
Epilogue

In this epilogue we describe briefly some results that are closely connected with the
theory and tools developed in previous chapters and have been obtained in recent
years but, in spite of their importance, could not be fully treated without increasing
too much the size of this book.

1 The similarity principle and applications

In this section we will briefly discuss the first-order equation

Lu= Au+Bu (1)

where L is a complex vector field in the plane and A and B are bounded, measurable
functions. We will also present two applications of equation (1). The first application
concerns uniqueness in the Cauchy problem for a class of semilinear equations. The
second application will be to the theory of bending of surfaces.

Equation (1) generalizes the classical elliptic equation

�u

�z
= Au+Bu (2)

which was investigated by numerous researchers (see for example [Be], [CoHi], [Re],
and [V]). In the literature, solutions of (2) are called pseudo-analytic functions or
generalized analytic functions. Such functions share many properties with holomorphic
functions of one variable. These properties follow easily from the similarity principle
according to which every continuous solution of (2) has the local form

u= exp�g	h (3)

where h is a holomorphic function and g is Hölder continuous. Thus, for example, the
zero set of u is the same as that of h. The similarity principle holds for any elliptic
vector field L (where the holomorphy of h is replaced by the condition Lh= 0) since
any such vector field is a multiple of �

�z
in appropriate coordinates. In [Me2] Meziani

explored the validity of the similarity principle for the following three classes of vector
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fields:

Lk =
�

�y
− iy2k �

�x
� Kn =

�

�y
− ixn �

�x
� M = �

�y
− iy

�

�x

where k and n are non-negative integers. It was proved in [Me2] that the similarity
principle is valid for the Lk and Kn (under some vanishing assumption on B�x� y� on
the characteristic sets of the vector fields) in the following sense: if w is a continuous
solution of

Lw = Aw+Bw

where L ∈ �Lk�Kn	, then w has the local form w = exp�g	h where Lh = 0 and g
is Hölder continuous. It was also shown in [Me2] that this principle does not hold
for M . The vector fields Lk and Kn are locally solvable while M is not. With this
observation as a point of departure, it was shown in [BHS] and [HdaS] that a weaker
version of the similarity principle is valid for all locally solvable vector fields L. In
this weaker version, the functions g and h in the representation w= exp�g	h may no
longer be continuous. However, this representation was still good enough to yield the
uniqueness result mentioned below.

1.1 Application to uniqueness in the Cauchy problem

Let the vector field

L= �

�t
+ i

n∑
k=1

bk�x� t�
�

�xk

satisfy condition � in some neighborhood � =�1× �−T�T� of the origin in Rn+1.
Here each bk is real-valued, of class C1+r � 0 < r < 1. Let f�x� t� �� �� be a bounded
measurable complex-valued function defined for �x� t� ∈�, � ∈C satisfying the Lips-
chitz condition in �

f�x� t� �� ��−f�x� t� � ′� � ′� ≤ K �− � ′�

If L and f are as above, the following result on uniqueness in the Cauchy problem
was proved in [HdaS] (see also [BHS]):

Theorem 1.1. Suppose u�x� t�� w�x� t� ∈ Lp���, p≥ 2, satisfy Lu= f�x�u�u�, Lw=
f�x�w�w�, and u�x�0�= w�x�0�. Then u≡ w in a neighborhood of the origin.

If the coefficients of L are smooth, Theorem 1.1 was proved in [BHS] under the
weaker assumption that u and w belong to Lp� p > 1. These results were proved by
applying the similarity principle to the difference v = u−w which in view of the
assumptions satisfies an equation of the form Lv = Av+Bv with A and B bounded.
The fact that L satisfies condition � is then used to reduce matters to a planar situation.
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1.2 Application to infinitesimal bendings of surfaces

In a series of papers (see [Me3], [Me4], and the references therein) Meziani has
demonstrated an intimate link between the study of the equation

Lu= Au+Bu

(L a planar vector field) and the study of infinitesimal deformations of surfaces with
non-negative curvature. Here we will summarize some of the results in [Me4] to
indicate this link.

Let S be a surface of class Cl, l > 2, embedded in R3 and given by parametric
equations as

S = �R�s� t�= �x�s� t�� y�s� t�� z�s� t�� ∈ R3� �s� t� ∈D⊂ R2	 (4)

with D an open subset of R2. An infinitesimal bending of S is a deformation

S% = �R%�s� t�= R�s� t�+ %U�s� t�� �s� t� ∈D	� −� < % < � (5)

for some � > 0 and

U�s� t�= ���s� t����s� t�� ��s� t�� (6)

satisfying

dR�s� t� ·dU�s� t�= 0 ∀�s� t� ∈D� (7)

This means that the first fundamental forms of S and S% satisfy

dR2
% = dR2+O�%2��

Note that equation (7) is equivalent to the system of three equations

Rs ·Us = 0� Rt ·Ut = 0� Rs ·Ut+Rt ·Us = 0� (8)

Recall that the coefficients of the first fundamental form of S are

E = Rs ·Rs� F = Rs ·Rt� G= Rt ·Rt (9)

and those of the second fundamental form are

e= Rss ·N� f = Rst ·N� g = Rtt ·N� (10)

where

N = Rs×Rt

Rs×Rt
is the unit normal to S. The Gaussian curvature of S is

K = eg−f 2

EG−F 2
�

We will assume that the curvature K ≥ 0 everywhere on S. The (complex) asymptotic
directions of S are given by the quadratic equation

�2+2f�+ eg = 0�
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That is,

�=−f + i
√
eg−f 2�

Let L be a vector field of asymptotic direction:

L= a�s� t�

(
g�s� t�

�

�s
+��s� t�

�

�t

)
� (11)

where a is any function defined in D. Note that since K ≥ 0, if a �= 0, then L is an
elliptic vector field that degenerates along the set where the curvature K = 0.

Let w be the C-valued function defined by

w = LR ·U (12)

where U is as given in (6). In [Me4], the following theorem was proved.

Theorem 1.2. With w as in (12) and L as in (11), if U(s,t) is a field of infinitesimal
bending for the surface S, then the function w satisfies the equation

CLw = Aw+Bw

where A, B, and C are invariants of the surface S.

1.3 Application to uniqueness in the Cauchy problem in elliptic
structures

Let ���� � define an elliptic structure. If u ∈ L1
loc��� we shall say that u is an

approximate solution for the structure � if for any smooth section L of � , Lu has
coefficients belonging to L1

loc��� and given any point p ∈� , there is an open
neighborhood U of p and a constant M > 0 such that

Lu ≤Mu a.e. in U .

In [Cor2] the author established a similarity principle for approximate solutions
in the following sense: every approximate solution which belongs to L

p
loc��� with

p >N = dim � can locally be written as u= exp�S	h, where S is Hölder continuous
and h is a solution.

This similarity principle was then used to show that every approximate solution that
vanishes on a maximally real submanifold � vanishes identically in a neighborhood
of � .

2 Mizohata structures

The vector field in R2, where the coordinates are denoted �x� t�, given by

M = �

�t
− it

�

�x
(13)
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2 Mizohata structures 365

is called the (standard) Mizohata vector field (or operator) after the work of S. Mizohata
([M]) who studied the analytic hypoellipticity of a class of related operators of which
M is the simplest example. A globally defined first integral of M is the function
Z�x� t� = x+ it2/2. Notice that t �→ t2 fails to be monotone in any neighborhood of
a point �x0�0�, i.e., condition ��� in not satisfied at any point of the x-axis and,
as discussed in Chapter IV, fails to be locally solvable at those points. Thus, it is
the simplest example of a nonlocally solvable operator and, in fact, its lack of local
solvability at points of the x-axis can be proved by ad hoc elementary arguments, as
shown by L. Nirenberg ([N1]). Off the x-axis, M is elliptic. In his Lectures Notes,
Nirenberg constructed a perturbation of the Mizohata operator

L= �

�t
− it�1+&�x� t��

�

�x
(14)

with &�x� t� real-valued and vanishing to infinite order at t = 0, which is not locally
integrable in any neighborhood of the origin. As a matter of fact, any smooth function u
that satisfies the homogeneous equation Lu= 0 in a connected open set U that contains
the origin must be constant. In spite of the fact that the perturbed vector fields L and
M behave differently with respect to local integrability, they have important geometric
features in common. We have

(1) M and its conjugate M are linearly dependent precisely on the x-axis;
(2) M and 
M�M� are linearly independent whenever M and M are linearly dependent.

These properties are shared by L in a neighborhood of the origin.

Definition 2.1. A vector field L defined on a connected 2-manifold � is called a
Mizohata vector field if for a nonempty subset 0⊂� the following holds:

(1) L and L are linearly dependent precisely on 0;
(2) L and 
L�L� are linearly independent on 0.

We also say that a Mizohata vector field L is of standard type at p ∈ 0 if there exist
local coordinates �x� t� in a neighborhood of p in terms of which 0 is given by �t= 0	
and � has the form (13). A Mizohata structure � on � is a structure which is locally
generated in the neighborhood of every point by a Mizohata vector field.

Notice that (1) means that 0 is the image of the characteristic set ��p� �� ∈ T ∗��� 
��p� ��= 0	, � being the symbol of L, under the canonical projection 1  T ∗���−→�.
With this terminology, the vector field (13) is a Mizohata vector field of standard type
and (14) is also a Mizohata vector field but not of standard type. Indeed, (14) cannot
be of standard type because it is not locally integrable.

Notice that a Mizohata vector field is elliptic on �\0, which is a relatively small
set, since an application of the implicit function theorem shows that 0 is an embedded
curve. The following question was considered by Treves [T7]: when is a Mizohata
vector field L of standard type at a given point? Of course, since this is a local
question, it is enough to study the case when L is defined in a neighborhood of the
origin in R2. He showed that local coordinates can be found so that L becomes of the
form (14) with &�x� t� real-valued and vanishing to infinite order at t = 0, in other
words, every Mizohata vector field has this form locally and it will be of standard type
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if we are able to take &≡ 0. Furthermore, L is of standard type at the origin if and only
if it is locally integrable. Then Sjöstrand ([Sj2]) took a closer look into the nonlocally
integrable case. To describe his results, let us consider the problem of finding a smooth
function Z+�x� t� satisfying dZ�0�0� �= 0 and LZ+ = 0 on U+ = U ∩ �t ≥ 0	, where
U is a small disk centered at the origin. By the proof of Lemma I.13.4, to find Z+ it
is enough to find a smooth function u that satisfies Lu= t&x on U+. This is, in fact,
possible because L satisfies condition ��� for t > 0 ([BH6]). Similarly, shrinking U
if necessary, we can also find a smooth function Z−�x� t� satisfying dZ−�0�0� �= 0
and LZ− = 0 on U− = U ∩ �t ≤ 0	. We can always choose Z+ and Z− satisfying
Z±�0�0� = 0, JZ±x �0�0� = 0, and �Z±x �0�0� > 0 and we will do so. If we are so
lucky that Z+�x�0�= Z−�x�0�, �x�0� ∈ U , we may patch Z+ and Z− to get a single
continuous solution Z of LZ = 0 on U and it is easy to see using the equation that
Z is actually smooth. So the obstruction to the local integrability of L is related to
the difficulty of finding a pair �Z+�Z−� such that LZ± = 0 on U± and Z+ = Z− on
U+ ∩U−. Given such a pair, it can be shown that the range of Z± lies on one side
of the smooth curve �Z±�x�0�	 (in fact, above the curve because �Z±x �0�0� > 0), so
let H±�z� be a smooth function defined on the range of Z± and holomorphic in its
interior with H±�0� = 0, �H±�′�0� = ��H±�′�0� > 0. Then, Z̃± = H± 
Z± satisfies
dZ̃±�0�0� �= 0 and LZ̃± = 0 on U±. By the Riemann mapping theorem we may find
H+ and H− so that the range of Z̃+ and Z̃− is the upper half-plane. In other words, we
may restrict ourselves to consider pairs �Z+�Z−� such that Z±�U±� = �Jz ≥ 0	 and
Z±�U+ ∩U−� = R. Given such a pair and a smooth function H defined on Jz ≥ 0,
holomorphic on Jz > 0, real for z real and satisfying H�0� = 0, H ′�0� > 0, a new
pair �Z+� Z̃−� = �Z+�H 
Z−� may be considered and L will be locally integrable
if Z+�x�0� = Z̃−�x�0�. It turns out that L is locally integrable if and only if there
exists a pair �Z+�Z−� such that H�z�= Z+ 
�Z−�−1�z� is holomorphic for Jz > 0 and
smooth up to Jz= 0. Since H�z� is real for z real, H has, by the reflection principle,
an extension to a holomorphic function. By uniqueness, H�x+ iy� is determined by its
trace bH�x�=H�x+ i0� so it is enough to look at the restrictions bZ±�x�= Z±�x�0�
and check whether 2

�= bZ+ 
 �bZ−�−1  R −→ R has a holomorphic extension to a
neighborhood. Summing up, to each Mizohata vector field L we have associated an
increasing diffeomorphism 2  R−→ R such that L is locally integrable if an only if
2= bH for some H ∈� �C�, i.e., 2 has a holomorphic extension. More generally, we
may consider the following question: given two Mizohata vector fields L1, L2, when are
they equivalent in the sense that one can be locally transformed into a multiple of the
other by a change of variables? The answer, due to Sjöstrand, can be stated as follows.
Consider the associated diffeomorphisms 21= bZ+1 
�bZ−1 �−1 and 22= bZ+2 
�bZ−2 �−1,
then L1 and L2 are equivalent if and only if there are holomorphic functions, H1�z�,
H2�z�, real and increasing for z real, such that 21�H1�x��= 22�H2�x��, x ∈ R.

The local questions of standardness and equivalence for Mizohata vector fields
have their global counterpart. For instance, it was established in [BCH] that a locally
standard Mizohata planar vector field has a first integral globally defined in a tubular
neighborhood of the characteristic set 0. The standardness of a particular class of
Mizohata structures on the sphere S2 was proved in [Ho4] and Jacobowitz ([J2])
studied Mizohata structures on compact surfaces �, in particular, he proved that the
existence of a first integral is equivalent to the fact that the genus is even. In the case
of the sphere, he gave a classification of Mizohata structures in the spirit of Sjöstrand’s
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result, proving in particular the existence of nonstandard Mizohata structures. These
topics were developed further by Meziani in [Me5] and [Me6].

2.1 Mizohata structures in higher-dimensional manifolds

The questions discussed in the previous section admit natural generalization to higher
dimension. A formally integrable structure � defined on a manifold � of dimension
N is said to be a Mizohata structure if the following holds:

(1) � has rank n= N −1;
(2) the characteristic set T 0 = T ′ ∩T ∗��� is not empty;
(3) the Levi form is nondegenerate at every point of T 0\�0	.
Example 2.2. Denote by t = �t1� � � � � tn� the variables in Rn, n ≥ 1, and write t =
�t′� t′′�, t′ = �t1� � � � � t��, t

′′ = �t�+1� � � � � tn�, for some 1≤ � ≤ n. Consider the function
Z�x� t�= x+ i�t′2−t′′2�/2 defined on Rx×Rt and the locally integrable structure
� determined by imposing that T ′ is spanned by dZ�x� t�. Then, � is spanned by the
vector fields

Mj =
�

�tj
− i-jtj

�

�x
� j = 1� � � � � n� (15)

with -j = 1 for 1≤ j ≤ � and -j =−1 for �+1≤ j ≤ n. Then � is a Mizohata structure
such that at every characteristic point its Levi form has � eigenvalues with one sign
and n− � eigenvalues with the opposite sign and when this happens we say that �
has type ���n−�	. Thus, we have examples of Mizohata structures with all possible
types. Notice that the projection of the characteristic set is the curve 0= �t = 0	, i.e.,
the x-axis. A Mizohata structure with type ���n−�	 is standard if for any point lying
in the projection of the characteristic set we can choose local coordinates �x� t� so that
the vector fields (15) span � in a neighborhood of that point. Let � be a Mizohata
structure with type ���n−�	. By analogy with the case n= 1, it turns out that for any
n ∈ N and 1 ≤ � ≤ n ([T5]) it is possible to find local coordinates in a neighborhood
U of a generic point p in the projection of 0 such that x�p� = t�p� = 0 and � is
generated over U by the vector fields

Lj =
�

�tj
− i-jtj�1+&j�x� t��

�

�x
� j = 1� � � � � n� (16)

where the functions &j�x� t�, j = 1� � � � � n, vanish to infinite order at t = 0. In other
words, every Mizohata structure has at a given point a contact of infinite order with
a standard Mizohata structure of the same type. In particular, if we can take all the
functions &j identically zero � will have a first integral in U and will be standard in
U . Conversely, if � has a first integral it is possible to choose the coordinates so that
� is generated by the vector fields (15).

For the case � = 1, i.e., if the type is �1� n− 1	, Treves showed the existence
of functions &j�x� t� vanishing to infinite order at t = 0 such that the structure �
spanned by (16) is formally integrable (i.e., 
� �� �⊂ � ) and not locally integrable. On
the other hand, Meziani proved in [Me7] that Mizohata structures of all other types
���n−�	 �= �1� n−1	 are always locally integrable. His proof is delicate and beyond
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the scope of this book: he first constructs first integrals on the connected components
of ��x� t′� t′′� ∈ Rx×Rt  t′2 �= t′′2	 which can be 2 (if n > 2 and � < n− 2), 3
(if n > 2 and � = n− 2), or 4 (if n = 2 and � = 0). When the components are 2
or 4, these first integrals can be patched together to yield a globally defined first
integral of class C1 which, by the hypoellipticity of the structure, is in fact smooth.
The possibility of patching together these partially defined first integrals depends on a
careful analysis of the holonomy of a certain foliation with leaves of dimension n−1
defined by the structure. For the case of type �1� n− 1	 he gives a classification of
Mizohata structures analogous to Sjöstrand’s result for a single vector field. The local
integrability for Mizohata structures of type �0� n	, n≥ 3, was first proved in [HMa2],
by techniques akin to those used in the proof of Kuranishi’s embedding theorem for
CR structures ([Ku1], [Ku2], [Ak], [W2], [W3]), which also fall beyond the scope
of this book. The restriction n≥ 3 comes from a technical fact: Kuranishi’s approach
depends on the existence of certain so-called homotopy formulas that do not exist
when n= 2 ([HMa3]). However, the local integrability of Mizohata structures of type
�0� n	 in Rn+1, n≥ 2, can be proved by elementary methods. Consider a system of n
commuting vector fields

Lj =
�

�tj
− itj�1+&j�x� t��

�

�x
� j = 1� � � � � n� (17)

Here a generic point is described by coordinates �x� t1� � � � � tn� and the smooth func-
tions &j�x� t� vanish to infinite order at + = �t = 0	 = Rx× �0	. We regard the Lj’s
as perturbations of the Mizohata vector fields

Mj =
�

�tj
− itj

�

�x
� j = 1� � � � � n�

A simple computation using polar coordinates, t = r�, r > 0, � ∈ Sn−1 shows that the
standard Mizohata structure spanned by the Mj’s is also spanned on Rn+1\+ by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M = �

�r
− ir

�

�x

�k =
�

��k

k=1,…,n −1�

with ��1� � � � � �n−1� angular variables in Sn−1. Then, the change of variables s = r2/2
(x and � are kept unchanged) takes M into a multiple of the Cauchy–Riemann operator

�z̄ =
1
2

(
�

�x
+ i

�

�s

)
� z= x+ is� s > 0�

and does not change �k. If we perform the same operations on the perturbed system (17)
we may find a set of generators of � in the variables �x� s� �� ∈ Rx×R+s ×�n−1 of the
form
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
L̃1 =

�

�z̄
+�1

�

�z

L̃k =
�

��k−1
+�k

�

�z
k=2,…,n�

(18)

with smooth coefficients �j�x� s� ��, j = 1� � � � � n, that converge to zero when s↘ 0
together with their derivatives of any order. Thus, we may smoothly extend the
coefficients �j as zero for Jz = s ≤ 0 and obtain an elliptic system defined on C×
Sn−1 � Rx×Rs×Sn−1 which for Jz < 0 has the first integral z= x+ is. The process
that produced an elliptic system starting from a nonelliptic one was obtained by a
combination of singular changes of variables (polar coordinates that are singular at
the origin of Rn

t and s = r2/2 which is singular at r = 0) and blows up the line
Rx× �t = 0	 to the n-manifold Rx×Sn−1. Although we know from Theorem I.12.1
that elliptic structures are locally integrable, applying that result to (18) would only
give us a first integral defined in a neighborhood of a point s= 0, x= 0, �= �0 ∈ Sn−1

while only a first integral defined for all � ∈ Sn−1 can give us a first integral defined
in a neighborhood of the origin of the original variables �x� t�. Let’s consider first the
case n= 2, that is the system of two vector fields⎧⎪⎪⎪⎨⎪⎪⎪⎩

L̃1 =
�

�z̄
+�1

�

�z
� z= x+ is ∈ C�

L̃2 =
�

��
+�2

�

�z
� 0 ≤ � ≤ 2)�

(∗)

defined in C× S1, where the �j�x� s� ��, j = 1�2, are C� functions, 2)-periodic in
�, and vanish for s = Jz ≤ 0. Choose a smooth function � = ��x� s� �� such that
X = L̃2+�L̃1 is a real vector. It is easy to check that this is possible if ��1< 1 (in
particular for �x� s� close to the origin). Thus, X is a real generator of the structure �̃2

spanned by L̃1 and L̃2 for x < 1, s < - and 0 ≤ � ≤ 2). It is clear that X = �/��
for s ≤ 0, and that the orbits of X stemming from points �x0� s0�0�, s0 ≤ 0, are the
closed circles �→ �x0� s0� ��, 0≤ � ≤ 2). Notice also that the component of X along
�/�� is 1, i.e.,

X = �

��
+&1

�

�x
+&2

�

�s

for some smooth functions &1 and &2 which are 2)-periodic in � and vanish for s ≤ 0.
Since the commutator 
X� L̃1� ∈ �̃2 it must be a linear combination of L̃1 and L̃2;
on the other hand, it does not contain derivations with respect to � so it has to be
proportional to L̃1. This shows that there exists a smooth function �= ��x� s� �� such
that


X� L̃1�= �L̃1� (19)

Now pick once and for all a local solution W�x� s� of

L̃10W
�= �W

�z̄
+�1�x� s�0�

�W

�z
= 0� (20)

Wx�0�0� �= 0�
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We may assume that in a neighborhood of the origin any other solution W �x� s� of
L̃10W

 = 0 is a holomorphic function of W , in fact, W is a local diffeomorphism that
takes L̃10 into a multiple of the Cauchy–Riemann operator. Let � denote the closed
orbit of X stemming from �0�0�0�, given by �→ �0�0� ��, 0≤ � ≤ 2). We now solve
the Cauchy problem

XV = 0� (21)

V�x� s�0�=W�x� s�

in a tubular neighborhood of � made up of orbits of X. Let us set U = L̃1V and
observe that it follows from (19), (20) and (21) that U satisfies the Cauchy problem

XU −�U = 0�

U�x� s�0�= 0

so it must vanish identically in a tubular neighborhood of �. This proves that dV is
orthogonal to �̃2 because L̃1 and X form a basis of �̃2. Differentiating (21) with respect
to x and setting s = x = 0 it is easy to conclude that Vx��0�0� ��= 0, 0 ≤ � ≤ 2), so
Vx�0�0� �� =Wx�0�0� is constant, in particular it does not vanish in a neighborhood
of �. This already implies that dV is a generator of the orthogonal of �̃2, but we
do not know yet that V is 2)-periodic in �. Since the coefficients of L̃1 are 2)-
periodic we have that V�x� s�2)� satisfies L̃10V�x� s�2)� = 0 and therefore, there
exists a holomorphic function G such that V�x� s�2)� = G 
V�x� s�0� = G 
W�x� s�
hold for �x� s� in a neighborhood of the origin. But X = �/�� for s ≤ 0, which
implies that V�x� s�0� = V�x� s�2)� for s ≥ 0, and it turns out that G�z� = z. Thus,
V�x� s�0� = V�x� s�2)� in a neighborhood of x = s = 0. This proves that V is well-
defined in C×S1 and is a first integral globally defined in � ∈ S1 of the system (∗).
Furthermore, using �′ = �, x′ =�V and s′ = JV as local coordinates in a neighborhood
of the origin we see that �x′ + i�s′ and ��′ generate the same structure as L̃1, L̃2.

In the case of the system (18) with n > 2 the arguments above can be applied to
the first two equations keeping the variables �2� � � � � �n−1 as parameters. Thus, after
a change of variables �x� s� �→ �x′� s′�, we may now assume that �1 ≡ 0 in (18). But
then we have �k ≡ 0 for all values of k. Indeed, since L̃1 commutes with L̃k, it
follows that �k, k ≥ 2, depends holomorphically on z and then has to be identically
zero because it vanishes for Jz ≤ 0. Thus, all the �k are identically zero in the new
variables and z = x+ is is a first integral of the system. Returning to the original
variables �x� s� �� this shows the existence of a solution V�x� s� �� of system (18) for
x and s small and � ∈ Sn−1 that satisfies Vx�0�0�0�= Vx�0�0� �� �= 0. Finally, the
function �x� t� �→ V�x� t2�/2� ��t�� is smooth in a neighborhood of the origin and its
differential spans � .

3 Hypoanalytic structures

Let � be a smooth manifold of dimension N . By a hypoanalytic structure on � (cf.
[T5]) we mean a collection of pairs 	= ��U��Z��	, with U� an open subset of � and
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Z� = �Z��1� � � � �Z��m�  U� → Cm a smooth map, where 1 ≤m ≤ N is independent of
�, such that the following conditions are satisfied:

(H)1 �U�	 is an open covering of �;
(H)2 dZ��1� � � � �dZ��m are C-linearly independent at each point of U�;
(H)3 if � �= �′ and if p ∈ U� ∩U�′ there exists a biholomorphism F�

�′�p of an open
neighborhood of Z��p� in Cm onto one of Z�′ �p� such that Z�′ = F�

�′�p 
Z� in a
neighborhood of p in U�∩U�′ .

A complex-valued function f defined on an open subset U of � is called hypoanalytic
if in a neighborhood of any point p of U we can write f = h� 
Z�, where � is
such that p ∈ U� and h� is a holomorphic function in a neighborhood of Z��p� in
Cm. By a hypoanalytic chart we shall mean a pair �U�Z� where U ⊂ X is open,
Z= �Z1� � � � �Zm�  U →Cm has hypoanalytic components and dZ1∧ � � �∧dZm �= 0 in
U .

If 	= ��U��Z��	 is a hypoanalytic structure on � and if �• ⊂� is open then we
can induce a hypoanalytic structure 	�• by the rule

	�• = ��U�∩�•�Z�U�∩�•�	�

To each hypoanalytic structure 	 = ��U��Z��	 on � we can canonically associate a
locally integrable structure � on � in the following way: for each � its orthogonal on
U� is defined by

T ′U�
= span �dZ��1� � � � �dZ��m	�

By properties (H)1, (H)2, and (H)3 it follows that T ′ is indeed a subbundle of CT ∗�
of rank m.

Notice however that two different hypoanalytic structures can define the same
locally integrable structure. Indeed, to give an example it suffices to take �= R and
consider the hypoanalytic structure ��R� Id�	, where Id�x� = x, and the hypoanalytic
structure ��R� f�	, where f  R→R is smooth but not real-analytic and f ′ �= 0 at each
point.

By a hypoanalytic manifold we shall mean a pair ���	�, where � is a smooth
manifold and 	 is a hypoanalytic structure on �. Notice that if ���	� is a hypo-
analytic manifold, endowed with the hypoanalytic structure 	 = ��U��Z��	, if �′ is
another smooth manifold and if f  �′ →� is a smooth submersion, then we can pull
back the hypoanalytic structure 	 to a hypoanalytic structure f ∗	 on �′ by defining

f ∗	= ��f−1�U���Z� 
f�	�
Finally we shall say that two hypoanalytic manifolds ��′	′� and ���	� are equivalent
if there is a smooth diffeomorphism f  �′ →� such that f ∗	=	′.

4 The local model for a hypoanalytic manifold

Let N ≥ 1 and write N = m+n. The variable in CN = Cm×Cn will be denoted by
�z� z′� with z= �z1� � � � � zm�, z

′ = �z′1� � � � � z
′
n�. In this space we consider the hypoana-
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lytic structure defined by 	• = ��CN � �z1� � � � � zm��	. The corresponding hypoanalytic
functions are just the holomorphic functions of z that are locally independent of z′.

Let � and ��U��Z��	 be as in Section 3. An arbitrary point p of � has an open
neighborhood Up in which there are defined hypoanalytic functions Z1� � � � �Zm and a
complementary number of C� functions Z′1� � � � �Z

′
n, with m+n= N , such that

dZ1∧· · ·∧dZm∧dZ′1∧· · ·∧dZ′n �= 0 atp�

Possibly after contracting Up about p we may assume that

�  �Z�Z′� �= �Z1� � � � �Zm�Z
′
1� � � � �Z

′
n�

is a smooth diffeomorphism of Up onto a smooth, maximally real submanifold 0p of
Cm×Cn. We refer to the triplet �Up�Z�Z′� as an extended hypoanalytic chart.

The hypoanalytic 	• induces a hypoanalytic structure 	# on 0p, simply by setting

	# = ��0p� �z10p
� � � � � zm0p

��	�

and it is easily seen that

	Up
= �∗	#� (22)

This remark is crucial for what follows.

5 The sheaf of hyperfunction solutions on a
hypoanalytic manifold

The sheaf of hyperfunctions can be introduced on any real-analytic manifold. This
is a fundamental result, due to M. Sato ([Sa]). It is also possible to extend such a
concept to hypoanalytic manifolds where no real-analyticity is required, but in order
to obtain an invariant meaning, we must restrict ourselves to the hyperfunctions that
are solutions in some sense. We give now a brief description of this theory.

It is a consequence of a result due to Harvey ([Ha]) that over any maximally
real submanifold � of CN it is also possible to define the sheaf of hyperfunctions
�� . Moreover, the following description is valid: given q ∈� there is an open
neighborhood V of q in � such that the following is true: if W ⊂⊂ V is open then

���W�= �′�W�/�′��W�� (23)

Here the boundary of W is taken in � and for a compact subset K of CN we are
denoting by �′�K� the space of analytic functionals of CN carried by K.

We return to the discussion of Section 4. We fix p ∈� and 0p as described. Since
the holomorphic derivatives act on �′�K� by transposition we can consider the space
of hyperfunctions u on 0p which satisfy the system

�u

�z′j
= 0� j = 1� � � � � n� (24)

The main result presented in the monograph [CorT2] states that the sheaf of these
hyperfunctions on 0p, when pulled back to Up, gives rise to a well-defined sheaf Sol�
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on �, which is furthermore a hypoanalytic invariant. The proof of this fundamental
result relies on (22). We call Sol� the sheaf of germs of hyperfunction solutions on
�. This sheaf contains, as a subsheaf, the sheaf of germs of distribution solutions
with respect to the associated locally integrable structure � . Moreover, if � and the
maps Z� are real-analytic then Sol� equals the sheaf of hyperfunctions on � that are
annihilated by the (real-analytic) sections of � .

Many of the basic results that were proved in this book remain valid within this
more general concept of solution, as for instance the propagation of the support of
solutions by the orbits of the underlying structure and the uniqueness in the Cauchy
problem ([CorT2]). Another important feature is that a certain class of infinite-order
operators, which are local in the sense of Sato, act as endomorphisms of Sol� ([Cor1]).
It can then be proved that every hyperfunction solution can be obtained, locally, as
the action of one such operator on a smooth solution and then, as a consequence, a
version of the approximation formula for hyperfunction solutions can be derived (cf.
[Cor1]).
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