
J. Austral. Math. Soc. (Series A) 29 (1980), 322-330

RIGHT INVERSE SEMIGROUPS

S. MADHAVAN

(Received 22 November 1977; revised 26 April 1979)

Communicated by T. E. Hall

Abstract

In a recent paper of the author the well-known Vagner-Preston Theorem on inverse semigroups was
generalized to include a wider class of semigroups, namely right normal right inverse semigroups. In an
attempt to generalize the theorem to include all right inverse semigroups, the notion of fi—Hi
transformations is introduced in the present paper. It is possible to construct a right inverse band B^X)
offi-Hi transformations. From this a set A^X) for which left and right units are in B^X)and satisfying
certain conditions is constructed. The semigroup A^X) so constructed is a right inverse semigroup.
Conversely every right inverse semigroup can be isomorphically embedded in a right inverse semigroup
constructed in this way.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 20.

1. Introduction

A regular semigroup S is called right inverse if for any idempotents e,foiS, efe = fe.
Such semigroups have been studied by Ewing (1971), Venkatesan (1972), Bailes
(1972) and Warne (1980). Right normal right inverse semigroups form a special class
of right inverse semigroups and a faithful representation for these has been given by
the author (1976). This generalizes the well-known Vagner-Preston Theorem
((1961), Theorem 1.20). An attempt is made in this paper to generalize these earlier
theorems of the author to right inverse semigroups. For this, the notion of//—/*,-
transformations is introduced. We can construct a right inverse band B^X) of \i—/x,
transformations; B^X) is obviously a subsemigroup of the symmetric weakly
inverse semigroup T(X) of all partial transformations of X (see Srinivasan (1968)).
We define

= {a.: a, e T(X) and there exists an inverse a! of a in T(X) such that a'a,
aa' eB^X) and for any eeB^X), <x£a',
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[2] Right inverse semigroups 323

Then the semigroup AjJ^X) is a right inverse semigroup and it is called the
symmetric right inverse semigroup on {X, M).

2. Basic concepts

In general we follow the notation and terminology in Clifford and Preston (1961).
For any aeS,a regular semigroup, V(a) denotes the set of inverses of the element a. A
binary relation a> is called a quasi-ordering if it is reflexive and transitive. For any
binary relation p, we denote by U(p) and U'{p) its domain and range respectively.

In what follows S is a right inverse semigroup.

LEMMA 2.1. For any a,beS, the following conditions are equivalent:
(i) There exists an idempotent e in S such that a = be.

(ii) a = ba'afor any a' eV(a).

PROOF. Assume (i). It is clear that there exists an inverse a* of a such that a* = eb',
b' being an inverse of b. For any a' e V(a), a*a = a* aa'aa* a = a'aa* a = a'a.
Therefore, ba'a = ba* a = be{b'b) e = bb'be = be = a. Thus we get (ii). Assume (ii).
Then (i) is obvious.

We define acob on S if (i) or (ii) and hence both the conditions in Lemma 2.1 are
satisfied.

LEMMA 2.2. (Madhavan (1976)). The binary relation a> defines a compatible partial
order on S.

It has been proved by Yamada (1967) that the binary relation <W on a generalized
inverse semigroup S, defined as (a, b) e <W if a and b have the same set of inverses, is the
smallest inverse semigroup congruence on S. It has been subsequently shown by
Hall (1969) that <& is the smallest inverse semigroup congruence on any orthodox
semigroup.

LEMMA 2.3. (Madhavan (1976)). The following conditions are equivalent for any two
elements a, b in a right inverse semigroup S:

(i) (a,b)e&
(ii) aoib, boa.

3. The symmetric right inverse semigroup

Let X be a set and M = {/*,: i e 1} be a commutative semigroup of equivalence
relations whose domains are subsets of X. Assume that there is a maximum element
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324 S. Madhavan [3]

H in M. Define a ft—ftt transformation of X as any map a from the subset YofX onto
a subset Ya of X satisfying the following conditions :

Ml. For any x,ye Y, (x,y)efiioxa = ya.
M2. For any x, y e Y, (xa, ya.) e ft =>(x, y) e fi.
M3. If x e yand (x,y)en, then ye Yand (xa,ya)eft.

We note that the null map D vacuously satisfies these conditions and hence is a
fi—^ transformation.

To every ft —fit transformation a we can associate a fit in M and we denote
Hi | U(a) = a ° a ~1 by //(a). A /*—/*; transformation a is called admissible if a2 = a and
for any ft —fij transformation /9,/z(aj?) = fi{a) fi(P).

We denote the set of all admissible ft—fit (iel) transformations by B^X). We
note that the null map

LEMMA 3.1. A fi — fii transformation a is an idempotent if and only i/a£/i,-.

PROOF. This is true for the empty relation. Let a ( # O ) b e a ^ — f i t transformation.
If a2 = a, then (xa)a = xa whenever xa is defined, and this implies (x,xa)efit,
whence a £/i,. Conversely if a £/i ; then for every x for which xa is defined, we have
(x,xa)e^;, Hi^fi whence xet / (a) by M3 and xa = (xa)a by Ml. Thus a2 = a as
required. The lemma now follows.

LEMMA 3.2. Let a be an admissible fi — fii transformation and fi a fi—fij
transformation. Then |i(a/?) = fit fij | U(a.P) and a/? is a fi — fi^ transformation, where

PROOF. By hypothesis, f{af}) = fi{a)fi{fi) and clearly, /i(a)/4/0—/^/'jl U{OL[3). Let
(x, y) e fa fij | U(af3). Then there exists u such that (x, M) e fit, (M, y) e ftj. Since x e U(a.f$)
we get x e U{a) and xixeU(P). Clearly xa = «a. But (u,ua)e/ii (Lemma 3.1). Since
x(a/?) is defined and xa = u<x, we get that uocfi is defined and hence uf3 is defined.
Consequently uf3 = yfi. Thus (x, u) e /x, | U(a) and (M, y) e fij | U(P). It now follows that
fi(<xP) = fi{a) fi(P) = fit fij | U(aP). Since ju,- ̂ - e M, denoting it by /^ we find that we can
associate faeM with <xp. Clearly (x, y)efik =>xaP = yap for any x,ye U(aP). Also let
xaP = yap. Then (xa, ya) e fij. Since a2 = a and xa is defined, (x,xa)e/if by Lemma
3.1. Thus (x,xa)e^,-, (xa,ya)efij=>(x,ya)efiifij. Similarly (y,ya)e^,. Also
(x,ya)€fiifij, (y, ya) e ^=>(*> y) e //f ^- ^ = ,̂- A*/ = rtk- Thus a.0 satisfies Ml. Again
(xap,yaP)efi=>C(xa,ya)efi^-(x,y)efi. Thus M2 is satisfied. Let xeU(a.p), xa.p be
defined and (u,x)efi. Then xa is defined and therefore (xa,wa)e/i. This implies
(xaP,uaP)efi. Thus a/? satisfies M3. Hence aP is a ft—f^ transformation.

LEMMA 3.3. Let a^eBJ^X). Then U(ap) = U(a)nU(fi).
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PROOF. There exist nh fij e M such that a £ nt and /? £ fij. Then, let x e t/(a)9). This
implies that x e l/(a) and xa e l/(/?). Clearly (x, xa) e jz. Also (x, xa) e \i, xa e L/(/?) imply
that x e U(fi). We now get x e C7(a) n 1/(0). Thus we have shown that
l/(a/?)£l/(a)nl/(j?). To prove the reverse inclusion, let x e l/(a) n 1/(0). Then
x e C/(a), (x, xa) e /i; £ /i and xa e (/(/?). These imply that x e l/(a) and xa 6 £/(/?) which
in turn imply that x e U(<xP). Thus we get l/(a) n (/(/?) £ [/(a)5). The lemma now
follows.

LEMMA 3.4. If a, p e B^X), then |i(a)tf/J) = M#/*(«)•

PROOF. There exist /*,-, /x; e M such that a £ /*,- and /? £ /*,-. Let (x, y) e ^(a) /i(jS). This
implies that there exists u e X such that (x, u) e /i,, x e t/(a), (M, >>) 6 /Xj and u e [/(/?) for
some u e X. Thus we get (x, y) e nt fij. Also u e U(p), (x, u) e /if £ /i imply that x e l/(/?).
Again xeC/(a), xeU(J}) imply that x e t / ( a ) n t/()S). Thus we get (x,y)efiifij and
xeU(a)nU{0) = I7(aj8) = l/(^a). Since ^^ = / i ^ ; it follows that (x,^)e/xOS)/i(a))

whence we get /*(a)/i(^)£/4^)/x(a)- The reverse inclusion can be similarly proved.
The lemma now follows.

THEOREM 3.1. B^X) is a right inverse band.

PROOF. Let a^eB^X). It is clear from Lemma 3.1 that a)? satisfies Ml, M2 and
M3. We shall show that a/?a = /fa. For this, let x e l/(a/fa). Then there exists v e U(fl)
such that (xa, v)ef4P) and xa/? = vfi. Therefore xa/fa = u/fa. We note that for any
£, n e BJ(X\ n(£n) = pir\£,) in view of Lemma 3.4 and therefore
x£*l = y&oxn£, = yn£. Thus (xa)/fa = i;/fa=>(xa)a/J = v<xf} =>xfi<x = vfia. = xa/?a.
Therefore a^a £/fa. Now let x e l/(a/J). We note that xa/? is defined if and only if x/fa
is defined. When x e l/(a/?), there exists o e X such that (xa, t>)e fi(P). Then xa/? = t>/?.
Now,

xa/? = u/?=>xa/fa = u/fa =>(xa) a/? = vaf}=>(xct)P = va.fi =>xfia. = u/fa = xa/fa.

Therefore /fa £ a/fa. Combining this with the earlier result we get a/fa = /fa.
It remains to show that a/? is admissible. Clearly ap is idempotent. Let y be a fi — /x;

transformation. Then by Lemma 3.1, /fy satsfies Ml, M2 and M3 and hence is a
fi—fij transformation for somejel. Then

The theorem now follows.
Let T(X) denote the (symmetric weakly inverse) semigroup of all partial

transformations of X. (See Srinivasan (1968).)
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THEOREM 3.2. Let

Au(X) — {a e T{X): there exists an inverse a! of a in T{X) such that a'a, aa' e BJiX)
and for any eeB^X), a!ecu, CLEO! e B^X)}.

Then A^X) is a right inverse semigroup.

PROOF. We shall first show that A^X) is a semigroup. Let a, /? e B^X). Then there
exist inverses a' of u,P' of )5 such that a.'a,<x<x',P'P,PP'eBM(X) and satisfying the
conditions mentioned above. We note that

PFP = <m'<xP
since a'a, /?/?' e B^X). Also, similarly

PVOLPP'OC' = p'tx'xpP'x'oux' = p'pp'ot'oux' = p'a.'.

Therefore there exists an inverse P'a! e T(X) and aPP'oc', P'OL'OLP e B^X) by the
definition of A^X). Also for any eeB^X), ocPeP'ot'J'tx'eaPeB^X). Thus
txPsA/J^X). It follows that AJiX) is a semigroup. We shall show that AJ(X) is
right inverse. For this, let a — a2 e A^X). Then there exists an inverse a' of a in T(X)
such that aa', a'a e B^X). Since B^iX) is a semigroup we
get a' = a'aa' = (a'a)(aa')eBM(Ar). Thus a' is an idempotent and
a = aa'a = (aa') (a'a) e B^X). Therefore if a = ^eA^X), then xeBJ^X). Thus
B^X) is the subsemigroup of idempotents of AJ^X). It remains to show that A^X)
is regular. For this, let aeA^X). By definition, there exists tx'eT(X) such that
aa'a = a, a'aa' = a' and aa', a'a e BMW- Also for any s e B^X), a'ea, aaa' e Bĵ A").
Consequently x'eA^X), whence we get A^X) is regular. This together with the
earlier assertion, shows that A^X) is a right inverse semigroup.

4. The embedding theorem

Before proving the final embedding theorem we need the following lemma proved
by Madhavan (1976).

LEMMA 4.1. / / S is an orthodox semigroup, aeS and a',a*eV(a), then
(5a') <& = (Sa*) <&, <& being the Yamada-Hall congruence on S.

Let 5 be a right inverse semigroup. For all e = e2 eS, define

We = {(x,y)e(Se)Wx (Se)<& : xe = ye}.

Clearly ®Je <^<&. We have then :

LEMMA 4.2. Let e = e 2 , / = / 2 e S . Then %<Wf = <Wf<We = <&eS.
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PROOF. Let (x, y) e <®e <&f. There exists u e S such that (x, u) e c&e and (u, y) e <&f. Now
xe = tie =>xef = uef = ufef. Also ufef = yfef= yef. Thus it follows that
xef = yef. Clearly x e (Se) <& and y e (S/) <&. There exists /c e S such that (x, fce) e <& and
this implies (xe,ke)e<W. But (xe,ke)e'W, (x,ke)e<W*>(x,xe)e<&. Since xe = we it
follows that (x,ue)e'W. Also (x,ue)e<&, (x,u)e<2'e^*(u,ue)e<&;
(u,ue)e<&^(uf,uef)s9; (u,uf)e&, (uf,uef)e<8/^(u,uef)e<&=>(ue,uef)e<& since
(u,ue)e<8/. Again (x,ue)e<&, (ue,uef)e<$t^{x,uef)e<&. Thus xe(Sef)<&. Also
(y,yf)e<&. But 3 /= w/and thus we get (y,uf)e<&. Also

(«,«/) e <̂ => («e, u/e) e ̂ => («, «fe) £ <9=>{uf, ufef) e 9 => («/, we/) e ̂ => (y,«

and (uf,uef)e<&=>(y,uef)e<W. Thus ye{Sef)<W. It now follows that
whence we get tWe'Wf^'Wef. To prove the reverse inclusion, let (x,y)e<&ef. There
exists ueS such that (x,ue/)e<^. Then (xef,uef)e^ and this implies
(x,xef)e%/. Therefore by Lemma 2.3, xcoxefwxe. Again
(x,xej)e<&=>(xe,xefe)€<y^'(xe,xfe)e(3/. Therefore xecoxfecox. Then' (x,xe)e<&,
whence we get xe(Se)<&. Also xee(Se)l3/ and xefe(Sef)<&. As proved earb'er
(x ,xc / )e^ and this together with (x ,xe)6^ implies (xe,xef)e<W. Now
(xe, xef)e&^xee (Sef) <^£ (Sf) <&. Clearly, xe/e (Se/) # £ (S/) ̂ . It now follows that
(x ,xe)e^e and (xe,xef)e<&f. We get <Wef^

cS/e'&f. Combining with the previous
resul t , we get <3fe<9ff = <Sfef.

To prove that <We<Wf = 9f<&'e, we first note that for any x,yeS,

xef= yef^xefe = yefe^-xfe = yfe-^-xfef= yfef=>xef= yef.

Also let xe(Sef)<&. Then there exists ueS such that (x,uef)e<&. Now
(x,uef)e(&^>x(oxefoixfewx. Thus (x,x/e)e^. This implies that xe(Sfe)<&. Thus
we get (Se/)^£ (Sfe) <&. The reverse inclusion can be similarly proved whence we get
(Sef)®/ = (Sfe)9. Thus we have shown that ~<$/ef = <Wfe, whence the lemma follows.

THEOREM 4.1. Let S be a right inverse semigroup. Then for every aeS define
pa : (Sa') 9 ->Saby xpx = xa. Then a -* pa(a e S) is a monomorphismfrom S into T(S).

PROOF. Let aeS and a' e V(a). We shall show that a -> pa defines a monomorph-
ism. For this it is enough to show that U(pa pb) = U(pa^. Let x e U(pa pb). For any
deV(a), (x,xaa')e& and there exists ue(Sbb')<& for any b'eV(b), such that
(xa,u)e<&. Obviously, (u,ubb')e<& and therefore, (xa,ubb')e<W. Now
(xa,ubb')e<&^>(xaa',ubb'a')B<Sf and (x,ubb'a')e'W=>x€U(pJ. Let xeU(pJ. Then
for any b'eV(b), and any deV(a), (x,xabb'a')e<&. Clearly, xabb'a'eSa' and
therefore xe(Sa')<W. Now

(x, xabb'a') e <&=> (xa, xabb'a'a) e(3/=>xaco xabb' a' a co xabb' co xa.
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Thus (xa, xabb') e <&, whence we get xa e (Sb') <&. Therefore, xe(San (Sb') <&) pa~ \ It
now follows that papb = p^. To show that for any a,beS, pa = pb^>a = b, let
pa = pb. Then Sa — Sb and therefore a'a = b'b for any a' e V(a) and any b' = V(b),
b'e(Sb')<& = (Sa')<&. Thus a'b = a'a = b'b = b'a. We get a(b'a)b' = ab'bb' = ab'.
Thus ab' is idempotent. Then

ab' = ab'bb'bb' = ab'bb1 ab' = bb'bb' = bb'

and

a = ad a = ab'a = bb'a = bb'b = b.

We can define M = { f } u { « ' e : e = e26S}. Clearly M is a commutative
semigroup of equivalence relations whose domains are subsets of S; <& is the
maximum element. We can define a(3/ — ̂ e transformation satisfying Ml, M2 and
M3. To every such <& — <&e transformation we can associate an equivalence relation
M

We denote the set {xpe :xeU(pe)} by Spe

LEMMA 4.3. Let e = e2eS, f=f2eS and a. be any <W — <&{ transformation and
a^Pf. Then <xpecc = pe<x.

PROOF. Let x<xpe a. be defined. Then x<xpe a = xpf pe ps = xpe p f. Since (x, xpe) e %(
and xa is defined, xea. is defined and therefore xpepf = xpea.. Thus xapea = xpea.
This implies ape a £ pe a. Conversely, let xpe a be defined. Then

Since (x,xpe)epe<^<8/ and (xpe)a is defined we have that xa is defined. Also
(x, xp f pe) e <W and this implies, since xa is defined, that (xp f pe) a. is defined. Thus
xpea. = xpfpepj = (xa)pea. Therefore pea £ a.pea and combining this with the
earlier result, we get a.pe a = pe<x. The lemma now follows. If e = e2 e S, a 2 pe and
a is a <>y-<ye transformation, then a £ pe £ <^(pe). Thus a2 = a, by Lemma 3.1.

LEMMA 4.4. Ler e = e2,f=f2eS and ft a <&-<&; transformation such that fizpf.
Then (x,y)e®(pj) if and only if{x,y)e&(p.pf) and (y,y)s<&(P).

PROOF. Let (x,y)e<&(peP). Then clearly (x,y)e<&(pepf). Also (x,xpep
r)eeSf. Now

(x, xpj) eW^xe (Spe p) ®<=(Sp) <&.
Thus (y,y)e<W(P). To prove the converse, we note that (x,y)e<&{pepf),

(y,y)e<&(P)^>x, yeUi<S/(pepf)'], xpepf = ypepf, ypf = yp. These imply that
x,ye U[&(pepf)], xpfpe = ypfpe, ypf = yp. These again imply

XpePf = XPfPePf =
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and

We note that yP is defined and (y, yPe) e <W. Therefore yfipe B is denned. Hence

But

We Pf = yPe PfMxPe, yPe) £

Since ype B is defined, it now follows that xpe B = xpe pf = ype B. Thus we get
x,yeU['&(pepj)~] and xpeB = ypep. Since xpeB is defined it follows that
x e U\_®l{pe J?)] and similarly for y. Thus we get x,yeU [<3f(pe B)~\ and xpe B = ype p. It
is now immediate that (x, y) e <^(pe /?).

LEMMA 4.5. Let e = e2eS and let a be a <%) — Of e transformation such that aSp e .
Then (x,y)e<2/(a.) if and only if(x,y)e&(pe) and (y,y)e<W(<x).

PROOF. NOW, (x,y)e^(a)=>(x,y)e^(pe), (y,y)e<3f{*)=>x,yeUl<Sr(peJ],
xpe = ype = ya=>x, ye U\W(p$\, xa = yet. since (x,y)e^(pe)£<3t and hence xa is
defined whence xpe = xa. But x e l/[^(pe)] and xa is defined implies xe [ / [ f ( a ) ]
and similarly for y. This proves the lemma.

LEMMA 4.6. Let e = e2,f=f2eS and let p be a<& — <&'f transformation such that

P^Pf. Then <W (pj) = <&(pe)<3/(PY

PROOF. NOW,

(X, y) 6 <W(Pe /*)<>(*, y)^(Pe PfX

(y,y)enP)o(x,u)enpe) and (u,y)e&(pf)

for some MeS, (y, y)e<^(/J)o(x, u)e ^(pe), (M, y)e<3f(B)o(x, y)e<^(pe /?). The lemma
now follows.

Now let e = e 2 eS so that pe is a ^ - ^ e transformation. Let P be a <Sf — <Sff

transformation. Then there exists /?', an inverse of /J such that pp'^pf. Clearly,
<&($$) = <Sf(P). It is easy to verify that PP' is a <&-<&; transformation.

LEMMA 4.7. Let e = e2 eS. Then pe is an admissible <W — <&e transformation.

PROOF. Clearly pi = pe. Let p be a <& — Wj- transformation. Then by Lemma 4.5,
and the above observation we get <^(pe P) — <&{pe) ̂ (P\ The lemma now follows.
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THEOREM 4.2. Let S be a right inverse semigroup and

Then S can be isomorphically embedded in the symmetric right inverse semigroup
T(S,M)on(S,M).

PROOF. We have seen that {pe: e = e2 e S} forms a right inverse band E of
admissible & — <We transformations on S. Define

A = {OL: ate T(S), eta', a! a. e E for some inverse a' of a, and for every seE, asa', a'eae£}.

Then clearly S is embedded isomorphically in A = T(S, M) by virtue of Theorem 4.1.

ADDED IN PROOF : In conclusion the author expresses his sincere thanks to Dr T.
E. Hall for many valuable suggestions that have led to considerable improvement of
this paper.
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