DECOMPOSITION OF FINITE GRAPHS INTO OPEN CHAINS

C. St. J. A. NASH-WILLIAMS

1. Introduction. If m, n are integers, " $m \equiv n$ " will mean " $m \equiv n$ (mod 2)." The cardinal number of a set A will be denoted by $|A|$. The set whose elements are $a_{1}, a_{2}, \ldots, a_{n}$ will be denoted by $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The empty set will be denoted by \emptyset. If A, B, C are sets, $A-B$ will denote the set of those elements of A which do not belong to B, and $A-B-C$ will denote $(A-B$) $-C$. The expression $\sum_{\xi \in A} f(\xi)$ will be denoted by $f . A$. The statements " $f=g$ on A," " $f \equiv g$ on A " will mean that $f(\xi)=g(\xi)$ or $f(\xi) \equiv g(\xi)$ respectively for every $\xi \in A$.

An unoriented graph U consists, for the purposes of this paper, of two disjoint finite sets $V(U), E(U)$, together with a relationship whereby with each $\lambda \in E(U)$ is associated an unordered pair of (not necessarily distinct) elements of $V(U)$ which λ is said to join. An oriented graph is a triple $N=(U, t, h)$, where U is an unoriented graph and t, h are mappings of $E(U)$ into $V(U)$ such that each $\lambda \in E(U)$ joins λt to λh. We write $V(U)=V(N), E(U)=E(N)$ and call $\lambda t, \lambda h$ the tail and head of λ respectively. Either an unoriented or an oriented graph may be referred to as a graph. Throughout this paper, U will denote an unoriented graph, N will denote an oriented graph, and G may denote either. The elements of $V(G)$ and $E(G)$ are called vertices and edges of G respectively. A subgraph of U is an unoriented graph H such that $V(H) \subset$ $V(U), E(H) \subset E(U)$ and each edge of H joins the same vertices in H as in U. A subgraph of $N=(U, t, h)$ is an oriented graph $\left(U_{1}, t_{1}, h_{1}\right)$ such that U_{1} is a subgraph of U and t_{1}, h_{1} are the restrictions of t, h respectively to $E\left(U_{1}\right)$. An orientation of U is an oriented graph of the form (U, t, h). A vertex ξ and edge λ of G are incident if ξ is one or both of the vertices joined by λ. The order, ord G, of G is $|V(G) \cup E(G)| . G$ is empty if $V(G)=E(G)=\emptyset$. The degree $d(\xi)$ of a vertex ξ of a graph is $2 a(\xi)+b(\xi)$, where $a(\xi)$ is the number of edges joining ξ to itself and $b(\xi)$ is the number joining ξ to other vertices. A vertex is even or odd according as its degree is even or odd respectively. G is Eulerian if its vertices are all even. A collection of subgraphs of G are disjoint (edge-disjoint) if no two of them have a vertex (edge) in common. The union. of the subgraphs $H_{1}, H_{2}, \ldots, H_{n}$ of G is the subgraph H of G such that

$$
V(H)=\bigcup_{i=1}^{n} V\left(H_{i}\right), \quad E(H)=\bigcup_{i=1}^{n} E\left(H_{i}\right) .
$$

A decomposition of G is a set of edge-disjoint subgraphs of G whose union is G. G is connected if it is not the union of two disjoint non-empty subgraphs. The

[^0]components of a non-empty graph are its maximal connected subgraphs. (An empty graph is deemed to have 0 components.) A chain-sequence of G is a finite sequence
$$
\xi_{0}, \lambda_{1}, \xi_{1}, \lambda_{2}, \xi_{2}, \lambda_{3}, \ldots, \lambda_{n}, \xi_{n} \quad(n \geqslant 0)
$$
in which the ξ_{i} are vertices of G, the λ_{i} are distinct edges of G and λ_{i} joins ξ_{i-1} to ξ_{i} for $i=1,2, \ldots, n$. If G is an oriented graph, this chain-sequence is forwards-directed if
$$
\lambda_{i} t=\xi_{i-1}, \lambda_{i} h=\xi_{i} \quad(i=1,2, \ldots, n)
$$
and backwards-directed if
$$
\lambda_{i} h=\xi_{i-1}, \lambda_{i} t=\xi_{i} \quad(i=1,2, \ldots, n)
$$

A finite sequence is closed or open according as its first and last terms are the same or different respectively. If s is a chain-sequence of G, the subgraph of G formed by those vertices which appear at least once and those edges which appear exactly once in s will be said to be derived from s. A subgraph of G is an open chain of G if it is derivable from an open chain-sequence of G. If ξ, η are the first and last terms of an open chain-sequence s of G and C is the open chain derived from s, then clearly ξ, η are odd in C and every other vertex of C is even in C. It follows that an open chain has precisely two odd vertices which are the end-terms of every chain-sequence from which it is derivable; these are called the end-vertices of the open chain. If S, T are subsets of $V(G), \bar{S}$ will denote $V(G)-S, S \circ T$ will denote the set of those edges of G which join elements of S to elements of T, and $S \delta$ will denote $S \circ \bar{S}$. A subgraph of G is an $S T$-chain if it is derivable from a chain-sequence of G whose first and last terms belong to S, T respectively. A cincture of G is a subset of $E(G)$ which is of the form $S \delta$ for some subset S of $V(G)$. If $\xi \in V(N)$, an edge λ is an exit of ξ if $\lambda t=\xi$ and an entry of ξ if $\lambda h=\xi$. The number of exits [entries] of ξ will be denoted by $x(\xi)[e(\xi)]$. The flux out of ξ, denoted by $f(\xi)$, is $x(\xi)-e(\xi) . N$ is quasi-symmetrical if $x=e$ on $V(N)$. A route-sequence of N is a chain-sequence of N which is either forwards- or backwards-directed. A subgraph of N is a route (closed route, open route) of N if it is derivable from a route-sequence (closed route-sequence, open route-sequence) of N.

When, to avoid ambiguity, it is necessary to specify the graph relative to which a graph-theoretical symbol is defined, the letter denoting the graph will be attached to the symbol in some convenient way. For example, if ξ is a common vertex of two oriented graphs M and $N, d_{M}(\xi)$ will denote the degree of ξ in M. We shall, however, make the convention that, in any context in which an oriented graph denoted by the letter N is under consideration, all graph-theoretical symbols relate to N unless the contrary is indicated; for example, $d(\xi)$ would mean $d_{N}(\xi)$ in the situation instanced above.

Let s be a forwards-directed route-sequence of N, R be the route derived from s and ξ, η be the first and last terms of s respectively. Then clearly R is
quasi-symmetrical if $\xi=\eta$ and $f_{R}(\xi)=1, f_{R}(\eta)=-1$ and $f_{R}=0$ on $V(R)-$ $\{\xi, \eta\}$ if $\xi \neq \eta$. It follows that a closed route cannot also be an open route and that an open route R has uniquely determined vertices ξ, η such that $f_{R}(\xi)=1$, $f_{R}(\eta)=-1$ and ξ, η are the first and last terms respectively of every forwardsdirected route-sequence from which R is derivable; we call ξ, η the tail and head respectively of R.

By a G-function, we shall mean a non-negative integer-valued function defined on the vertices of G. A G-function g is congruential if $g \equiv d$ on $V(G)$. If g is a G-function and $\xi \in S \subset V(G), F_{g}(\xi ; S)$ will denote

$$
-g(\xi)+g \cdot(S-\{\xi\})+|S \delta|
$$

We shall call g tolerable if $F_{g}(\xi ; S) \geqslant 0$ for every pair ξ, S such that $\xi \in S \subset$ $V(G)$. A subset S of $V(G)$ is g-critical if $F_{g}(\xi ; S)=0$ for some $\xi \in S$. A cincture C of G is g-critical if $C=S \delta$ for some g-critical subset S of $V(G)$. A g-chainfactor of G is a set Φ of edge-disjoint open chains of G such that each vertex ξ of G is an end-vertex of exactly $g(\xi)$ elements of Φ. A g-decomposition of G is a g-chain-factor of G which is a decomposition of G.

Let u, v be N-functions. Then a (u, v)-route-factor of N is a set Φ of edgedisjoint open routes of N such that each vertex ξ of N is the tail of exactly $u(\xi)$ and head of exactly $v(\xi)$ elements of Φ. A (u, v)-decomposition of N is a (u, v)-route-factor of N which is a decomposition of N.

The object of this paper is to prove the following two parallel results:
Theorem 1. Let g be a U-function. Then U has a g-decomposition if and only if g is tolerable and congruential and $g . V(H)>0$ for each component H of U.

Theorem 2. Let u, v be N-functions. Then N has $a(u, v)$-decomposition if and only if $u+v$ is tolerable, $u-v=f$ on $V(N)$ and $(u+v) . V(H)>0$ for each component H of N.

Our procedure will be to prove Theorem 2 and deduce Theorem 1 from it. Certain generalizations of the theorems will be mentioned at the end of the paper.

2. Proof of Theorem 2.

Lemma 1. If G has a g-chain-factor, g is tolerable.
Proof. Let Φ be a g-chain-factor of G. For any pair of disjoint subsets S, T of $V(G)$, let $S * T$ denote the number of $S T$-chains in Φ. Then, if $\xi \in S \subset V(G)$,

$$
g(\xi)=(\{\xi\} * \bar{S})+\sum_{\eta \in S-\{\xi\}}(\{\xi\} *\{\eta\})
$$

But $\{\xi\} *\{\eta\} \leqslant g(\eta)$ for every $\eta \in S-\{\xi\}$; and $\{\xi\} * \bar{S} \leqslant|S \delta|$ since $\xi \in S$ and so each $\{\xi\} \bar{S}$-chain must include an element of $S \delta$. Hence $g(\xi) \leqslant g .(S-\{\xi\})$ $+|S \delta|$; and the lemma is proved.

Lemma 2. If A, B are disjoint subsets of $V(G),|(A \cup B) \delta|+|A \delta| \geqslant|B \delta|$.

Proof. If $V(G)-(A \cup B)=C$, the above inequality follows from the relations
$|A \delta|=|A \circ B|+|C \circ A|,|B \delta|=|B \circ C|+|A \circ B|,|(A \cup B) \delta|=|C \circ A|+|B \circ C|$.
Lemma 3. If $S \subset V(G),|S \delta| \equiv d$. S.
Proof. An edge contributes 2, 1, or 0 to $d . S$ according as it belongs to $S \circ S, S \delta$ or $\bar{S} \circ \bar{S}$ respectively.

Corollary 3A. If g is a congruential G-function and $\xi \in S \subset V(G)$, $F_{g}(\xi ; S)$ is even.

Corollary 3B. $(=(\mathbf{1}$, chapter in, Theorem 3$))$. The number of odd vertices of a graph is even.

Proof. Take $S=V(G)$ in Lemma 3.
Definition. Let λ, μ be distinct edges of N such that $\lambda h=\mu t=\xi$. Then the oriented graph M obtained from N by fusion of λ and μ at ξ is defined by the rules:
(i) $V(M)=V(N), E(M)=[E(N)-\{\lambda, \mu\}] \cup\{\nu\}$, where ν is a newly added edge and is not an element of the set $V(N) \cup E(N)$;
(ii) $\nu t_{M}=\lambda t, \nu h_{M}=\mu h$;
(iii) $\kappa t_{M}=\kappa t, \kappa h_{M}=\kappa h$ for every $\kappa \in E(N)-\{\lambda, \mu\}$.

Lemma 4. If, in the circumstances of the above definition, g is a tolerable congruential N-function and no g-critical cincture of N includes both λ and μ, then g is tolerable in M.

Proof. Let $\xi \in S \subset V(M)(=V(N))$. If λ, μ do not both belong to $S \delta$, then $\left|S \delta_{M}\right|=|S \delta|$ and so ${ }_{M} F_{g}(\xi ; S)=F_{g}(\xi ; S) \geqslant 0$. If λ, μ both belong to $S \delta$, then (i) $\left|S \delta_{M}\right|=|S \delta|-2$, whence ${ }_{M} F_{g}(\xi ; S)=F_{g}(\xi ; S)-2$, and (ii) So must not be g-critical, whence, by the tolerability of g and Corollary $3 \mathrm{~A}, F_{g}(\xi ; S) \geqslant 2$. Hence ${ }_{M} F_{g}(\xi ; S) \geqslant 0$.

Definitions. If $S \subset V(N)$, S^{*} will denote the subgraph of N defined by $V\left(S^{*}\right)=S, E\left(S^{*}\right)=S \circ S$, and N_{S} will denote the oriented graph M defined as follows.
(i) $V(M)=\bar{S} \cup\left\{S^{\prime}\right\}, E(M)=\bar{S} \circ V(N)$, where $S^{\prime}[\notin V(N) \cup E(N)]$ is a newly introduced vertex.
(ii) Write $\phi(\xi)=\xi$ if $\xi \in \bar{S}$ and $\phi(\xi)=S^{\prime}$ if $\xi \in S$. Then $\lambda t_{M}=\phi(\lambda t)$, $\lambda h_{M}=\phi(\lambda h)$ for every $\lambda \in E(M)$.
Thus N_{S} is obtained from N by contracting the subgraph S^{*} to a single vertex S^{\prime}.
Lemma 5. Let g be a tolerable N-function and C be a g-critical subset of $V(N)$. If $g\left(C^{\prime}\right), g\left(\bar{C}^{\prime}\right)$ are both defined to be $|C \delta|$, then g is tolerable in N_{C} and $N_{\overline{\mathrm{C}}}$.

Proof. Write $N_{\bar{C}}=H, N_{C}=K$. Since C is critical,

$$
\begin{equation*}
g(\xi)=g \cdot(C-\{\xi\})+|C \delta| \tag{1}
\end{equation*}
$$

for some $\xi \in C$. Since $g\left(C^{\prime}\right)=g\left(\bar{C}^{\prime}\right)=|C \delta|$, (1) can be rewritten in each of the forms

$$
g(\xi)=g \cdot[V(H)-\{\xi\}],
$$

Lemma 5A ${ }^{1}$. If $S \subset V(H)-\{\xi\}, g . S \leqslant\left|S \delta_{H}\right|$.
Proof. Since $F_{g}(\xi ; C-S) \geqslant 0$,

$$
\begin{equation*}
g(\xi)-g \cdot(C-S-\{\xi\}) \leqslant|(C-S) \delta| \tag{2}
\end{equation*}
$$

If $\bar{C}^{\prime} \notin S$,

$$
\left|S \delta_{H}\right|=|S \delta| \geqslant|(C-S) \delta|-|C \delta| \geqslant g(\xi)-g .(C-S-\{\xi\})-|C \delta|=g . S
$$

by Lemma $2,(2)$ and (1). If $\overline{C^{\prime}} \in S$,

$$
\left|S \delta_{H}\right|=|(C-S) \delta| \geqslant g(\xi)-g \cdot(C-S-\{\xi\})=g \cdot S
$$

by (2) and (1^{\prime}).
Suppose that $Y \subset V(H)$. Let $V(H)-Y=W$. If $\xi \notin Y$, then, for every $\eta \in Y$,

$$
{ }_{H} F_{g}(\eta ; Y) \geqslant\left|Y \delta_{H}\right|-g(\eta) \geqslant\left|Y \delta_{H}\right|-g \cdot Y \geqslant 0
$$

by Lemma 5 A . If $\xi \in Y$, then by (1^{\prime}),

$$
{ }_{H} F_{g}(\xi ; Y)=\left|Y \delta_{H}\right|-g \cdot W=\left|W \delta_{H}\right|-g . W \geqslant 0
$$

by Lemma 5 A , and, for every $\eta \in Y-\{\xi\}$,

$$
{ }_{H} F_{g}(\eta ; Y) \geqslant g \cdot(Y-\{\eta\})-g(\eta) \geqslant 0
$$

by $\left(1^{\prime}\right)$. Hence g is tolerable in H.
Suppose that $Z \subset V(K)$. If $C^{\prime} \notin Z$, then $Z \delta_{K}=Z \delta$ and so ${ }_{K} F_{g}(\eta ; Z)=$ $F_{g}(\eta ; Z) \geqslant 0$ for every $\eta \in Z$. If $C^{\prime} \in Z$, then

$$
\begin{equation*}
Z \delta_{K}=\tilde{Z}_{\delta} \tag{3}
\end{equation*}
$$

where $\tilde{Z}=\left(Z-\left\{C^{\prime}\right\}\right) \cup C$. By $\left(1^{\prime \prime}\right)$ and $(3),{ }_{K} F_{g}\left(C^{\prime} ; Z\right)=F_{g}(\xi ; \widetilde{Z}) \geqslant 0$; and, by (3) and Lemma 2,

$$
g\left(C^{\prime}\right)+\left|Z \delta_{K}\right|=|C \delta|+|\tilde{Z} \delta| \geqslant\left|\left(Z-\left\{C^{\prime}\right\}\right) \delta\right|
$$

whence ${ }_{K} F_{g}(\eta ; Z) \geqslant F_{g}\left(\eta ; Z-\left\{C^{\prime}\right\}\right) \geqslant 0$ for every $\eta \in Z-\left\{C^{\prime}\right\}$. Hence g is tolerable in K.

Definitions. An edge λ of N is a loop if $\lambda t=\lambda h$. If g is an N-function, a vertex ξ is g-critical if the set $\{\xi\}$ is g-critical, that is, if $g(\xi)=|\{\xi\} \delta|$, and is g-safe if $F_{g}(\xi ;\{\xi\})>0$, that is, if $g(\xi)<|\{\xi\} \delta|$. A one-edge-route is a route which has exactly one edge. If $S \subset V(N)$, an edge λ is an exit of S if $\lambda t \in S, \lambda h \in \bar{S}$, and is an entry of S if $\lambda h \in S, \lambda t \in \bar{S}$. If $A \subset E(N), N-A$ will denote the

[^1]subgraph of N defined by the relations $V(N-A)=V(N), E(N-A)=$ $E(N)-A$.

Lemma 6. If u and v are N-functions such that $u-v=f$ on $V(N)$ and $u+v$ is tolerable, then N has a (u, v)-route-factor.

Proof. Since Lemma 6 is trivially true for an oriented graph of order 0, it may be proved by induction on ord N. We shall therefore make the inductive hypothesis that Lemma 6 is true for all oriented graphs of lower order than I. Let $u+v=g$. If N has a loop λ, then λ belongs to no cincture. Therefore g, being tolerable in N, is tolerable in $N-\{\lambda\}$. It is also clear that $f_{N-\{\lambda\}}=f=$ $u-v$ on $V(N)$. Therefore, by the inductive hypothesis, $N-\{\lambda\}$ has a (u, v) -route-factor, and hence so has N. We shall therefore henceforward assume that N is loopless. We shall consider separately the following two cases: (I) $V(N)$ has a g-critical subset C such that $|C| \geqslant 2$ and $|\bar{C}| \geqslant 2$; (II) $V(N)$ has no such subset.

Proof for Case I. Let the exits of C be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ and its entries be $\lambda_{p+1}, \lambda_{p+2}, \ldots, \lambda_{r}$. If we write $N_{C}=K, u\left(C^{\prime}\right)=p, v\left(C^{\prime}\right)=r-p$ and $g\left(C^{\prime}\right)=|C \delta|$, then u, v, and g are defined on all vertices of K and $g=u+v$ on $V(K)$. By Lemma $5, g$ is tolerable in K. It is clear that $u\left(C^{\prime}\right)-v\left(C^{\prime}\right)=$ $f_{K}\left(C^{\prime}\right)$ and that $f_{K}=f=u-v$ on \bar{C}; hence $u-v=f_{K}$ on $V(K)$. Since $|C| \geqslant 2$, ord $K<$ ord N. Therefore, by the inductive hypothesis, K has a (u, v)-route-factor Φ. Since $u\left(C^{\prime}\right)+v\left(C^{\prime}\right)=r$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the only edges incident with C^{\prime} in K, it is clear that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ must be distributed in a one-to-one fashion amongst the r elements of Φ which have C^{\prime} as an endvertex; let R_{i} be that element of Φ which includes λ_{i} among its edges. Then clearly R_{i} is derivable from a route-sequence of the form $C^{\prime}, \lambda_{i}, s_{i}$, where s_{i} is a route-sequence of \bar{C}^{*}. Clearly $C^{\prime}, \lambda_{i}, s_{i}$ and hence also s_{i} must be forwardsor backwards-directed according as C^{\prime} is the tail or head respectively of λ_{i} in K, that is, according as $i \leqslant p$ or $i>p$ respectively. Moreover, if $\Phi-$ $\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}=\Delta$, then, since the λ_{i} are the only edges incident with C^{\prime} in K and $\lambda_{i} \in E\left(R_{i}\right)(i=1,2, \ldots, r)$, it follows that each element of Δ is a route of \bar{C}^{*}.

If we write $u\left(\bar{C}^{\prime}\right)=r-p, v\left(\bar{C}^{\prime}\right)=p$, an argument similar to that of the preceding paragraph, but using the hypothesis that $|\bar{C}| \geqslant 2$ and the assertion concerning $N_{\bar{C}}$ in Lemma 5, shows that $N_{\bar{C}}$ has a (u, v)-route-factor $\bar{\Delta} \cup\left\{\bar{R}_{1}\right.$, $\left.\bar{R}_{2}, \ldots, \bar{R}_{r}\right\}$ such that the elements of $\bar{\Delta}$ are routes of C^{*} and, for $i=1,2, \ldots$, r, \bar{R}_{i} is derivable from a route-sequence of the form $\bar{s}_{i}, \lambda_{i}, \bar{C}^{\prime}$, where \bar{s}_{i} is a route-sequence of C^{*} and is forwards- or backwards-directed according as $i \leqslant p$ or $i>p$ respectively. It is now not difficult to see that, if S_{i} is the route derived from the route-sequence $\bar{s}_{i}, \lambda_{i}, s_{i}$, then $\Delta \cup \bar{\Delta} \cup\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ is a (u, v)-route-factor of N.

Proof for Case II.
Lemma 6A. A vertex ξ of N is g-critical if $V(N)-\{\xi\}$ is g-critical.

Proof. If $V(N)-\{\xi\}$ is g-critical,

$$
-g(\eta)+g \cdot(V(N)-\{\xi, \eta\})+|\{\xi\} \delta|=0
$$

for some $\eta \in V(N)-\{\xi\}$. But

$$
-g(\eta)+g \cdot(V(N)-\{\xi, \eta\})+g(\xi)=F_{g}(\eta ; V(N)) \geqslant 0 .
$$

Therefore $g(\xi) \geqslant|\{\xi\} \delta|$, that is, $F_{g}(\xi ;\{\xi\}) \leqslant 0$. Hence, since g is tolerable, $F_{g}(\xi ;\{\xi\})=0$ and so ξ is g-critical.

Corollary 6AA. In Case II, every non-empty g-critical cincture is of the form $\{\xi\} \delta$ for some g-critical vertex ξ.

If ξ is a g-critical vertex, $g(\xi)=|\{\xi\} \delta|$, that is, since N is loopless, $u(\xi)+$ $v(\xi)=x(\xi)+e(\xi)$. But, by hypothesis, $u(\xi)-v(\xi)=f(\xi)=x(\xi)-e(\xi)$. Hence $u(\xi)=x(\xi)$ and $v(\xi)=e(\xi)$. Hence, since N is loopless, the one-edgeroutes in N constitute a (u, v)-route-factor of N if every vertex of N is g-critical. We may therefore assume that N has a g-safe vertex σ. Since σ is g-safe,

$$
|\{\sigma\} \delta|>g(\sigma) \geqslant|u(\sigma)-v(\sigma)|=|f(\sigma)|
$$

by hypothesis. Therefore

$$
\begin{equation*}
x(\sigma)>0, \quad e(\sigma)>0 . \tag{4}
\end{equation*}
$$

Lemma 6B. The vertex σ has an entry λ and an exit μ such that no g-critical cincture includes both λ and μ.

Proof. (Throughout this proof, the reader should bear in mind that N is assumed to be loopless.) If σ is adjacent to two or more other vertices, it is easily seen from (4) that σ has an entry λ and an exit μ which join it to different vertices; since σ is g-safe and is the only vertex incident with both λ and μ, Corollary 6AA shows that no g-critical cincture includes both λ and μ. We may therefore assume that σ is adjacent to at most one, and hence, by (4), to exactly one other vertex; let this vertex be τ. Since σ is adjacent only to $\tau,|\{\sigma, \tau\} \delta|=|\{\tau\} \delta|-|\{\sigma\} \delta|$. Therefore

$$
-g(\tau)+g(\sigma)+|\{\tau\} \delta|-|\{\sigma\} \delta|=F_{g}(\tau ;\{\sigma, \tau\}) \geqslant 0
$$

But $|\{\sigma\} \delta|>g(\sigma)$ since σ is g-safe. Therefore $|\{\tau\} \delta|>g(\tau)$. Hence τ is also g-safe. But, by (4), we can select an entry λ and an exit μ of σ. Since λ, μ must both join σ, τ, which are both g-safe, Corollary 6AA again implies the required result.

Since

$$
g=u+v \equiv u-v=f=x-e \equiv x+e=d
$$

on $V(N), g$ is congruential in N. Therefore, by Lemmas 6B and $4, g$ is tolerable in the oriented graph (M, say) obtained from N by fusion of λ and μ at σ. It is also clear that $f_{M}=f=u-v$ on $V(N)=V(M)$ and that ord $M=\operatorname{ord} N$ -1 . Therefore, by the inductive hypothesis, M has a (u, v)-route-factor, and it is easily seen that this is converted into a (u, v)-route-factor of N when we reverse the fusion of λ and μ at σ.

Lemma 7. If N has a decomposition of the form $\Phi \cup \theta$, where Φ is $a(u, v)$ -route-factor of N and Θ is a set of closed routes each of which has a vertex in common with some element of Φ, then N has $a(u, v)$-decomposition.

Proof. Let $\Phi=\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}$, and let $\Theta=\theta_{1} \cup \theta_{2} \cup \ldots \cup \theta_{r}$, where the θ_{i} are disjoint and each element of θ_{i} has a vertex in common with R_{i}. If S_{i} is the union of R_{i} and the elements of θ_{i}, it is easily seen that S_{i} is an open route with the same head and tail as R_{i}. Hence $\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ is a (u, v)-decomposition of N.

Proof of Theorem 2. The necessity of the first condition follows from Lemma 1 , and the necessity of the other two is obvious. Conversely, suppose that these three conditions are satisfied. Then, by Lemma $6, N$ has a (u, v)-routefactor Φ. If T is the union of the elements of Φ, then clearly $f_{T}=u-v$ on $V(T)$ and $u=v=0$ on $V(N)-V(T)$. But $f=u-v$ on $V(N)$ by hypothesis. Therefore $N-E(T)$ is quasi-symmetrical. Therefore, by (1, chapter II, Theorem 7), every component of $N-E(T)$ is a closed route. Moreover, since $(u+v) \cdot V(H)>0$ for each component H of N, each component of N contains an element of Φ and hence each component of $N-E(T)$ has a vertex in common with an element of Φ. Therefore, by Lemma 7 (with θ taken to be the set of components of $N-E(T)$), N has a (u, v)-decomposition.

3. Proof of Theorem 1.

Lemma 8. Every unoriented graph has an orientation in which $f(\xi)=0$ for each even vertex ξ and $f(\xi)= \pm 1$ for each odd vertex ξ.

Proof. Let U be a given unoriented graph. By Corollary 3B, the number of odd vertices of U is even; let it be $2 r$. Then U can be converted into an Eulerian unoriented graph H by the addition of r new edges joining its odd vertices in pairs. ${ }^{2} H$, being Eulerian, has by (1, p. 30, 11. 4-9), a quasi-symmetrical orientation, and this clearly induces in U an orientation of the required type.

Proof of Theorem 1. The necessity of the condition that g be tolerable follows from Lemma 1, and the necessity of the remaining conditions is obvious. Conversely, let the conditions of Theorem 1 be satisfied, and let N be an orientation of U satisfying the condition of Lemma 8. Write $u=\frac{1}{2}(g+f)$, $v=\frac{1}{2}(g-f)$, where f denotes flux in N. Then, by Theorem $2, N$ has a $(u, v)-$ decomposition, and hence U has a g-decomposition.

4. Generalizations.

Definitions. A semi-oriented graph is a quintuple $S=(U, \mathfrak{x}, \mathfrak{e}, p, q)$ such that U is an unoriented graph, $\mathfrak{x}, \mathfrak{e}$ are disjoint sets and p, q are mappings of $\mathfrak{r} \cup \mathfrak{e}$ into $V(U), E(U)$ respectively, subject to the condition that each edge λ of U is the image under q of exactly two elements of $\mathfrak{x} \cup \mathfrak{e}$ and that, if these elements are $\epsilon, \epsilon^{\prime}$, then λ joins ϵp to $\epsilon^{\prime} p$ in U. Vertices and edges of U are

[^2]called vertices and edges of S respectively, and elements of $\mathfrak{r} \cup \mathfrak{e}$ are called hinges of S. A vertex ξ (edge λ) of U is incident with a hinge ϵ if $\epsilon p=\xi(\epsilon q=\lambda)$. Two hinges are opposed if one of them belongs to \mathfrak{x} and the other to e . If $\xi \in V(U), f(\xi)$ will denote $|\mathcal{B} \cap \mathfrak{x}|-|\mathcal{B} \cap \mathfrak{e}|$, where \mathfrak{z} is the set of those hinges of S which are incident with ξ. An open route-sequence of S is a finite sequence
\[

$$
\begin{equation*}
\xi_{0}, \epsilon_{1}, \lambda_{1}, \tilde{\epsilon}_{1}, \xi_{1}, \epsilon_{2}, \lambda_{2}, \tilde{\epsilon}_{2}, \xi_{2}, \epsilon_{3}, \ldots, \lambda_{n}, \tilde{\epsilon}_{n}, \xi_{n} \tag{5}
\end{equation*}
$$

\]

such that $\xi_{0}, \lambda_{1}, \xi_{1}, \lambda_{2}, \ldots, \lambda_{n}, \xi_{n}$ is an open chain-sequence of U, the ϵ_{i} and $\tilde{\epsilon}_{i}$ are hinges of S, the relations

$$
\epsilon_{i} p=\xi_{i-1}, \tilde{\epsilon}_{i} p=\xi_{i}, \epsilon_{i} q=\tilde{\epsilon}_{i} q=\lambda_{i}, \epsilon_{i} \neq \tilde{\epsilon}_{i}
$$

hold for $i=1,2, \ldots, n$ and $\tilde{\epsilon}_{i}, \epsilon_{i+1}$ are opposed for $i=1,2, \ldots, n-1$. (The last condition is vacuous if $n=1$.) The vertex $\xi_{0}\left[\xi_{n}\right]$ is a tail or head of (5) according as $\epsilon_{1}\left[\tilde{\epsilon}_{n}\right]$ belongs to \mathfrak{x} or \mathfrak{e} respectively. (Thus an open routesequence of S may have two tails, two heads, or one tail and one head.) An open route of S is a subgraph of S derivable from an open route-sequence of S. (We shall leave the reader to guess the definitions of subgraph of S, derivable and certain other terms relating to semi-oriented graphs from corresponding definitions given for unoriented and oriented graphs.) If R is an open route of S, ξ is a vertex of R, and s is any open route-sequence from which R is derivable, then clearly $f_{R}(\xi)=1$ if and only if ξ is a tail of s and $f_{R}(\xi)=-1$ if and only if ξ is a head of s; we shall therefore call ξ a tail of R if $f_{R}(\xi)=1$ and a head of R if $f_{R}(\xi)=-1$. A decomposition of S is a set of edge-disjoint subgraphs of S whose union is S. If u, v are U-functions, a (u, v)-decomposition of S is a decomposition D of S into open routes such that each vertex ξ is a tail of exactly $u(\xi)$ and head of exactly $v(\xi)$ elements of D. Semi-oriented graphs are virtually a generalization of oriented graphs, since an oriented graph may be regarded as a semi-oriented graph in which each edge is incident with two opposed hinges. A semi-orientation of an unoriented graph U_{1} is a semioriented graph having U_{1} as its first constituent element.

Theorem 2 admits the following generalization:
Theorem 3. Let $S=(U, \mathfrak{x}, \mathfrak{e}, p, q)$ be a semi-oriented graph and u, v be U-functions. Then S has $a(u, v)$-decomposition if and only if $u+v$ is tolerable, $u-v=f$ on $V(U)$ and $(u+v) . V(H)>0$ for each component H of U.

The proof of Theorem 3 is a fairly easy adaptation of that of Theorem 2 ; but we refrained from giving the argument in this more general form to avoid obscurity. It may be remarked, however, that Theorem 1 is more readily deducible from Theorem 3 than from Theorem 2, since Lemma 8 becomes trivial if, in its statement, "an orientation" be replaced by "a semi-orientation."

Definitions. A partition of a set A is a set of disjoint subsets of A whose union is A. If P is a partition of $V(N)$, an N-function g is P-tolerable if

$$
g \cdot(S \cap T) \leqslant g \cdot(S-T)+|S \delta|
$$

for every pair S, T of subsets of $V(N)$ such that $T \in P$. A set Φ of open routes of N is P-restricted if no element of Φ has both its end-vertices in the same element of P.

Theorem 2^{\prime}. Let P be a partition of $V(N)$ and u, v be N-functions. Then N has a P-restricted (u, v)-decomposition if and only if $u+v$ is P-tolerable, $u-v=$ f on $V(N)$, and $(u+v) . V(H)>0$ for each component H of N.

Theorem 2^{\prime} is a generalization of Theorem 2 , since it clearly reduces to Theorem 2 when P is taken to be the partition of $V(N)$ into subsets of order 1. The proof of Theorem 2^{\prime}, which we shall not give in detail, consists in applying Theorem 2 to an oriented graph N_{1} and N_{1}-functions u_{1}, v_{1} defined as follows. N_{1} is obtained from N by adding, for each $T \in P$, a new vertex α_{T} and, for each pair ξ, T such that $\xi \in T \in P, u(\xi)$ new edges with tail α_{T} and head ξ and $v(\xi)$ new edges with tail ξ and head α_{T}. (Thus $|P|$ new vertices and $(u+v) . V(N)$ new edges are added altogether.) We write $u_{1}\left(\alpha_{T}\right)=u . T$, $v_{1}\left(\alpha_{T}\right)=v . T$ and $u_{1}=v_{1}=0$ on $V(N)$.

Theorems 1 and 3 admit corresponding generalizations to " P-restricted" decompositions.

Since this work was a part of my thesis, I should like gratefully to acknowledge the help and guidance of my Research Supervisors, Professor D. Rees, Professor N. E. Steenrod, and Dr. S. Wylie, and the following financial support; grants from the Department of Scientific and Industrial Research, the University of Cambridge and Trinity Hall, an Amy Mary Preston Read Scholarship (awarded by the University of Cambridge), a J. S. K. Visiting Fellowship (awarded by the University of Princeton), and a Fulbright Travel Grant.

Reference

1. D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1936, and New York, 1950).

University of Aberdeen

[^0]: Received December 7, 1959.

[^1]: ${ }^{1}$ We give the names Lemma $n \mathrm{~A}$, Lemma $n \mathrm{~B}$ to lemmas which themselves form part of the proof of Lemma n.

[^2]: ${ }^{2}$ This procedure is suggested by the proof of (1, chapter II, Theorem 4).

