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1. I n t r o d u c t i o n . If ra, n are integers, um = n" will mean "m = n (mod 
2 ) . " T h e cardinal number of a set A will be denoted by \A\. T h e set whose 
elements are aiy a2, . . . , an will be denoted by {#i, a2, . . . , an). The empty set 
will be denoted by 0. H A, B, C are sets, A — B will denote the set of those 
elements of A which do not belong to B, and A — B — C will denote (A — B) 
— C. The expression Z ) ^ A / ( ? ) will be denoted by f. A. The s t a tements 
7 = g o n 4 , " " / = g on 4 " will mean t ha t / ({) = £(£) or / ( f ) = g(£) res
pectively for every £ G ^4. 

An unoriented graph U consists, for the purposes of this paper, of two dis
joint finite sets V(U), E(U), together with a relationship whereby with each 
X G E(U) is associated an unordered pair of (not necessarily distinct) elements 
of V(U) which X is said to join. An oriented graph is a triple N = (£/, /, A)r 

where U is an unoriented graph and t, h are mappings of E(U) into F(£7) such 
t h a t each X € E(U) joins X* to \h. We write V(U) = V(N), E(U) = E(N) 
and call \t, \h the tail and /^ead of X respectively. Ei ther an unoriented or an 
oriented graph may be referred to as a graph. Throughout this paper, U will 
denote an unoriented graph, N will denote an oriented graph, and G may 
denote either. The elements of V(G) and E{G) are called vertices and edges of 
G respectively. A subgraph of U is an unoriented graph H such t ha t V{H) C 
F(Z7), i t (if) (Z E(U) and each edge of i J joins the same vertices in H as in 
[/. A subgraph of iV = ( [ / , /, h) is an oriented graph (f/i, /1, Ai) such tha t Z7i 
is a subgraph of U and /i, Ai are the restrictions of /, h respectively to E(Ui). 
An orientation of U is an oriented graph of the form (U, t, h). A vertex £ and 
edge X of G are incident if £ is one or both of the vertices joined by X. T h e 
order, ord G, of G is | 7(G) U £ ( G ) | . G is «m/tfy if 7(G) = E{G) = 0 . T h e 
degree d(£) of a vertex £ of a graph is 2a(£) + £(£), where a(£) is the number 
of edges joining £ to itself and b(£) is the number joining £ to other vertices. A 
vertex is even or odd according as its degree is even or odd respectively. G is 
Eulerian if i ts vertices are all even. A collection of subgraphs of G are disjoint 
(edge-disjoint) if no two of them have a vertex (edge) in common. T h e union 
of the subgraphs Hu H2l . . . , Hn of G is the subgraph H of G such t h a t 

V(H) = Û 7CET0, £ ( # ) = Ù £ ( # « ) . 

A decomposition of G is a set of edge-disjoint subgraphs of G whose union is G. 
G is connected if it is not the union of two disjoint non-empty subgraphs. T h e 
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components of a non-empty graph are its maximal connected subgraphs. (An 
empty graph is deemed to have 0 components .) A chain-sequence of G is a 
finite sequence 

So, Xi, £1, X2, f2, X3, . . . , Xw, £„ (w > 0) 

in which the £* are vertices of G, the X̂  are distinct edges of G and X* joins 
£*_i to £ t for i = 1, 2, . . . , n. If G is an oriented graph, this chain-sequence is 
forwards-directed if 

X** = f *_i, \th = it (i = 1, 2, . . . , w) 

and backwards-directed if 

X*& = €z-i, Xrf = & (i = 1 , 2 , . . . , «) . 

A finite sequence is closed or <9pew according as its first and last te rms are the 
same or different respectively. If s is a chain-sequence of G, the subgraph of 
G formed by those vertices which appear a t least once and those edges which 
appear exactly once in 5 will be said to be derived from s. A subgraph of G is an 
open chain of G if it is derivable from an open chain-sequence of G. If £, rj 
are the first and last te rms of an open chain-sequence s of G and C is the open 
chain derived from s, then clearly £, rj are odd in C and every other vertex of C 
is even in C. I t follows t h a t an open chain has precisely two odd vertices which 
are the end-terms of every chain-sequence from which it is derivable; these 
are called the end-vertices of the open chain. If S, T are subsets of V(G), S will 
denote V{G) — S, S o T will denote the set of those edges of G which join 
elements of S to elements of Ty and Sô will denote S o S. A subgraph of G is 
an ST-chain if it is derivable from a chain-sequence of G whose first and last 
terms belong to S, T respectively. A cincture of G is a subset of E(G) which 
is of the form Sô for some subset 5 of V{G). If ? G V(N), an edge X is an 
exit of S if X/ = J and an entry of £ if X& = £. T h e number of exits [entries] of 
£ will be denoted by x(£) [e(£)]. T h e flux out of £, denoted by / ( £ ) , is 
#(£) ~ e(£)- N ls quasi-symmetrical if x = e on V(N). A route-sequence of N 
is a chain-sequence of N which is either forwards- or backwards-directed. A 
subgraph of N is a route (closed route, open route) of N if it is derivable from 
a route-sequence (closed route-sequence, open route-sequence) of N. 

When, to avoid ambigui ty , it is necessary to specify the graph relative to 
which a graph-theoret ical symbol is defined, the let ter denoting the graph 
will be a t tached to the symbol in some convenient way. For example, if £ 
is a common vertex of two oriented graphs M and N, dM(Ç) will denote the 
degree of £ in M. We shall, however, make the convention tha t , in any context 
in which an oriented graph denoted by the let ter N is under consideration, all 
graph-theoret ical symbols relate to N unless the cont ra ry is indicated; for 
example, d(%) would mean dN(%) in the si tuat ion instanced above. 

Let 5 be a forwards-directed route-sequence of N, R be the route derived 
from 5 and f, 77 be the first and last te rms of s respectively. Then clearly R is 
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quasi-symmetrical if £ = rj and fR(£) = 1,/R(V) = — 1 and fR = 0 on V(R) — 
{£, v} if £ ^ ??• It follows that a closed route cannot also be an open route and 
that an open route R has uniquely determined vertices £, TJ such that/ij(£) = 1, 
fs(v) = — 1 and £, 17 are the first and last terms respectively of every forwards-
directed route-sequence from which R is derivable; we call £, 77 the toz7 and 
head respectively of R. 

By a G-function, we shall mean a non-negative integer-valued function 
defined on the vertices of G. A G-function g is congruential iî g = d on F(G). 
If g is a G-function and £ G S C V(G), i*V(£; 5) will denote 

- « « ) + £ • ( 5 - U})+|5«|. 

We shall call g tolerable if Fg(£; S) > 0 for every pair £, 5 such that £ Ç 5 C 
F(G). A subset 5 of F(G) is g-critical if /^(£; 5) = 0 for some £ Ç S. A cincture 
C of G is g-critical if C = Sô for some g-critical subset 5 of F(G). A g-chain-
factor of G is a set $ of edge-disjoint open chains of G such that each vertex £ 
of G is an end-vertex of exactly g(£) elements of <£>. A g-decomposition of G 
is a g-chain-factor of G which is a decomposition of G. 

Let «, z; be N-lunctions. Then a (u, v)-route-factor of A" is a set $ of edge-
disjoint open routes of N such that each vertex £ of N is the tail of exactly 
u{£) and head of exactly z/(£) elements of $. A (u, v)-decomposition of A is a 
(w, y)-route-factor of N which is a decomposition of N. 

The object of this paper is to prove the following two parallel results: 

THEOREM 1. Let g be a U-function. Then U has a g-decomposition if and only 
if g is tolerable and congruential and g . V(H) > 0 for each component H of U. 

THEOREM 2. Let u, v be N-functions. Then N has a (u, v)-decomposition if and 
only if u + v is tolerable, u — v = / on V(N) and (u + v) . V(H) > 0 for each 
component H of N. 

Our procedure will be to prove Theorem 2 and deduce Theorem 1 from it. 
Certain generalizations of the theorems will be mentioned at the end of the 
paper. 

2. Proof of Theorem 2. 

LEMMA I. If G has a g-chain-factor, g is tolerable. 

Proof. Let 3> be a g-chain-f actor of G. For any pair of disjoint subsets S, T 
of V(G), let S* T denote the number of ST^-chains in <£. Then, if £ Ç 5 C V{G), 

g(k) = m*s) + D m*M). 
But {£}*{?/} < g(v) for every 77 G S - {£}; and {£}*£ < \Sh\ since £ £ S and 
so each {£}>S-chain must include an element of So. Hence g(£) < g . (S — {£}) 
+ \Sô\ ; and the lemma is proved. 

LEMMA 2. If A, B are disjoint subsets of V(G), \{A \J B)ô\+\Aô\ > \Bô\. 
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Proof. If V(G) — (A U B) = C, the above inequality follows from the 
relations 

\Ad\ = \AoB\ + \CoA\,\Bô\ = |BoC| + \AoB\,\(A U B)5\ = \CoA\+\BoC\. 

LEMMA 3. If S C V(G), \Sô\ = d . S. 

Proof. An edge contributes 2, 1, or 0 to d . 5 according as it belongs to 
SoS, Sd or £o£ respectively. 

COROLLARY 3A. If g is a congruential G-function and £ G 5 C V'(G), 
^ ( £ i -S) is even. 

COROLLARY 3B. ( = (1, chapter n, Theorem 3)). The number of odd vertices 
of a graph is even. 

Proof. Take S = V(G) in Lemma 3. 

Definition. Let X, n be distinct edges of A7 such that Xh = fit = £. Then 
the oriented graph M obtained from iV by fusion of X a ^ y at % is defined by 
the rules: 

(i) F(ikf) = V(N), E(M) = [£ (# ) - {X,M}] U {?}, where *> is a newly 
added edge and is not an element of the set V(N) KJ E(N) ; 

(ii) vtM — Xt, vhM — ph; 
(iii) KtM = at, àiM = ah for every K Ç E(N) — {X, /*}. 

LEMMA 4. If, in the circumstances of the above definition, g is a tolerable 
congruential N-function and no g-critical cincture of N includes both X and /JL, 
then g is tolerable in M. 

Proof. Let f G S C V(M) ( = V(N)). If X, n do not both belong to Sd, then 
|55M| = \Sô\ and so MFg($\ S) = Fg(£; S) > 0. If X, M both belong to So, then 
(i) \S5M\ = \S8\ - 2, whence MFg(Ç; S) = Fg(£; S) - 2, and (ii) Sô must not 
be g-critical, whence, by the tolerability of g and Corollary 3A, Fg(%\ S) > 2. 
Hence MFg(%; S) > 0. 

Definitions. If 5 C V(N), $* Wl^ denote the subgraph of N defined by 
7(5*) = S, E(S*) = SoS, and Ns will denote the oriented graph I f defined as 
follows. 

(i) V{M) = S W {S'}, E(M) = SoV(N), where S' [( V(N)\JE(N)] is a 
newly introduced vertex. 

(ii) Write «(£) = f if £ 6 S and 0(f) = S' if f Ç 5. Then X/^ = 0(X/), 
\hM = 4>{Xh) for every X G £(Af). 
Thus iV5 is obtained from N by contracting the subgraph S* to a single vertex S'. 

LEMMA 5. Let g be a tolerable N-function and C be a g-critical subset of V(N). 
If g{C), g(Cf) are both defined to be \Cd\, then g is tolerable in Nc and A7ë. 

Proof. Write No = H, Nc = K. Since C is critical, 

(i) g® = g. (c - M) + \a\ 
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for some £ Ç C. Since g(C') = g(C') = \C8\, (1) can be rewritten in each of the 
forms 

(10 *«•) =g.[V(H)- ! i | ] , 

d") «(C) = « ( * ) - g . ( c - u n . 
LEMMA 5A1. 7 / 5 C V{H) - {£}, g . 5 < |5ô«|. 

Proof. Since F,(£; C - 5) > 0, 

(2) « ( € ) - £ • ( C - 5 - { { } ) < | ( C - 5 ) « | . 

If C'tfS, 
|5fe| = \Sô\ > \(C-S)ô\-\Cô\ >g{Ç) - g . (C-S- fi}) - \CS\ =g.S 

by Lemma 2, (2) and (1). If C' € S, 

\SôB\ = | ( C - 5 ) 8 | > g ( f ) - g . ( C - 5 - {?}) = « . 5 

by (2) and (1'). 
Suppose that F C V(H). Let F(H) - F = W. If H F, then, for every 

V € Y, 

BF,(r, F) > | YôH\ - g(v) > I YôH\ - g . Y > 0 

by Lemma 5A. If ? € F, then by (1'), 

*/!•,($; Y) = \Y6B\ - g.W = \W6B\ - g.W >0 

by Lemma 5A, and, for every T? Ç F — {£}, 

*^(>?;F) > * . ( F - {,}) - g ( u ) > 0 

by (1')- Hence g is tolerable in H. 
Suppose that Z C V(K). If C" ( Z, then Z<5* = Z<5 and so KFg(rj; Z) = 

Fg{y)\Z) > 0 for every 77 Ç Z. If C" G Z, then 

(3) Z<5* = Z8 

where 2 = (Z - {C}) U C. By (1") and (3), KFg(C\ Z) = F,(f ; Z) > 0; 
and, by.(3) and Lemma 2, 

g(C') + \Z8K\ = \Cô\ + \Zô\ > \(Z - {C'})6\, 

whence KFg(77; Z) > Fg(rj; Z — {C}) > 0 for every 77 G Z — {C}. Hence g is 
tolerable in K. 

Definitions. An edge X of N is a foo/? if \t = \h. If g is an TV-function, a vertex 
£ is g-critical if the set {£} is ^-critical, that is, if g(£) = | {£}5|, and is g-safe if 
^V(£î {£}) > 0» that is, if g(£) < |{£}ô|. A one-edge-route is a route which has 
exactly one edge. If 5 C ^(^0> an edge X is an exi/ of S \i \t Ç 5, XA Ç S, 
and is an e»/ry of S if \h £ S, \t e S. H A C E(N)t N — A will denote the 

W e give the names Lemma «A, Lemma wB to lemmas which themselves form part of the 
proof of Lemma n. 
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subgraph of N defined by the relations V(N - A) = V(N), E(N - A) = 
E(N) - A. 

L E M M A 6. If u and v are N-functions such that u — v = f on V(N) and 
u + v is tolerable, then N has a (u, v)-route-factor. 

Proof. Since Lemma 6 is trivially t rue for an oriented graph of order 0, 
it may be proved by induction on ord N. We shall therefore make the induct ive 
hypothesis t h a t Lemma 6 is t rue for all oriented graphs of lower order than N. 
Let u + v — g. If N has a loop X, then X belongs to no cincture. Therefore g, 
being tolerable in N, is tolerable in N — {X}. I t is also clear t h a t / ^ - { \ j = f = 
u — v on V(N). Therefore, by the inductive hypothesis , N — {X} has a (u, v)-
route-factor, and hence so has N. We shall therefore henceforward assume 
t h a t N is loopless. We shall consider separately the following two cases: (I) 
V{N) has a g-critical subset C such t h a t \C\ > 2 and \C\ > 2; (II) V(N) has 
no such subset. 

Proof for Case I. Let the exits of C be Xi, X2, . . . , Xp and its entries be 
Xp+i, \p+2, . . . , Xr. If we write Nc = K, u(C) = p, v(C) = r — p and 
g{C) = |Cô|, then u, v, and g are defined on all vertices of K and g = u + v 
on V(K). By Lemma 5, g is tolerable in K. I t is clear t h a t u(C) — v(C) ~ 

/ K ( C " ) and t h a t fK=f = u — von C; hence u — v = fK on V(K). Since 
|C| > 2, ord K < ord -V. Therefore, by the induct ive hypothesis , K has a 
(u, v)-route-factor $ . Since u(C) + v(C') = r and X1? X2, . . . , Xr are the only 
edges incident with C in K, it is clear t h a t Xi, X2, . . . , Xr mus t be dis t r ibuted 
in a one-to-one fashion amongst the r elements of $ which have C as an end-
vertex; let Ri be t ha t element of $ which includes X* among its edges. Then 
clearly Rt is derivable from a route-sequence of the form C", X{, sif where sz is 
a route-sequence of C*. Clearly C', Xiy s{ and hence also st must be forwards-
or backwards-directed according as C is the tail or head respectively of X2-
in K, t h a t is, according as i < p or i > p respectively. Moreover, if $ — 
{Ru R2j . . . , Rr] = A, then, since the X̂  are the only edges incident with 
C in K and X* Ç E(Rt) (i = 1, 2, . . . , r ) , it follows t h a t each element of A 
is a route of C*. 

If we write u(C') = r — p, v(Cf) = p, an a rgument similar to t ha t of the 
preceding paragraph, bu t using the hypothesis t h a t \C\ > 2 and the assertion 
concerning Nc in Lemma 5, shows t h a t Nc has a (u, v)-route-factor Â \J {Ru 

R2, . . . , Rr} such t ha t the elements of Â are routes of C* and, for i = 1 , 2 , . . . , 
r, iîz- is derivable from a route-sequence of the form sit Xz-, C

r, where sz is a 
route-sequence of C* and is forwards- or backwards-directed according as 
i < p or i > /> respectively. I t is now not difficult to see tha t , if St is the 
route derived from the route-sequence su \ u su then A U Â U {Si, 5 2 ; . . . , Sr\ 
is a (w, ^)-route-factor of iV. 

Proof for Case I I . 

L E M M A 6A. A vertex £ 0/ i\7 is g-critical if V(AT) — {£} w g-critical. 
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Proof. If V(N) - {£} is g-critical, 

-g(v)+g.(V(N) - {{, ,}) + | {{}«| = 0 

for some J? 6 V(N) - {£}. But 

-g(n) + g • (V(N) - {|,„}) + g(f) = F,(r, V(N)) > 0. 

Therefore g(f) > |{f}5|, t h a t is, Fg(%\ {f}) < 0. Hence, since g is tolerable, 

FQ(Z\ {?}) = 0 and so f is g-critical. 

COROLLARY 6AA. In Case I I , every non-empty g-critical cincture is of the 
form {f} ô for some g-critical vertex f. 

If f is a g-critical vertex, g(f) = |{f}<5|, t ha t is, since A7 is loopless, «(f) + 
»(f) = *(*) + «(f). But , by hypothesis, «(f) - »(f) = / ( f ) = x(f) - «(f). 
Hence «(f) = x(f) and z/(f) = «(f). Hence, since A7 is loopless, the one-edge-
routes in N const i tute a («, p)-route-factor of N if every vertex of N is g-critical. 
We may therefore assume tha t N has a g-safe vertex a. Since cr is g-safe, 

I M « I > g(a) >\u{a) - » ( < r ) | = |/(<r)| 

by hypothesis . Therefore 

(4) x(a-) > 0, e(<0 > 0. 

LEMMA 6B. The vertex a has an entry X and an exit /JL such that no g-critical 
cincture includes both X and \x. 

Proof. (Throughout this proof, the reader should bear in mind t h a t A7 is 
assumed to be loopless.) If a is adjacent to two or more other vertices, it is 
easily seen from (4) t ha t a has an ent ry X and an exit /JL which join it to 
different vertices; since a is g-safe and is the only vertex incident with both 
X and /x> Corollary 6AA shows t ha t no g-critical cincture includes both X and 
/i. We may therefore assume tha t <r is adjacent to a t most one, and hence, by 
(4), to exactly one other vertex; let this vertex be r. Since a is adjacent only to 
r, \{<r, r}ô\ = \{r}ô\ — \{<r}ô\. Therefore 

~g(r) +g(a) +\{r}ô\ - \{v}b\ = Fff(r; {*, T}) > 0. 

Bu t \{<r}8\ > g(o-) since a is g-safe. Therefore |{r}<5| > g(r). Hence r is also 
g-safe. But , by (4), we can select an ent ry X and an exit /x of a. Since X, /x mus t 
both join a, r, which are both g-safe, Corollary 6AA again implies the required 
result. 

Since 

g = u+v = u — v — f = x — e = x -\- e = d 

on V(N), g is congruential in A7. Therefore, by Lemmas 6B and 4, g is tolerable 
in the oriented graph (M, say) obtained from A7 by fusion of X and /x a t a. I t 
is also clear t h a t / M = / = « — v on V{N) = V(M) and t h a t ord M = ord N 
— 1. Therefore, by the inductive hypothesis, M has a («, v)-route-factor, and 
it is easily seen t ha t this is converted into a («, v)-route-factor of A7 when we 
reverse the fusion of X and /JL a t a. 
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LEMMA 7. If N has a decomposition of the form $ U 0 , where $ is a (u, v)-
route-factor of N and 9 is a set of closed routes each of which has a vertex in com
mon with some element of $, then N has a (u, v) -decomposition. 

Proof. Let $ = {Ru R2, . . . , Rr}, and let 0 = 0X U 62 U . . . U Gr, 
where the 9Z- are disjoint and each element of 0* has a vertex in common with 
Rt. If St is the union of Rt and the elements of 0*, it is easily seen that St 

is an open route with the same head and tail as Rt. Hence {Si, S2, . . . , Sr] 
is a (u, v)-decomposition of N. 

Proof of Theorem 2. The necessity of the first condition follows from Lemma 
I, and the necessity of the other two is obvious. Conversely, suppose that 
these three conditions are satisfied. Then, by Lemma 6, N has a (u, ^)-route-
factor $. If T is the union of the elements of $, then clearly fT = u — von 
V(T) and u = v = 0 on V(N) - V(T). But / = u - v on V(N) by hypo
thesis. Therefore N — E(T) is quasi-symmetrical. Therefore, by (1, chapter 
II, Theorem 7), every component of A" — E(T) is a closed route. Moreover, 
since (u + v) . V(H) > 0 for each component H of A7, each component of N 
contains an element of $ and hence each component of N — E(T) has a 
vertex in common with an element of $. Therefore, by Lemma 7 (with 0 
taken to be the set of components of N — E(T)), N has a (u, v)-decomposition. 

3. Proof of Theorem 1. 

LEMMA 8. Every unoriented graph has an orientation in which /(£) = 0 for 
each even vertex J and f (if) = ± 1 for each odd vertex £. 

Proof. Let U be a given unoriented graph. By Corollary 3B, the number of 
odd vertices of U is even ; let it be 2r. Then U can be converted into an Eulerian 
unoriented graph H by the addition of r new edges joining its odd vertices in 
pairs.2 H, being Eulerian, has by (1, p. 30, 11. 4-9), a quasi-symmetrical 
orientation, and this clearly induces in U an orientation of the required type. 

Proof of Theorem 1. The necessity of the condition that g be tolerable follows 
from Lemma 1, and the necessity of the remaining conditions is obvious. 
Conversely, let the conditions of Theorem 1 be satisfied, and let N be an 
orientation of U satisfying the condition of Lemma 8. Write u = \(g + / ) , 
v = i(g ~~ /)» where / denotes flux in N. Then, by Theorem 2, N has a (u, v)-
decomposition, and hence U has a ^-decomposition. 

4. Generalizations. 

Definitions. A semi-oriented graph is a quintuple S = (U, J, e, p, q) such 
that U is an unoriented graph, £, e are disjoint sets and p, q are mappings of 
^ U e into V(U), E(U) respectively, subject to the condition that each edge X 
of U is the image under q of exactly two elements of r. U e and that, if these 
elements are e, e, then X joins ep to ep in U. Vertices and edges of U are 

2This procedure is suggested by the proof of (1, chapter n , Theorem 4). 
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called vertices and edges of S respectively, and elements of £ U e are called 
hinges of 5 . A vertex £ (edge X) of £7 is incident with a hinge e if ep = £ (eg = X). 
Two hinges are opposed if one of them belongs to £ and the other to e. If 
£ e V(U), / (£) will denote |$ H ç| - |$ H e|, where « is the set of those 
hinges of 5 which are incident with £. An open route-sequence of S is a finite 
sequence 

( 5 ) £o, €i , Xi, ê i , f i , €2, X2, €2, £2, €3, . . . , Xn , €w, £w 

such t h a t £0, Xi, £1, X2, . . . , Xn, £w is an open chain-sequence of Uf the ez and 
€f are hinges of 5 , the relations 

e ^ = f *_!, i ^ = £*, €# = izg = Xi, ez- 9^ et 

hold for i = 1, 2, . . . , n and e*, ez+i are opposed for i = 1, 2, . . . , n — 1. 
(The last condition is vacuous if » = 1.) The vertex £0 [£w] is a toi/ or head 
of (5) according as ei [en] belongs to £ or e respectively. (Thus an open route-
sequence of 5 may have two tails, two heads, or one tail and one head.) An 
open route of 5 is a subgraph of S derivable from an open route-sequence of 
5 . (We shall leave the reader to guess the definitions of subgraph of S, derivable 
and certain other terms relating to semi-oriented graphs from corresponding 
definitions given for unoriented and oriented graphs.) If R is an open route of 
S, £ is a vertex of R, and s is any open route-sequence from which R is derivable, 
then clearly fB (£) = 1 if and only if £ is a tail of 5 a n d / B ( £ ) = — 1 if and only 
if £ is a head of s; we shall therefore call £ a tail of R i f /«(f ) = 1 and a head 
of R if /«(£) = — 1. A decomposition of 5 is a set of edge-disjoint subgraphs of 
5 whose union is S. If u, v are U-functions, a (u, v)-decomposition of S is a 
decomposition D of 5 into open routes such tha t each vertex £ is a tail of 
exactly u(£) and head of exactly v(£) elements of D. Semi-oriented graphs are 
vir tually a generalization of oriented graphs, since an oriented graph may be 
regarded as a semi-oriented graph in which each edge is incident with two 
opposed hinges. A semi-orientation of an unoriented graph U\ is a semi-
oriented graph having U\ as its first const i tuent element. 

Theorem 2 admits the following generalization: 

T H E O R E M 3. Let S = (U, ic, e, p, q) be a semi-oriented graph and u, v be 

U-junctions. Then S has a (u, v)-decomposition if and only if u + v is tolerable, 
u — v = / on V(U) and {u + v) . V{H) > 0 for each component H of U. 

T h e proof of Theorem 3 is a fairly easy adapta t ion of t ha t of Theorem 2; 
bu t we refrained from giving the argument in this more general form to avoid 
obscuri ty. I t may be remarked, however, t h a t Theorem 1 is more readily 
deducible from Theorem 3 than from Theorem 2, since Lemma 8 becomes 
trivial if, in its s ta tement , "an or ienta t ion" be replaced by "a semi-orientat ion." 

Definitions. A partition of a set A is a set of disjoint subsets of A whose 
union is A. If P is a part i t ion of V(N), an TV-function g is P-tolerable if 

g.(sr\r) <g.(s-T) + \SÔ\ 
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for every pair S, T of subsets of V(N) such t h a t T G P . A set <i> of open routes 
of N is P-restricted if no element of $ has both its end-vertices in the same 
element of P. 

T H E O R E M 2'. Let P be a partition of V(N) and u, v be N-functions. Then X 
has a P-restricted (u, v) -decomposition if and only if u + v is P-tolerable, u — v = 
f on V(N), and (u + v) . V(H) > 0 for each component H of N. 

Theorem 2' is a generalization of Theorem 2, since it clearly reduces to 
Theorem 2 when P is taken to be the part i t ion of V(N) into subsets of order 
1. T h e proof of Theorem 2 r , which we shall not give in detail , consists in 
applying Theorem 2 to an oriented graph Ni and iWfunct ions uu ^i defined 
as follows. A7i is obtained from N by adding, for each T Ç P, a new vertex 
aT and, for each pair £, T such t h a t £ £ T Ç P, w(£) new edges with tail aT 

and head £ and v(i*) new edges with tail £ and head aT. (Thus \P\ new vertices 
and (u -\- v) . V(N) new edges are added altogether.) We write it\{aT) = u . T, 
Vi(aT) = v . T and U\ = vi = 0 on F(A r). 

Theorems 1 and 3 admi t corresponding generalizations to "P- res t r ic ted ' ' 
decompositions. 
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