkadi, Juditsky, Anatoli, Lan, Guanghui, and Shapiro, Alexander.
2009. Robust stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4), 1574–1609.

Nemirovsky, Arkadi Semenovich, and Yudin, David Borisovich. 1983. Problem
Complexity and Method Efficiency in Optimization. Wiley-Interscience Series
in Discrete Mathematics. Wiley.

Neyshabur, Behnam, Tomioka, Ryota, and Srebro, Nathan. 2014. In search of the
real inductive bias: On the role of implicit regularization in deep learning.
ArXiv preprint arXiv:1412.6614.

Neyshabur, Behnam, Tomioka, Ryota, and Srebro, Nathan. 2015. Norm-based
capacity control in neural networks. Pages 1376–1401 of: Proc. Conference
on Learning Theory.

Neyshabur, Behnam, Bhojanapalli, Srinadh, McAllester, David, and Srebro, Nati.
2017. Exploring generalization in deep learning. Pages 5947–5956 of: Ad-
vances in Neural Information Processing Systems.

Neyshabur, Behnam, Bhojanapalli, Srinadh, and Srebro, Nathan. 2018. A PAC-
Bayesian approach to spectrally-normalized margin bounds for neural net-
works. In: Proc. International Conference on Learning Representations.

Nguyen, Quynh, andHein,Matthias. 2017. The loss surface of deep andwide neural
networks. Pages 2603–2612 of: Proc. International Conference on Machine
Learning.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 105

Novak, Erich, and Woźniakowski, Henryk. 2009. Approximation of infinitely dif-
ferentiable multivariate functions is intractable. Journal of Complexity, 25(4),
398–404.

Olshausen, Bruno A., and Field, David J. 1996. Sparse coding of natural images
produces localized, oriented, bandpass receptive fields. Nature, 381(60), 609.

Oono, Kenta, and Suzuki, Taiji. 2019. Approximation and non-parametric esti-
mation of ResNet-type convolutional neural networks. Pages 4922–4931 of:
Proc. International Conference on Machine Learning.

Opschoor, Joost, Petersen, Philipp, and Schwab, Christoph. 2020. Deep ReLU
networks and high-order finite element methods. Analysis and Applications,
1–56.

Orr, Genevieve B, and Müller, Klaus-Robert. 1998. Neural Networks: Tricks of the
Trade. Springer.

Papyan, Vardan, Romano, Yaniv, and Elad, Michael. 2017a. Convolutional neu-
ral networks analyzed via convolutional sparse coding. Journal of Machine
Learning Research, 18(1), 2887–2938.

Papyan, Vardan, Sulam, Jeremias, and Elad,Michael. 2017b. Working locally think-
ing globally: Theoretical guarantees for convolutional sparse coding. IEEE
Transactions on Signal Processing, 65(21), 5687–5701.

Papyan, Vardan, Romano, Yaniv, Sulam, Jeremias, and Elad, Michael. 2018. The-
oretical foundations of deep learning via sparse representations: A multilayer
sparsemodel and its connection to convolutional neural networks. IEEE Signal
Processing Magazine, 35(4), 72–89.

Pardoux, Etienne, and Peng, Shige. 1992. Backward stochastic differential equations
and quasilinear parabolic partial differential equations. Pages 200–217 of:
Stochastic Partial Differential Equations and Their Applications. Springer.

Petersen, Philipp, and Voigtlaender, Felix. 2018. Optimal approximation of piece-
wise smooth functions using deep ReLU neural networks. Neural Networks,
108, 296–330.

Petersen, Philipp, and Voigtlaender, Felix. 2020. Equivalence of approximation by
convolutional neural networks and fully-connected networks. Proceedings of
the American Mathematical Society, 148(4), 1567–1581.

Petersen, Philipp, Raslan, Mones, and Voigtlaender, Felix. 2020. Topological prop-
erties of the set of functions generated by neural networks of fixed size.
Foundations of Computational Mathematics, 21, 375–444.

Pfau, David, Spencer, James S., Matthews, Alexander G. D. G., and Foulkes,
W. M. C. 2020. Ab initio solution of the many-electron Schrödinger equation
with deep neural networks. Physical Review Research, 2(3), 033429.

Pham, Hieu, Guan, Melody, Zoph, Barret, Le, Quoc, and Dean, Jeff. 2018. Efficient
neural architecture search via parameters sharing. Pages 4095–4104 of: Proc.
International Conference on Machine Learning.

Poggio, Tomaso, Rifkin, Ryan, Mukherjee, Sayan, and Niyogi, Partha. 2004. Gen-
eral conditions for predictivity in learning theory. Nature, 428(6981), 419–422.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

106 Berner et al. The Modern Mathematics of Deep Learning

Poggio, Tomaso, Kawaguchi, Kenji, Liao, Qianli, Miranda, Brando, Rosasco,
Lorenzo, Boix, Xavier, Hidary, Jack, and Mhaskar, Hrushikesh N. 2017a.
Theory of deep learning III: explaining the non-overfitting puzzle. ArXiv
preprint arXiv:1801.00173.

Poggio, Tomaso, Mhaskar, Hrushikesh N., Rosasco, Lorenzo, Miranda, Brando,
and Liao, Qianli. 2017b. Why and when can deep – but not shallow – net-
works avoid the curse of dimensionality: a review. International Journal of
Automation and Computing, 14(5), 503–519.

Poole, Ben, Lahiri, Subhaneil, Raghu, Maithra, Sohl-Dickstein, Jascha, and Gan-
guli, Surya. 2016. Exponential expressivity in deep neural networks through
transient chaos. Pages 3368–3376 of: Advances in Neural Information Pro-
cessing Systems.

Raghu, Maithra, Poole, Ben, Kleinberg, Jon, Ganguli, Surya, and Sohl-Dickstein,
Jascha. 2017. On the expressive power of deep neural networks. Pages 2847–
2854 of: Proc. International Conference on Machine Learning.

Rahimi, Ali, Recht, Benjamin, et al. 2007. Random features for large-scale kernel
machines. Pages 1177–1184 of: Advances in Neural Information Processing
Systems.

Raissi, Maziar, Perdikaris, Paris, and Karniadakis, George E. 2019. Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378, 686–707.

Ramanujan, Vivek, Wortsman, Mitchell, Kembhavi, Aniruddha, Farhadi, Ali, and
Rastegari, Mohammad. 2020. What’s hidden in a randomly weighted neural
network? Pages 11893–11902 of: Proc. IEEE Conference on Computer Vision
and Pattern Recognition.

Ríos, P. López, Ma, Ao, Drummond, Neil D., Towler, Michael D., and Needs,
Richard J. 2006. Inhomogeneous backflow transformations in quantumMonte
Carlo calculations. Physical Review E, 74(6), 066701.

Robbins, Herbert, and Monro, Sutton. 1951. A stochastic approximation method.
Annals of Mathematical Statistics, 400–407.

Romano, Yaniv, Elad, Michael, and Milanfar, Peyman. 2017. The little engine
that could: Regularization by denoising (RED). SIAM Journal on Imaging
Sciences, 10(4), 1804–1844.

Ronneberger, Olaf, Fischer, Philipp, and Brox, Thomas. 2015. U-net: convolutional
networks for biomedical image segmentation. Pages 234–241 of: Proc. In-
ternational Conference on Medical image Computing and Computer-Assisted
Intervention.

Rosenblatt, Frank. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), 386.

Rudin, Walter. 2006. Real and Complex Analysis. McGraw-Hill.
Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. 1986. Learning

representations by back-propagating errors. Nature, 323(6088), 533–536.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 107

Ruthotto, Lars, and Haber, Eldad. 2019. Deep neural networks motivated by partial
differential equations. Journal of Mathematical Imaging and Vision, 1–13.

Safran, Itay, and Shamir, Ohad. 2016. On the quality of the initial basin in over-
specified neural networks. Pages 774–782 of: Proc. International Conference
on Machine Learning.

Safran, Itay, and Shamir, Ohad. 2017. Depth–width tradeoffs in approximating nat-
ural functions with neural networks. Pages 2979–2987 of: Proc. International
Conference on Machine Learning.

Safran, Itay, and Shamir, Ohad. 2018. Spurious local minima are common in
two-layer ReLU neural networks. Pages 4433–4441 of: Proc. International
Conference on Machine Learning.

Sakurai, Akito. 1999. Tight bounds for the VC-dimension of piecewise polynomial
networks. Pages 323–329 of: Advances in Neural Information Processing
Systems.

Santurkar, Shibani, Tsipras, Dimitris, Ilyas, Andrew, and Madry, Aleksander. 2018.
How does batch normalization help optimization? Pages 2488–2498 of: Ad-
vances in Neural Information Processing Systems.

Saxton, David, Grefenstette, Edward, Hill, Felix, and Kohli, Pushmeet. 2018.
Analysing mathematical reasoning abilities of neural models. In: Proc. In-
ternational Conference on Learning Representations.

Scherbela, Michael, Reisenhofer, Rafael, Gerard, Leon, Marquetand Philipp, and
Grohs, Philipp. 2021. Solving the electronic Schrödinger equation for multiple
nuclear geometries with weight-sharing deep neural network. ArXiv preprint
arXiv:2105.08351.

Schmidhuber, Jürgen. 2015. Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

Schmidt-Hieber, Johannes. 2019. Deep ReLU network approximation of functions
on a manifold. ArXiv preprint arXiv:1908.00695.

Schütt, Kristof T., Kindermans, Pieter-Jan, Sauceda, Huziel E., Chmiela, Ste-
fan, Tkatchenko, Alexandre, and Müller, Klaus-Robert. 2017. Schnet: A
continuous-filter convolutional neural network for modeling quantum inter-
actions. Pages 992–1002 of: Advances in Neural Information Processing
Systems.

Schwab, Christoph, and Zech, Jakob. 2019. Deep learning in high dimension:
Neural network expression rates for generalized polynomial chaos expansions
in UQ. Analysis and Applications, 17(01), 19–55.

Senior, Andrew W., Evans, Richard, Jumper, John, Kirkpatrick, James, Sifre, Lau-
rent, Green, Tim, Qin, Chongli, Žídek, Augustin, Nelson, AlexanderW. R., and
Bridgland, Alex. 2020. Improved protein structure prediction using potentials
from deep learning. Nature, 577(7792), 706–710.

Shaham, Uri, Cloninger, Alexander, and Coifman, Ronald R. 2018. Provable ap-
proximation properties for deep neural networks. Applied and Computational
Harmonic Analysis, 44(3), 537–557.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

108 Berner et al. The Modern Mathematics of Deep Learning

Shalev-Shwartz, Shai, and Ben-David, Shai. 2014. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press.

Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and Sridharan, Karthik. 2009.
Stochastic convex optimization. In: Proc. Conference on Learning Theory.

Shapiro, Alexander, Dentcheva, Darinka, andRuszczyński, Andrzej. 2014. Lectures
on Stochastic Programming: Modeling and Theory. SIAM.

Shen, Zuowei. 2020. Deep network approximation characterized by number of
neurons. Communications in Computational Physics, 28(5), 1768–1811.

Silver, David, Huang, Aja, Maddison, Chris J., Guez, Arthur, Sifre, Laurent, Van
Den Driessche, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneer-
shelvam, Veda, and Lanctot, Marc. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587), 484–489.

Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang,
Aja, Guez, Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, and Bolton,
Adrian. 2017. Mastering the game of Go without human knowledge. Nature,
550(7676), 354–359.

Šíma, Jiří. 2002. Training a single sigmoidal neuron is hard. Neural Computation,
14(11), 2709–2728.

Soudry, Daniel, Hoffer, Elad, Nacson, Mor Shpigel, Gunasekar, Suriya, and Srebro,
Nathan. 2018. The implicit bias of gradient descent on separable data. Journal
of Machine Learning Research, 19, 1–57.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and
Salakhutdinov, Ruslan. 2014. Dropout: a simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research, 15(1), 1929–
1958.

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhuber, Jürgen. 2015. Training
very deep networks. Pages 2377–2385 of: Advances in Neural Information
Processing Systems.

Sulam, Jeremias, Papyan, Vardan, Romano, Yaniv, and Elad, Michael. 2018. Mul-
tilayer convolutional sparse modeling: Pursuit and dictionary learning. IEEE
Transactions on Signal Processing, 66(15), 4090–4104.

Szabo, Attila, andOstlund, Neil S. 2012.ModernQuantumChemistry: Introduction
to Advanced Electronic Structure Theory. Courier Corporation.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott,
Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich,
Andrew. 2015. Going deeper with convolutions. Pages 1–9 of: Proc. IEEE
Conference on Computer Vision and Pattern Recognition.

Talagrand, Michel. 1994. Sharper bounds for Gaussian and empirical processes.
Annals of Probability, 28–76.

Telgarsky, Matus. 2015. Representation benefits of deep feedforward networks.
ArXiv preprint arXiv:1509.08101.

Thorpe, Matthew, and van Gennip, Yves. 2018. Deep limits of residual neural
networks. ArXiv preprint arXiv:1810.11741.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 109

Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor. 2018. Deep image prior.
Pages 9446–9454 of: Proc. IEEE Conference on Computer Vision and Pattern
Recognition.

van der Vaart, Aad W., and Wellner, Jon A. 1997. Weak convergence and empirical
processeswith applications to statistics. Journal of the Royal Statistical Society
Series A: Statistics in Society, 160(3), 596–608.

Vapnik, Vladimir. 1999. An overview of statistical learning theory. IEEE Transac-
tions on Neural Networks, 10(5), 988–999.

Vapnik, Vladimir. 2013. The Nature of Statistical Learning Theory. Springer
Science & Business Media.

Vapnik, Vladimir, and Chervonenkis, Alexey. 1971. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability
& its Applications, 16(2), 264–280.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N., Kaiser, Łukasz, and Polosukhin, Illia. 2017. Attention is all
you need. Pages 5998–6008 of: Advances in Neural Information Processing
Systems.

Venturi, Luca, Bandeira, Alfonso S., and Bruna, Joan. 2019. Spurious valleys in
one-hidden-layer neural network optimization landscapes. Journal of Machine
Learning Research, 20(133), 1–34.

Vershynin, Roman. 2018. High-Dimensional Probability: An Introduction with
Applications in Data Science. Cambridge University Press.

Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M., Mathieu, Michaël,
Dudzik, Andrew, Chung, Junyoung, Choi, David H., Powell, Richard, Ewalds,
Timo, and Georgiev, Petko. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782), 350–354.

Wan, Li, Zeiler, Matthew, Zhang, Sixin, Le Cun, Yann, and Fergus, Rob. 2013.
Regularization of neural networks using dropconnect. Pages 1058–1066 of:
Proc. International Conference on Machine Learning.

Werbos, Paul J. 1988. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1(4), 339–356.

Whitney, Hassler. 1934. Analytic extensions of differentiable functions defined in
closed sets. Transactions of the AmericanMathematical Society, 36(1), 63–89.

Wiatowski, Thomas, Grohs, Philipp, and Bölcskei, Helmut. 2017. Energy propaga-
tion in deep convolutional neural networks. IEEE Transactions on Information
Theory, 64(7), 4819–4842.

Williams, Ronald J., and Zipser, David. 1995. Gradient-based learning algorithms
for recurrent networks and their computational complexity. Pages 433–486 of:
Backpropagation: Theory, Architectures, and Applications, Psychology Press.

Wu, Zonghan, Pan, Shirui, Chen, Fengwen, Long, Guodong, Zhang, Chengqi, and
Philip, S. Yu. 2021. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 32(1), 4–24.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

110 Berner et al. The Modern Mathematics of Deep Learning

Xu, Huan, and Mannor, Shie. 2012. Robustness and generalization. Machine
learning, 86(3), 391–423.

Yang, Greg. 2019. Scaling limits of wide neural networks with weight sharing:
Gaussian process behavior, gradient independence, and neural tangent kernel
derivation. ArXiv preprint arXiv:1902.04760.

Yarotsky, Dmitry. 2017. Error bounds for approximations with deep ReLU net-
works. Neural Networks, 94, 103–114.

Yarotsky, Dmitry. 2018a. Optimal approximation of continuous functions by very
deep ReLU networks. Pages 639–649 of: Proc. Conference on Learning
Theory.

Yarotsky, Dmitry. 2018b. Universal approximations of invariant maps by neural
networks. ArXiv preprint arXiv:1804.10306.

Yarotsky, Dmitry. 2021. Elementary superexpressive activations. ArXiv preprint
arXiv:2102.10911.

Yarotsky, Dmitry, and Zhevnerchuk, Anton. 2020. The phase diagram of approx-
imation rates for deep neural networks. In: Advances in Neural Information
Processing Systems, vol. 33.

Ye, Jong Chul, Han, Yoseob, and Cha, Eunju. 2018. Deep convolutional framelets:
A general deep learning framework for inverse problems. SIAM Journal on
Imaging Sciences, 11(2), 991–1048.

Yin, Rujie, Gao, Tingran, Lu, Yue M., and Daubechies, Ingrid. 2017. A tale of
two bases: Local–nonlocal regularization on image patches with convolution
framelets. SIAM Journal on Imaging Sciences, 10(2), 711–750.

Young, Tom, Hazarika, Devamanyu, Poria, Soujanya, and Cambria, Erik. 2018.
Recent trends in deep learning based natural language processing. IEEE
Computational Intelligence Magazine, 13(3), 55–75.

Yserentant, Harry. 2010. Regularity and Approximability of Electronic Wave Func-
tions. Springer.

Zaslavsky, Thomas. 1975. Facing up to Arrangements: Face-Count Formulas for
Partitions of Space by Hyperplanes. Memoirs of the American Mathematical
Society. American Mathematical Society.

Zbontar, Jure, Knoll, Florian, Sriram, Anuroop, Murrell, Tullie, Huang, Zheng-
nan, Muckley, Matthew J., Defazio, Aaron, Stern, Ruben, Johnson, Patricia,
Bruno, Mary, Parente, Marc, Geras, Krzysztof J., Katsnelson, Joe, Chan-
darana, Hersh, Zhang, Zizhao, Drozdzal, Michal, Romero, Adriana, Rabbat,
Michael, Vincent, Pascal, Yakubova, Nafissa, Pinkerton, James, Wang, Duo,
Owens, Erich, Zitnick, C. Lawrence, Recht, Michael P., Sodickson, Daniel K.,
and Lui, Yvonne W. 2018. fastMRI: An open dataset and benchmarks for
accelerated MRI. ArXiv preprint arXiv:1811.08839.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, and Vinyals,
Oriol. 2017. Understanding deep learning requires rethinking generalization.
In: Proc. International Conference on Learning Representations.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

References 111

Zhang, Chiyuan, Bengio, Samy, and Singer, Yoram. 2019. Are all layers created
equal? ArXiv preprint arXiv:1902.01996.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Mozer, Michael C., and Singer,
Yoram. 2020. Identity crisis: Memorization and generalization under extreme
overparameterization. In: Proc. International Conference on Learning Repre-
sentations.

Zhou, Ding-Xuan. 2020a. Theory of deep convolutional neural networks: Down-
sampling. Neural Networks, 124, 319–327.

Zhou, Ding-Xuan. 2020b. Universality of deep convolutional neural networks.
Applied and Computational Harmonic Analysis, 48(2), 787–794.

Zhou, Hao, Alvarez, Jose M., and Porikli, Fatih. 2016. Less is more: Towards
compact CNNs. Pages 662–677 of: Proc. European Conference on Computer
Vision.

Zoph, Barret, and Le, Quoc V. 2017. Neural architecture search with reinforcement
learning. In: Proc.Dobriban International Conference on Learning Represen-
tations.

Zou, Difan, Cao, Yuan, Zhou, Dongruo, and Gu, Quanquan. 2020. Gradient de-
scent optimizes over-parameterized deep ReLU networks. Machine Learning,
109(3), 467–492.

https://doi.org/10.1017/9781009025096.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009025096.002

