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As a promising machine learning method for active flow control (AFC), deep
reinforcement learning (DRL) has been successfully applied in various scenarios, such
as the drag reduction for stationary cylinders under both laminar and weakly turbulent
conditions. However, current applications of DRL in AFC still suffer from drawbacks
including excessive sensor usage, unclear search paths and insufficient robustness tests. In
this study, we aim to tackle these issues by applying DRL-guided self-rotation to suppress
the vortex-induced vibration (VIV) of a circular cylinder under the lock-in condition. With
a state space consisting only of the acceleration, velocity and displacement of the cylinder,
the DRL agent learns an effective control strategy that successfully suppresses the VIV
amplitude by 99.6 %. Through systematic comparisons between different combinations
of sensory-motor cues as well as sensitivity analysis, we identify three distinct stages
of the search path related to the flow physics, in which the DRL agent adjusts the
amplitude, frequency and phase lag of the actions. Under the deterministic control, only
a little forcing is required to maintain the control performance, and the VIV frequency
is only slightly affected, showing that the present control strategy is distinct from those
utilizing the lock-on effect. Through dynamic mode decomposition analysis, we observe
that the growth rates of the dominant modes in the controlled case all become negative,
indicating that DRL remarkably enhances the system stability. Furthermore, tests involving
various Reynolds numbers and upstream perturbations confirm that the learned control
strategy is robust. Finally, the present study shows that DRL is capable of controlling
VIV with a very small number of sensors, making it effective, efficient, interpretable and
robust. We anticipate that DRL could provide a general framework for AFC and a deeper
understanding of the underlying physics.
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1. Introduction

Active flow control (AFC) is an important research area in the field of fluid mechanics,
which involves a fluid system being purposely altered by actuators through the exertion of
a certain amount of energy input (Collis et al. 2004; Choi, Jeon & Kim 2008). Compared
with passive control methods that usually involve geometrical modifications, AFC is
adaptive and hence can realize more effective control over a much wider operation range.
Depending on whether selected signals from the system output are fed back to regulate
the actuator(s), AFC can be either open loop or closed loop. Closed-loop control can
adjust actuation(s) using feedback signals from sensors, and therefore can automatically
operate over a much wider range. The core task of closed-loop control is to design the
controller. However, in flow-related systems, the fluid motion is governed by the nonlinear
Navier–Stokes equations, and the systems usually involve multiscale and multimodal
features, it is thus challenging to judge how the system evolve with certain types of control
input. Therefore, the use of classical control theory to design the control law is often
unfeasible in AFC. To determine a control law, researchers have developed model-based
methods that usually involve certain simplifications, such as linear models (Kim & Bewley
2007), stochastic models (Brackston et al. 2016) and reduced-order models (Rowley &
Dawson 2017), which have been successfully employed in AFC problems.

Take a classical control problem, vortex-induced vibration (VIV) control, as an example.
As one of the most typical problems in both scientific study and engineering applications,
VIV occurs when a flow passes a blunt body and asymmetrical vortex shedding appears
(Williamson & Govardhan 2004). When the vortex shedding frequency matches the
natural frequency of the mass–spring system, more challenging lock-in phenomena occur
(Zhang et al. 2015), which can be induced by two different mechanisms – resonance
and flutter. Even under a subcritical Reynolds number (Re < 47), when the flow past a
stationary cylinder is still steady and stable, VIV can occur (Mittal & Singh 2005). In
addition to understanding the complex underlying physics, suppression of these unwanted
phenomena is also of great interest, and AFC is a good solution to this (Hong & Shah
2018).

Until now, most AFC approaches for suppressing VIV have been open loop. For
example, Wang et al. (2016a, 2017a,b) applied open-loop control strategies to explore
lock-on phenomena in VIV control, with a pair of synthetic jets being used to interfere
with the vortex shedding process. Utilizing the thermal effect, Wan & Patnaik (2016)
studied the effect of body heating on the VIV of a circular cylinder with various mass ratios
and structural stiffnesses. Muddada & Patnaik (2017) used moving-surface boundary-layer
control, in which two small cylinders are deployed near the separation point of the
main cylinder and their rotational velocities are adjusted to enforce a certain momentum
injection. It is also noteworthy that as a simple yet powerful tool for VIV control, rotary
control has been utilized in both numerical and experimental environments. For example,
Bourguet & Lo Jacono (2014) studied the effect of rotation rate on the VIV of a circular
cylinder at Re = 100, and found that symmetry breaking due to rotary control influenced
the higher harmonic fluid force components as well as the phase difference between the
fluid force and structural vibration. Du & Sun (2015) used rotary control to suppress the
VIV of a circular cylinder, and their results showed that the VIV can be suppressed
in the ‘lock-on’ region, where the vortex shedding frequency is locked to the forcing
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frequency. With a proper forcing frequency and rotational velocity, the VIV amplitude can
be suppressed to less than 1 % of the cylinder diameter. Wong et al. (2018) investigated
the flow-induced vibration of a sinusoidally rotating cylinder at a low mass ratio and
observed that the vibration frequency may be locked into the forcing rotary oscillation
frequency or its one-third subharmonic. The above open-loop control attempts provide
basic knowledge about how to mediate the fluid–structure interaction (FSI) process,
especially the corresponding physical mechanism (Du & Sun 2015). This can be used
either to make the vortex shedding frequency deviate from the resonance frequency or
to suppress the strength of vortex shedding. In order to achieve the best performance,
parameter optimization is usually utilized (Ghraieb et al. 2021), which also requires huge
cost of computational resources. From the perspective of control theory, open-loop control
suffers from varying or perturbed systems, and thus can usually work efficiently only under
limited parametric conditions.

To better facilitate VIV control, researchers have also adopted closed-loop control
strategies. However, in contrast with the extensive open-loop AFCs, closed-loop controls
are quite rare, and mainly apply the classical proportional integral–differential (PID)
control scheme or its variants. For example, Zhang, Cheng & Zhou (2004) used PID
control for VIV suppression under the resonance condition, with a combination of a
hot wire sensor and a structural oscillation sensor providing feedback signals to achieve
the best VIV control performance, i.e. a VIV amplitude suppression of 82 % and drag
reduction of 35 %. Wang et al. (2016b) used PID control for VIV suppression, with the
flow being mediated by two pairs of windward-suction–leeward-blowing actuators. The
results suggest that although the selected control strategies can reach the VIV suppression
target, the control performance depends significantly on the choice of control parameters.
Vicente-Ludlam, Barrero-Gil & Velazquez (2018) investigated closed-loop VIV control
in an experimental environment, and a rotation law proportional to the cylinder’s
displacement was found to enhance the vibration while another rotation law proportional
to the cylinder’s transverse velocity could reduce the vibration amplitude. This work
suggested that different sensors can play distinct roles in VIV control. Based on classical
control theory, some improved closed-loop control schemes have also been successfully
proposed, which usually introduce fuzzy, adaptive methods or the sliding mode scheme,
e.g. fuzzy PID (Raibaudo et al. 2020) or the fuzzy sliding mode (Hasheminejad et al.
2014; Lou et al. 2021). Furthermore, based on the linear quadratic regulator, a proportional
control scheme with a time delay that embeds more flow physics has been proposed by Yao
& Jaiman (2017) for low Reynolds number scenarios. In that study, researchers developed a
reduced-order model for controlled wake flows with VIV using the eigensystem realization
algorithm.

In addition to the above closed-loop control methods, which have mainly been built upon
classical control theory, researchers have been exploring machine-learning-based methods
to find more efficient control strategies in recent years. For instance, Ren, Wang & Tang
(2019) applied genetic programming (GP) to adjust a pair of blowing/suction jets to control
VIV and successfully suppressed the VIV amplitude by 94.2 %. Furthermore, GP-based
control is also superior in terms of energy costs and robustness under larger Reynolds
numbers. Recently, Zheng et al. (2021) applied another machine learning approach, deep
reinforcement learning (DRL), to VIV control and reduced the VIV amplitude by 82.7 %
in a setting where 152 velocity sensors were deployed both around the cylinder and in the
wake to provide feedback signals and moved synchronously with the vibrating cylinder.
Although this was a good attempt, the final VIV control performance needs to be greatly
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improved. Moreover, the control set-up is quite complicated, especially for the sensor array,
limiting its feasibility in realistic situations.

As one of the most promising methods for AFC and as a hot research area in the booming
artificial intelligence (AI) field, DRL has an advantageous environment-interaction feature,
which has made it successful in many very challenging tasks such as playing Go games
(Silver et al. 2016, 2017) and adversarial computer games (Mnih et al. 2019), learning
the gliding of birds (Reddy et al. 2016) and the swimming of fish (Verma, Novati &
Koumoutsakos 2018). The feasibility of DRL in some AFC problems has also been verified
(Brunton, Noack & Koumoutsakos 2020; Rabault et al. 2020; Ren, Hu & Tang 2020).
For example, Rabault et al. (2019) achieved drag reduction for a circular cylinder in
the laminar flow regime. Paris, Beneddine & Dandois (2021) also studied the typical
drag reduction problem and explored how to reduce the state dimensions of the DRL
system. Li & Zhang (2022) performed a global stability analysis and sensitivity analysis
of the above flow problem. In our prior study (Ren, Rabault & Tang 2021a), DRL was
applied to the same problem in a more challenging situation where the flow exhibits weak
turbulence, confirming that DRL can find effective strategies in chaotic flow systems.
A more recent study by Sonoda et al. (2023) further extends the DRL-guided AFC to
the fully turbulent regime, which is significant progress towards controlling turbulence.
In a similar flow system and using an almost identical sensor layout to those in Rabault
et al. (2019) and Ren et al. (2021a), Mei et al. (2021) applied DRL to enhance VIV for
energy harvesting. Fan et al. (2020) performed DRL-guided AFC in an experimental
environment targeting reducing the drag of a circular cylinder. In our more recent work
(Ren, Wang & Tang 2021b) focusing on hydrodynamic stealth, the learned strategy in a
stationary cylinder scenario was transferred to the VIV scenario, confirming that DRL
is a good option for VIV control. Castellanos et al. (2022) also performed an analysis
of the exploration path of DRL-guided control and made comparisons with GP-based
AFC based on cluster-based network modelling that was developed by Fernex, Noack
& Semaan (2021) and Li et al. (2021), which can project individual controllers onto
a low-dimensional orthogonal domain and group them in clusters. All these works are
important contributions towards fully qualifying DRL as an effective control algorithm for
applications related to fluid mechanics. However, as far as we can see, some general issues
associated with DRL-guided AFC still need to be addressed, including excessive sensor
usage, unclear search paths and insufficient robustness tests.

Hence, in this study, we explore the effectiveness, efficiency, interpretability and
robustness of DRL-guided AFC in suppressing the VIV of a circular cylinder. We highlight
the use of simple yet efficient sensors so as to facilitate realistic applications, as well as
the interpretability of the search paths of the DRL agent with different types of feedback
signals so as to reveal how the AI agent ‘thinks’ during the random exploration process.
In addition, we confirm the control robustness in terms of the Reynolds number effect
and perturbations from the upstream flow. The DRL control strategy and physical insights
drawn from this study can shed some light on potential DRL-guided control schemes for
more complicated AFC problems.

2. Problem description and methodology

2.1. Problem description
Vortex-induced vibration occurs when asymmetrical vortex pairs are shed from a bluff
body immersed in a fluid flow. Figure 1 shows a schematic of this FSI problem, where
the velocity of the uniform incoming flow is U0. A cylinder of diameter D0 is connected
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U0

D0

y

xO

K

ω

Figure 1. A schematic diagram of the FSI system. The cylinder of diameter D0 is connected to a spring with
stiffness K. The upstream flow has a uniform velocity U0. The system damping is neglected.

to a spring along the transverse direction while being fixed in the streamwise direction.
The Reynolds number is defined as Re = U0D0/ν and is fixed as 100, unless otherwise
mentioned, where ν is the kinematic viscosity of the fluid.

Ignoring the damping effect of the FSI system, we can express the transverse motion of
the cylinder as

mÿ = −Ky + FL, (2.1)

where m is the mass of the cylinder, ÿ is the acceleration, y is the displacement, K is
the stiffness of the spring and FL is the transverse force exerted on the cylinder by the
surrounding fluid. In addition to Re, the FSI system is governed by two dimensionless
parameters, i.e. the mass ratio m∗ and the reduced velocity UR:

m∗ = m

ρ0D2
0
, UR = U0

fND0
, (2.2a,b)

where ρ0 is the fluid density and fN = √
K/m/2π is the natural frequency of the

mass–spring system in vacuum. In this study, we focus on the parameter combination
of m∗ = 2 and UR = 5, at which the VIV is locked in and is more difficult to control (Du
& Sun 2015; Zhang et al. 2015).

The hydrodynamic forces, the drag FD and the lift FL, are normalized by 1
2ρ0U2

0D0.
The lift force can be further decomposed into two components, the potential force FA
due to the added-mass effect and the vortex force FV . Generally, we have FA = −Camdÿ,
where md = 1

4πρ0D2
0 is the displaced fluid mass and Ca is the coefficient. Although an

empirical value of Ca = 1.0 had been frequently used for circular cylinders, as suggested
by Govardhan & Williamson (2000), this value has been proven to vary with the reduced
velocity and rotation rate (Bourguet & Lo Jacono 2014). In this study, Ca is determined
using the measured vibration frequency, based on the relationship between the actual VIV
frequency and total mass, i.e.

fviv = 2π

√
K

m + Camd
. (2.3)

In addition to FV and FA, the cylinder is also subjected to the elastic force FE exerted
by the spring. After being normalized by 1

2ρ0U2
0D0, they are then denoted as CV , CA and
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CE, respectively. The first two forces vary linearly with the kinematic variables, while the
vortex force describes the hydrodynamic behaviour. Substituting their definitions into (2.1)
and performing the normalization, one can calculate CV as

CV =
(π

2
Ca + 2m∗

)
ÿ∗ + 8π2 m∗

U2
R

y∗, (2.4)

where ÿ∗ = ÿD0/U2
0 and y∗ = y/D0 are the normalized transverse acceleration and

displacement, respectively.
To mediate the flow, we apply rotary motion to the cylinder that is adjustable in real

time, as in figure 1. Here, the angular velocity ω can be either positive (corresponding
to the anticlockwise direction) or negative (corresponding to the clockwise direction).
The dimensionless rotational velocity is then defined as ω∗ = ωD0/U0 and is limited
to a range of [−1, 1]. In this sense, the tangential velocity on the edge of the cylinder
would not exceed U0/2. Compared with prior studies where the open-loop rotary control
is adopted, such as the work of Du & Sun (2015), the prescribed range of the rotational
amplitude is relatively small so as to provide efficient control. To quantify the control
energy, we introduce the momentum coefficient to characterize the kinetic energy of the
cylinder undergoing rotary motion, as well as the power coefficient to characterize the
power required to drive the rotations. These are formulated as

Cμ =
1
2

Iω2

1
2

mU2
0

= 1
8
ω∗2, CP = −1

2
CMω∗, (2.5a,b)

where I represents the moment of inertia of the cylinder and we assume that its mass
is evenly distributed. Here CM represents the torque exerted on the rotating cylinder,
normalized by 1

2ρ0U2
0D2

0.
In the closed-loop AFC system, we choose the kinematic variables along the cross-flow

direction as feedback signals, including the displacement y, the velocity ẏ and the
acceleration ÿ of the cylinder. Unlike the velocity sensor array used in prior studies targeted
at reducing drag (Rabault et al. 2019; Tang et al. 2020; Ren et al. 2021a) or suppressing
VIV (Zheng et al. 2021), our choice of feedback signals is easy to realize in experimental
or real engineering applications.

For the specified actuation and sensors, the control law can be generally expressed as

ω∗
t+1 = f ( y∗

t , ẏ∗
t , ÿ∗

t ), (2.6)

where the subscripts ‘t’ and ‘t + 1’ mean that the control is conducted in a real-time
manner. Here ‘t + 1’ is the actuation instant followed by the time step when the feedback
signals are sampled. Here ẏ∗ is the velocity normalized by U0. In this study, the control
law f is modelled in the form of an ‘actor’ network, which is then determined by the DRL
agent. A detailed introduction to the DRL-base control strategy will be given in § 2.3.

Targeting at the suppression of the VIV, we introduce the following reward:

r = 〈−|y∗|〉A, (2.7)

where 〈·〉A denotes the average over the duration of one actuation. With the relatively strict
momentum constraint in this study, the extra penalization terms related to energy cost
that have been commonly adopted in prior studies are unnecessary here. The results in
subsequent sections will show that the present reward definition is sufficient for the VIV
suppression target. Therefore, the objective of this study is to seek the optimal control
strategy generalized in (2.6) so as to achieve the maximum reward expressed in (2.7).
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Figure 2. (a) The computational domain with four-level mesh refinement (not in scale). (b) A schematic
diagram of the immersed boundary method to model the moving cylinder as Lagrangian nodes distributed
with equal spacing.

Re Case Mesh resolution Fixed cylinder VIV cylinder

D0/δx CD CL St1 yA St2

100 32 1.396 ± 0.010 ±0.347 0.164 ±0.550 0.181
Present 64 1.383 ± 0.010 ±0.342 0.166 ±0.539 0.183

128 1.375 ± 0.010 ±0.339 0.166 ±0.534 0.184
Russell & Wang (2003) — 1.38 ± 0.007 ±0.332 0.169 — —

Choi et al. (2007) — 1.34 ± 0.011 ±0.335 0.164 — —
Wang et al. (2016a) 60 — ±0.337 0.169 ±0.545 0.186

Ren et al. (2019) 64 1.374 ± 0.011 ±0.338 0.169 ±0.522 0.186

300 32 1.376 ± 0.085 ±0.915 0.164 ±0.496 0.197
Present 64 1.385 ± 0.088 ±0.931 0.166 ±0.504 0.202

128 1.381 ± 0.087 ±0.928 0.166 ±0.503 0.204
256 1.378 ± 0.090 ±0.924 0.166 ±0.502 0.204

Table 1. Comparisons with prior studies and mesh convergence results. The Strouhal numbers St1 and St2
are the vortex shedding frequencies in the fixed and VIV scenarios, respectively, normalized by T−1

0 . Here yA
represents the amplitude of the cross-flow displacement.

2.2. Numerical environment
In this study, unsteady computational fluid dynamics (CFD) simulations are conducted
to provide training data for the DRL-guided AFC and to assess the performance of the
learned control strategy. In all simulations, the fluid is treated as incompressible and
Newtonian. We adopt the lattice Boltzmann method to numerically solve the
spatiotemporally evolving FSI process. In this method, we use the He–Luo model
(He & Luo 1997) to ensure fluid incompressibility and the multirelaxation time scheme
(D’Humières et al. 2002) to enhance the numerical stability.

Figure 2 shows a schematic of the computational domain, the grid partition and the
boundary conditions. In the subsequent training stage, the size of the computational
domain is 64D0 × 32D0, and the circular cylinder is initially located at the centreline,
20D0 downstream of the inlet. To allow the dynamic mode decomposition (DMD) analysis
in the near-wall wake region, the computational domain is extended to 128D0 × 64D0 in
the subsequent deterministic control stage. The multiblock grid partition method (Yu, Mei
& Wei 2002) is utilized to balance the computational accuracy and efficiency. We adopt
a four-level grid refinement, where the mesh resolution is doubled from level 0 to level 3.
Around the cylinder, the mesh resolution of the finest block (level 3) is shown in table 1.
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The inlet velocity is set as U0 = 0.04c, where c is the lattice speed, corresponding to a
time step δt = T0/1600, where T0 = D0/U0 is set as the reference time period. With the
He–Luo incompressible model, as well as a small Mach number Ma = 0.069, the effect
of fluid incompressibility is marginal.

We apply the Dirichlet boundary condition at the inlet and top/bottom walls, which
is achieved via a modified bounce-back scheme with momentum exchange (Ladd 1994).
The convective flow condition, i.e. ∂tφ + U0∂xφ = 0, is utilized at the outlet to allow the
vortices to smoothly cross the boundary with the least reflection (Fakhari & Lee 2014),
where φ denotes either component of the velocity. Similar grid partitions and boundary
set-ups have been extensively used in our previous studies (Ren et al. 2019, 2021b; Wang
et al. 2016a, 2017a,b, 2016b).

Unlike the curved boundary treatment in our prior studies (Ren et al. 2019, 2021b),
we model the moving cylinder using the multidirect forcing immersed boundary method
(Wang, Fan & Luo 2008). In this method, the moving boundary is modelled with a group
of Lagrangian nodes, where the no-slip and no-penetration conditions of these boundary
nodes are transformed into body forces exerted on the surrounding fluid nodes. The
Euler–Lagrange mapping process is iterated five times to reduce numerical errors. The
Lagrangian node spacing is fixed at πδx/4, to ensure that the Lagrangian node spacing is
smaller than or close to the Eulerian grid spacing. The hydrodynamic forces and torque
exerted on the cylinder are then integrated based on the Eulerian forces. The kinematic
equation, i.e. (2.1), is solved using a third-order total variation diminishing Runge–Kutta
method (Gottlieb & Shu 1996), so as to accurately obtain the cylinder’s instantaneous
velocity and displacement. Note that the internal mass effect when solving the FSI process
is calculated using the rigid body approximation (Feng & Michaelides 2009), as has been
well verified by Suzuki & Inamuro (2011).

Table 1 lists the mesh convergence results and comparisons with data from prior studies,
where CD is the drag coefficient and CL is the lift coefficient. At Re = 100, since the
mesh resolution with D0/δx = 32 provides a better choice to balance the computational
efficiency and accuracy, we apply this set-up in the subsequent DRL training stage. For the
deterministic control, we choose a finer mesh resolution with D0/δx = 64 for the sake of
accuracy. For cases in § 3.6, where we also have Re = 200 and Re = 300, we choose the
mesh resolution of D0/δx = 64 for both the training stage and the deterministic control.

To satisfy the strict requirements of DRL-guided AFC in terms of both computational
accuracy and efficiency, we apply an in-house graphics processing unit (GPU)-accelerated
solver (Ren et al. 2018), on a hardware platform that includes an Intel Xeon E5-2678
central processing unit and an NVIDIA Titan V GPU. This solver greatly shortens the time
required for the DRL agent to complete one trial, which is less than 2 min in the following
training stage using the coarse mesh and approximately 15 min for one deterministic run.

2.3. Deep reinforcement learning guided control
Unlike conventional approaches for constructing a controller, which rely heavily on prior
knowledge of the system, the DRL agent does not have any knowledge of fluid dynamics
and thus is regarded as a model-free approach. In order to learn the control strategy, we
apply proximal policy optimization (Schulman et al. 2017) as the DRL agent, which is
advantageous for determining continuous actions.

In the DRL framework, effective control strategies are learned through interactions
between the DRL agent and the VIV environment. In the beginning, the DRL interacts
with the VIV environment through randomized actions. Through trial and error, it learns
how to exert a certain action when the system is in a certain state. In the meantime, it learns
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DRL agent (AFC controller)

Fluid environment

State

( y∗, ẏ∗, & ÿ∗)

Reward

(–|y∗|)

State Action distribution

‘Actor’ network ‘Critic’ network

Hidden neuron

Predicted discounted reward

Action

(ω∗)

VIV environment

Figure 3. A schematic diagram of the DRL loop used in the present study. The DRL agent adopts two
independent neural networks for decision-making (‘actor’) and reward evaluation (‘critic’). In the VIV
environment, the instantaneous vorticity field is shown, together with grey lines to identify vortex structures
based on the λci criterion (Zhou et al. 1999).

how to predict the long-term reward with this state information. As shown in figure 3, the
state of the environment is represented by sensory-motor cues, and the action is the rotary
motion imposed on the cylinder. The reward defined in (2.7) is then evaluated and fed to
the agent, providing a baseline with which the agent can learn how to evaluate the control
performance, so as to encourage it to develop a better controller that achieves a higher
reward.

Two sets of artificial neural networks are used in the agent, generally named the ‘critic’
and ‘actor’ networks. As depicted in figure 3, both networks use the state as their input. On
the output side, the ‘critic’ network estimates the long-term discounted reward, whereas
the ‘actor’ network models the control strategy. The mathematical expression for the
objective of the ‘critic’ network is

Jcritic = Êt(−Â2
t ), (2.8)

where the advantage function Ât = Rt − VΘ(st) determines the gain between the real
long-term performance Rt = ∑

t′>t γ
t′−trt′ and that predicted by the ‘critic’ network VΘ

for a given st. Herein, the parameter γ is a discount factor close to unity, so the long-term
reward is preferred. In contrast, the objective of the ‘actor’ network is

Jactor = Êt[min(qt(Θ)Ât, clip(qt(Θ), 1 − ε, 1 + ε)Ât)], (2.9)

where qt(Θ) = πΘ(at|st)/πold(at|st) is the ratio of the probability of the current policy
πΘ adopting action at according to state st to the probability of the previous policy πold.
The clip term inside (2.9) indicates that qt(Θ) is constrained to an interval [1 − ε, 1 + ε],
where ε is the clipping rate needed to avoid an excessively large policy update. By using
this proximal policy optimization-based DRL framework, it is expected that the agent can
learn effective control strategies through stochastic trial and error. More details on this
framework can be found in our prior studies (Ren et al. 2021a,b). The hyperparameters
used in this study are listed in table 2. The adaptive moment estimation optimizer
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Parameter Value/Method Comment/Reference

Network architecture (actor and critic) 50 × 50 Two fully connected layers
Actuation function Swish Ramachandran, Zoph & Le (2017)
Actuations per T0 10 —
Length of each episode 100T0 —
Optimizer Adam Kingma & Ba (2014)
Action distribution Beta Chou, Maturana & Scherer (2017)
Discount factor (actor and critic) 0.97 Empirical value, 0.9 ∼ 0.999
Learning rate (actor) 3 × 10−4 Empirical value, 10−4 ∼ 10−2

Learning rate (critic) 4 × 10−4 Empirical value, 10−4 ∼ 10−2

Clipping rate 0.2 Schulman et al. (2017)

Table 2. Hyperparameters used in the DRL during the training stage.

(abbreviated as ‘Adam’) is used when updating the parameters of both neural networks,
with relatively small learning rates being used to help the training converge more stably.

Like many other machine learning applications that generally involve an exploration–
exploitation process, DRL-guided AFC can also be divided into a training stage and
a deterministic control stage. At the beginning of the training stage, the parameters of
both neural networks are randomly initialized. During the training, the CFD simulation of
each episode lasts for 100T0, longer than 18 vortex shedding periods of the uncontrolled
case. An episode is a complete run with a reinitialized flow environment using a fully
developed flow field and a control strategy updated according to the state-action–reward
chain obtained in the last run. In each episode, states are extracted 10 times within one
T0, and the actions are also enforced at the same pace. Furthermore, to enlarge the search
space, actions are sampled from the bias-free Beta distribution (Chou et al. 2017).

After the training reaches convergence, the deterministic control is performed, where
the neural networks stop updating and only the ‘actor’ network is utilized to determine
the action(s) with the given state data. Moreover, each action is no longer sampled from
the aforementioned probabilistic distribution but is directly assigned its mathematical
expectation to avoid randomness. To reach good convergence, the deterministic control
lasts for 200T0, and more actuations (100 times within one T0) are sampled to perform
smoother actuations.

3. Results and discussion

3.1. Interpretable learning with different state information
In a control system, the choice of sensors usually plays a crucial role. It is thus essential
to determine the impact of each sensor as well as their combinations, so as to identify
the most influential sensors. First, we explore the effects of different combinations of
kinematic variables that provide feedback signals. Using the same hyperparameters listed
in table 2 but different random seeds, we performed six groups of trainings and plotted
the learning curves in figure 4, where the Reynolds number is all fixed as 100. Here 〈·〉
indicates an average over one episode. Because the training process involves a certain
level of randomness, we conducted three trials for each training in figures 4(a) and 4(b)
and observed quite similar learning trends. For the cases in figure 4(c) that will be the
focus of the remaining sections, we performed five trials. Therefore, figure 4 consists of
23 training trials, i.e. 46 000 individual CFD cases in total.
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Figure 4. Training processes using all six types of combinations of sensory-motor cues as the state space. In
each training process, three or five independent trials are performed. The associated performances are shown
with translucent lines, while the mean data are shown as thick solid lines.

In most trials, the learning starts with a rapidly decreasing trend and then proceeds with
a gradually converging trend. All the learning curves eventually reach good convergence.
Taking figure 4(c) as an example, the DRL reaches a level of 〈|y∗|〉 ≈ 0.01 roughly at
the 500th episode, then progresses rather slowly beyond this point. Although the learning
curve sometimes appears to show a non-decreasing trend, the agent can always escape
from the locally optimal strategy and find the right search direction again after some
unsuccessful trials. This fact reflects the self-adaptivity and reliability of the DRL agent
in exploring nonlinear systems.

By comparing the learning curves of different combinations of sensors, it can be
observed that using the velocity sensor alone leads to the worst control performance, while
the combination of all three kinematic variables as sensors provides the best-converged
strategy, where 〈|y∗|〉 eventually reaches a level of approximately 0.002, which is a
remarkable level of VIV suppression. In addition, the ÿ∗ sensor alone can lead to a VIV
suppression to approximately 0.01, yielding a less effective but simpler alternative for the
control.

One question that comes to mind is how the DRL agent searches the optimal strategy
in one single training. In other words, how does the AI agent think and make decisions
during the exploration process? To answer these questions, we select four representative
training trials with different state spaces from figure 4 and plot the scatters of the mean
drag, vortex lift fluctuation and cross-flow displacement against the AFC forcing strength
in figure 5. Although, as we have mentioned, the search path involves a certain level
of randomness, it is surprising to see that figure 5 reveals some clear search paths. In
particular, by comparing the search paths of 〈|y∗|〉 in figure 5(a iii), one can observe that
the training process can be roughly divided into three stages. In Stage I, the DRL agent
explores a strategy that applies larger and larger forcing strength, which does gradually
improve the control performance before hitting a plateau at approximately the 150th
episode, when 〈|y∗|〉 becomes close to 0.08, with the fluctuation of ω∗ approaching its
saturated value as can be more clearly observed in figure 7(b). In Stage II, a sudden turn
appears in the 〈|CD|〉 ∼ 〈ω∗2〉1/2 trajectory as well as the 〈|y∗|〉 ∼ 〈ω∗2〉1/2 trajectory,
occurring roughly at the 150th–200th episode. Unlike in Stage I, although the forcing
strength in Stage II gradually decreases, the control performance keeps improving, and
reaches a level of 〈|y∗|〉 ≈ 0.01 at the end of Stage II around the 1000th episode. The
subsequent Stage III experiences a slower converging stage, in which the DRL agent
carefully adjusts its strategy. Eventually, the DRL agent achieves a strategy that almost
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Figure 5. Trajectories of the (a) mean drag, (b) r.m.s. of the vortex force and (c) absolute value of the
transverse displacement against the AFC forcing strength during training. Four training processes with different
combinations of sensory-motor cues are shown in (a–a). The scattered points are coloured with the episode
number, ranging from 1 to 2000. Five representative cases in subpanels of (a) are marked with white star.

completely suppresses the VIV. The 〈CD〉 ∼ 〈ω∗2〉1/2 curve shows a similar trend to that
of the 〈|y∗|〉 ∼ 〈ω∗2〉1/2 curve, and the close relationship between 〈CD〉 and 〈|y∗|〉 is
further confirmed by figure 6(a). As the main hydrodynamic source that drives the VIV,
the root-mean-square (r.m.s.) of the fluctuation part of CV , i.e. C′

V , shows a gradually
decreasing trend, except for scatter at the very beginning. From the trajectories in
figure 5(a), one can see that the DRL agent adopts different strategies in the exploration
process, and the fact that changing tactics when proceeding along one direction can no
longer improve the performance implies that the decision making of the DRL agent is
adaptive.

However, one can only find a similar Stage I in figure 5(b iii) and in the first two stages
in figure 5(d iii). In contrast, figure 5(c iii) only shows a gradually decreasing trend and
eventually reaches a high level of vibration displacement, while exerting increasing AFC
forcing and causing increased drag. Recalling figure 4(a), this case is actually a failure. The
trajectories illustrated in figure 5 reflect that properly selected sensors play a crucial role in
DRL-guided AFC, and can lead to distinct exploration paths during training. Importantly,
the revealing of distinct stages implies that while exploring the VIV environment, the
DRL agent is smart and capable enough to make radical adjustments to its control strategy
when the existing learned strategies cannot make further contributions, which we believe
is related to the underlying physics of the system being controlled.
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Figure 6. The trajectories of (a) the mean drag versus the absolute value of the transverse displacement and
(b) the momentum coefficient versus power coefficient. Training with the full state space {ÿ∗, ẏ∗, y∗} is used in
this case.

To better understand the physics behind the search path, we draw the 〈CD〉 ∼ 〈|y∗|〉
curve and the 〈Cμ〉 ∼ 〈CP〉 curve in figure 6. The nearly monotonic variation of 〈CD〉
against 〈|y∗|〉 implies that the reduction in the mean drag of the controlled cylinder is
mainly accompanied by the reduction in the distance swept by the VIV cylinder. This close
connection also suggests that CD could potentially be a good indicator of VIV control. In
other words, in future applications, the drag and lift forces exerted on the cylinder could
be good alternatives to provide feedback control signals. Figure 6(b) shows the connection
between the kinetic energy of the rotary cylinder and the power supplied to the actuator.
It is quite surprising to see that the three stages identified in figure 6 are the three edges
of a triangle-like closed loop. That is, the initial 〈Cμ〉 ∼ 〈CP〉 pair roughly overlaps that in
the final stage. To unveil more insights, a comparison will be made in § 3.3 between the
initial control strategy (taking the 25th episode as a representative) and the final control
strategy (the 1996th episode), which consume similar amounts of energy. It is also noted
that Stage II proceeds along an energy-saving direction. However, throughout Stage III,
Cμ is almost fixed while the energy supplied to the actuator monotonically increases.
Eventually, the performance is further improved at the cost of an almost doubled energy
input.

During the exploration process, since the actuation is sampled from a probabilistic
distribution determined by the DRL agent, the recorded actuation and state both involve
a certain degree of noise. To remove this impact, we utilize the control strategies learned
from the 5th to the 1995th episode (ep is the episode number), and perform deterministic
runs every five episodes. In the second half of theses deterministic runs, the mean value,
the fluctuation amplitude and the frequency of actuation are obtained, as depicted in
figure 7(a–c). In figure 7(c), because the fast Fourier transformation is performed using
the second half of each episode that involves 100T0, i.e. 10 000 actuation samples, the
finest frequency resolution is 0.01. This is why the action frequency appears discontinuous.
From the case validations illustrated in Appendix A, we show that the actuation frequency
follows exactly the same frequency as the kinematic variables, which is consistent with
the overlapping frequency of ω∗ and y∗. We also calculate the phase lag between the
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Figure 7. The variations of the control quantities during a deterministic run from the fifth episode to the
2000th episode with an interval of five episodes. The (a) mean actuation, (b) fluctuation amplitude of actuation,
(c) frequency of actuation and (d) phase lag between the actuation and kinematic variables. The three stages
are identified again and classified using different background colours.

actuation and the kinematic variables based on correlation analysis and present the results
in figure 7(d).

From figure 7, one can deduce the following features of the three stages. In Stage I
(ep < 150), the DRL agent adjusts both the amplitude and frequency of the AFC forcing,
both being increased. In Stage II (150 < ep < 1000), the DRL agent also adjusts both the
amplitude and frequency of the AFC forcing, both being gradually reduced though. In
Stage III (ep > 1000), the DRL agent gradually adjusts its phase lag against the kinematic
variables. A phase lag close to 20◦ between ω∗ and ÿ∗ is finally obtained. In both Stages I
and II, action biases, i.e. non-zero mean actions, are observed. It takes a long trial process
for the bias to disappear at the end of Stage II. This problem almost vanishes in Stage III.

In the above divisions into three stages, the transition boundary from Stage I and
Stage II is quite clear based on either the peak of the action amplitude or the location
of the largest action frequency. However, because the change from Stage II to Stage III
is relatively vague, in figure 7, the boundary between Stage II and Stage III is only a
rough approximation; from the aspect of energy utilization shown in figure 6(b), where
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Figure 8. The total sensitivity index for all sensory-motor cues during one training. The sensitivity analysis is
conducted from the fifth to the 2000th episode with an interval of five episodes.

Cμ reaches its minimum and CP starts to increases again. It also remains a question why
Stage I transits to Stage II, which is not simply a consequence of saturated action. This
question will be discussed in § 3.3.

It is observed from figure 7(d) that the phase between ω∗ and ÿ∗ is the closest, suggesting
that ÿ∗ always reacts with changes in ω∗ faster than the other two sensors. We guess this
is a key reason why the ÿ∗ sensor is selected from the very beginning, and plays a key role
during the whole exploration process.

Note that the above interpretations of the learned control strategy are essentially
different from the cluster method (Fernex et al. 2021; Li et al. 2021), where the state
information is projected onto a low-dimensional phase space and different strategies are
then clustered. By contrast, the way we interpret the search path is less general but more
straightforward from the physics perspective, and benefits from a small number of sensors.
In addition, the effect of hyperparameters used in the DRL is examined and the data are
shown in Appendix B, where it is indicated that the above findings are less sensitive to the
hyperparameters. The fact that different hyperparameters lead to the very similar division
of three stages confirm that the above findings are reasonable and solid.

3.2. Sensitivity analysis
For control with three sensor signals, it is worthwhile to know how sensitive each sensor is
in the control strategy. Therefore, we perform a sensitivity analysis via the Sobol method
(Saltelli 2002; Sobol 2014), based on SALib – a sensitivity analysis library implemented in
Python. Here the ‘actor’ network that establishes the mapping between sensor signals and
the control action is utilized, together with randomly selected values within the actuation
range. Total sensitivity indices ST are used to quantify the sensitivity of each control input
to the control output. According to the definition in Sobol (2014), ST is an invariance-based
sensitivity index that measures the contribution of the variance of each input argument to
the variance of the output, which including all variance caused by its interactions, of any
order, with any other input variables. In a whole training, ST of each sensory-motor cue is
shown in figure 8, where, the same as in the deterministic runs, we perform the sensitivity
analysis from the 5th to 2000th episode with an interval of five episodes.
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First, it is seen that the ÿ∗ sensor maintains a much higher sensitivity level than the
other two sensors. This qualitative conclusion is consistent with results in figure 4, where
the ÿ∗ sensor is the most effective one. Second, the evolution of ST also exhibits similar
features to the three stages identified in § 3.2. As revealed in figure 7, the DRL agent
adjusts the actuation amplitude and frequency during Stages I and II, where theoretically
one signal among the three kinematic variables is enough. This is why ST of ÿ∗ shows an
increasing trend during these two stages. However, because Stage III is a phase-adjusting
stage and the ÿ∗ sensor alone cannot achieve this, the contributions of the other two
sensors start to grow during this stage. This explains why the ST of both y∗ and ẏ∗ show a
dramatically increasing trend in Stage III. From the sensitivity analysis, one can also see
that adjustments of the actuation amplitude and frequency are easier than the long-march
phase adjustment process.

3.3. Deterministic control using strategies learned at different stages
After the DRL training reaches convergence, we obtain the control law established by
the ‘actor’ network. Among the 23 training processes, we select a few cases with a full
state space {ÿ∗, ẏ∗, y∗} as representatives, occurring at the 25th, the 150th, the 200th, the
998th and the 1996th episode. We conduct a group of deterministic controls using these
strategies learned at different episodes to elucidate the difference of control performance.

Figure 9 demonstrates temporal variations of the rotary forcing recorded in episodes
of different stages. From figure 9(e), one can see that the actuation reaches saturation
in the early few control cycles, and then gradually becomes quasisteady. To maintain
the control performance, a rotational velocity with an amplitude of approximately 0.4 is
required, corresponding to the linear velocity at the edge of the cylinder being less than
U0/5. Note that the vortex shedding frequency does not deviate from the natural resonance
frequency, as confirmed in Appendix A, suggesting that the main physical mechanism of
VIV suppression lies in that the DRL-guided control successfully alters the flow field to
an attenuated vortical flow, and that the lift generated by the vortices are balanced by the
Magnus effect induced by the rotary forcing. Intriguingly, from all selected cases, as well
as the information in figure 7(c), the DRL agent does not proceed with seeking a proper
frequency being the vortex shedding frequency in the uncontrolled situation, or its super
harmonics or subharmonics, so as to utilize the ‘lock-on’ effect, which is what the AFC
community usually adopted.

One can now observe another significant fact that at Stage II, the DRL agent gradually
learns the control strategy that a large forcing shall be exerted at the first few periods so as
to rapidly mitigate the vibration to a new and low-amplitude state. After that, the periodic
or quasisteady forcing is applied to fine tune this state. In this sense, the initial stage of
each episode that involves a few vibration cycles with higher forcing strength actually plays
a vital role in achieving the final VIV suppression objective. Without this initial process,
the VIV control can hardly be realized even with a higher-level of forcing, just like cases
in Stage I. This finding suggests that the DRL agent is really smart. This type of control
strategy can hardly be done in the open-loop manner.

Temporal variations of quantities related to energy consumption, i.e. CP and Cμ, are
depicted in figure 10. Under the converged control strategy at the 1996th episode, after the
initial stage, in which the DRL-guided control strategy requires a relatively large energy
input to rapidly reduce the vibration, only a small amount of energy input is needed to
maintain the control performance in the quasisteady state. In contrast, the 25th episode
does not show this kind of adaptation. Further quantitative comparisons are based on the
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Figure 9. (a) Temporal variations of the rotational velocity after the AFC is turned on. (b) The frequency
spectrum of ω∗ in the quasisteady state. Here f ∗ denotes the frequency normalized by T−1

0 . The 25th, 200th
and 1996th episode are representatives of Stage I, Stage II and Stage III, respectively. The 150th episode is the
boundary between Stage I and Stage II and the 998th episode the boundary between Stage II and Stage III.

power-saving ratio (PSR), defined as

PSR = 〈�PD〉T

〈PC〉T
, (3.1)

where �PD = −�FDU0 denotes the saved power used to drive the streamwise motion in
the situation where the cylinder is cruising with a speed of U0. This quantity is averaged
within a time horizon of one vortex shedding period. Here PC is the power consumed
by the AFC. After normalization, we have PSR = −〈�CD〉T/〈CP〉T , where �CD is the
reduced drag coefficient. Therefore, as estimated in the quasiperiodic state, the power
saving ratio is 78.7 if compared with the uncontrolled VIV case, and 1.85 if compared
with the uncontrolled stationary case. In some prior studies (Protas & Wesfreid 2002;
Bergmann, Cordier & Brancher 2005), where rotary control was used for drag reduction
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Figure 10. Temporal variations of the power coefficient and the momentum coefficient in the deterministic
control using controllers learned in selected episodes.

under laminar conditions, PSR did not exceed 1.0. Therefore, the DRL-guided control
presented in this study is energetically efficient.

Recalling that in figure 5(a i–iii), similar levels of rotary amplitude were found in the
initial and final training stages, it is interesting to see how apparently similar actuations
lead to distinct control results. To find the reason, we illustrate the temporal variations
of ω∗, y∗, ẏ∗ and ÿ∗ during one quasisteady cycle of the 25th and the 1996th episodes
in figure 11. Four instantaneous snapshots are selected, when ÿ∗, ω∗, ẏ∗ and y∗ are, in
sequence, at their lowest positions. Although a slightly biased ω∗ appears in the 25th
episode, the amplitudes of ω∗ in the two cases are very close, i.e. approximately 0.4. It
can be found that the forcing frequency of the 25th episode is slightly higher than that of
the well learned strategy in the 1996th episode. Furthermore, the ω∗ − ÿ∗ phase lag in the
25th episode is also slightly smaller, coinciding with the data in figure 7.

In figure 5, although the fluctuation amplitude of the rotary actuation in the two
episodes do not show big differences, the two strategies do lead to distinct FSI dynamics.
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Figure 11. The temporal variation of the rotational forcing as well as the kinematic variables in the quasisteady
state. Flow fields at four representative instants are demonstrated. The unsuccessful 25th episode is shown here
for comparison purposes.

With the control strategy learned in the 25th episode, the wake exhibits a C(2S) vortex
shedding pattern (Williamson & Roshko 1988) like in the uncontrolled case, where two
single vortices shed within one vibration cycle, and the like-signed vortices coalesce in
the downstream region, which is approximately 15 diameters from the cylinder. On the
contrary, a transition to the 2S pattern is observed in figure 11(b). As seen in the VIV phase
diagram provided by Williamson & Govardhan (2004), the 2S pattern is usually associated
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Figure 12. The 3-D scatters of ÿ∗ − ẏ∗ − y∗, with projections on the 2-D planes. The scatters are denoted by
blue square cubes and pink spheres, respectively, for instants before and after the control is turned on.

with a larger wavelength, or smaller vortex shedding frequencies, and this is confirmed by
the above results. Intuitively, the near-wall shear layer in figure 11(a) forms an inclined
angle using the 25th episode strategy, which is measured between the centreline of the
wake and the boundary of the positive and negative shear layers. This phenomenon appears
to be almost symmetrical in figure 11(b). This flow feature also reveals well-controlled
structure vibrations.

From instant E to instant F, the negative rotational velocity (clockwise direction)
transports momentum from the upper right-hand side of the wake to the lower right-hand
side, mitigating the asymmetrical force induced by the near-wall flow structures. In this
sense, maintaining the relatively good stability of the upper and lower shear layers is vital
for the success of the present DRL-guided VIV control. Now, one can also imagine that
if the rotary actuation is performed somewhat earlier (corresponding to a smaller ω∗ − ÿ∗
phase lag) or later (corresponding to a larger ω∗ − ÿ∗ phase lag), the influence of shear
layers on the lift could become quite different. Evidence in the later § 3.4 would confirm
that the DRL agent does remarkably enhance the stability of this FSI system.

3.4. Deterministic control using the converged control strategy
With the control strategy learned at the 1996th episode, we illustrate in figure 12 the
three-dimensional (3-D) trajectory of ÿ∗–ẏ∗ − y∗, with and without the control. In this
3-D space, the uncontrolled trajectory forms a periodic orbit. With a phase lag of 180◦
between ÿ∗ and y∗, the projection on the two-dimensional (2-D) ÿ∗–y∗ plane appears to
be roughly a straight line. After the control is turned on, this orbit gradually shrinks to its
centre and finally reaches the quasiequilibrium state, a tiny closed loop in 3-D space.

Temporal variations of the hydrodynamic force and torque coefficients, as well as the
vibration response, are depicted in figure 13. Less than five VIV periods, after the DRL
agent starts to mediate the originally periodic FSI system, the FSI system falls into a
quasisteady state. In this controlled state, the drag exerted on the cylinder is reduced
by 37 % compared with the uncontrolled VIV case, accompanied by a reduced drag
fluctuation of 98 %. Furthermore, the quasisteady drag resembles that in the uncontrolled
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Figure 13. Time histories of (a) the drag coefficient CD, (b) the lift coefficient CL, (c) the moment coefficient
CM and (d) the transverse displacement y∗. The uncontrolled stationary case, the uncontrolled VIV case, and
the DRL-controlled case are organized together for comparison purposes.

stationary case. Therefore, the drag reduction mainly stems from the narrowed distance
swept by the cylinder, as shown in figure 13(d). In figure 13(b), the lift experiences a
sharp change at the beginning of the control, even exceeding that of the uncontrolled VIV
case in the first vortex shedding period, then decays quickly as the control continues and
is eventually suppressed to almost zero. Meanwhile, a large torque with sharp variations
in the beginning is required to drive the rotary motion, as can be seen in figure 13(c).
Figure 13(d) demonstrates the successfully suppressed VIV, where the final vibration
amplitude is only approximately 0.2 % of the cylinder diameter (an enlarged view can
be found in figure 11), corresponding to a VIV amplitude suppression rate of 99.6 %.
Furthermore, for the VIV case, only a 1.3 % frequency shift is observed after control.
This almost unaffected VIV frequency indicates that the system is still in the locked-in
condition.

Comparisons of the three lift force components are depicted in figure 14, where CE is
reduced by a factor of five for the sake of clarity. From the definitions in § 2.1, one can see
that the vortex force is the hydrodynamic source that drives the VIV. The non-harmonic
variation of CV stems from the vortex shedding mode. After control, the fluctuation
of CV is reduced by a factor of over 700. This can be viewed as further evidence of
well-suppressed VIV. It is noted that the mean CV is not zero, which is a consequence
of the non-zero mean actuation, as evidenced by the fast Fourier transformation results in
figure 9(b).

In order to figure out why the VIV can be suppressed in the 1996th episode, the lift
variation in one cycle is shown in figure 15 as well as three instants corresponding to
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Figure 14. Temporal variations of the three lift components of (a) the uncontrolled VIV case and (b) the
DRL-controlled VIV case (the vortex force, the added-mass force and the elastic force).

minimum, moderate and maximum lift force, respectively. The pressure field near the
cylinder and the vorticity field are also depicted. For the three cases, the vortices that
form and shed from the cylinder surface play key roles in lift generation and the resulting
VIV.

In the uncontrolled stationary case, when CL is at its minimum at instant A, the
anticlockwise vortex (labelled as ‘acw-vortex’) at its lower surface is forming and the
clockwise vortex (labelled as ‘cw-vortex’) is about to shed from the upper surface.
Correspondingly, the pressure on its lower surface is much lower than that on the upper
surface, resulting in a negative lift force. At instant B, both the acw-vortex and cw-vortex
have moved to the downstream. The positive and negative shear layers lead to a balanced
pressure distribution on the cylinder.

In the uncontrolled VIV case, at instant D, the cylinder is moving downwards and is
near its lowest position. The cw-vortex is about to shed and has a lesser effect on the
cylinder. The negative shear layer on the upper surface provides larger pressure than the
positive shear layer on the lower surface, resulting in the maximum negative lift. At instant
E, the cylinder is near its equilibrium position and is moving upwards with almost its
largest transverse velocity. The upward motion creates a high-pressure region on the upper
left-hand surface, meanwhile the cw-vortex provides a low-pressure region on the upper
right-hand surface, leading to a balanced transverse force.

In the DRL-controlled VIV case, the well-controlled cylinder is nearly stationary. At
instant G, since the cylinder is rotating in the anticlockwise direction (i.e. positive ω∗), the
shedding of an acw-vortex is promoted earlier (compared with the uncontrolled stationary
case), thus exerting little effect on the pressure distribution over the cylinder surface. The
lift force is thus suppressed to a value around zero. Similarly, at instant I, the early shedding
of a cw-vortex is induced by the clockwise rotation of the cylinder.

The above results reveal that the DRL knows when to exert the right amount of rotary
forcing, so that effective control can be conducted by actively adjusting the phase lag
between the rotational forcing and the lift (or the transverse displacement).

To reveal control in a transient process, we present the time histories of the cross-flow
displacement y∗, the rotational velocity ω∗ and the rotational acceleration dω∗/dt∗* in
figure 16, as well as the pressure and vorticity fields at the selected instants figure 16(a)
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Figure 15. Temporal variation of lift coefficient. Pressure field and vorticity field at three representative
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rotary direction and amplitude, wherein a full circle means |ω∗| = 0.4.
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Figure 16. Temporal variation of the cross-flow displacement y∗, the rotational velocity ω∗ and its temporal
derivative dω∗/dt∗. Pressure field and vorticity field at representative instants are demonstrated.
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to figure 16(i). The dark and light grey background marks three cycles, all starting from a
zero y∗ with upwards motion. The instant in figure 16(a) is the starting point. The control
starts at figure 16(a). At instants in figure 16(a,d, f ) and figure 16(h), sharp changes of the
control forcing occur, whereas at instants in figure 16(c,e,g) and figure 16(i), the oscillation
displacement reaches its local maximum or minimum. In these cycles, the control forcing
maintains mostly at its maximum allowed value, either positive or negative.

It is observed that the sign of ω∗ is always opposite to that for y∗, suggesting that the
DRL agent adopts a simple yet effective opposition control in this initial stage, by utilizing
the Magnus effect, i.e. the anticlockwise rotary motion induces a downward force, and vice
versa. Therefore, the force induced by rotary motion would counteract the recovery elastic
force. As revealed in figure 14, the elastic force is much larger than the lift components.
As such, the rotary induced lift force can mitigate the very large recovery elastic force,
gradually slowing down the cylinder’s transverse motion.

Note that the Magnus effect is only one of the lift components. Another lift component
induced by the vortex formation and shedding is nonlinear and complex. The phase
difference between the vortex shedding and the cylinder rotation can affect this lift
component, which is reflected by the clear phase lags between y∗ and ω∗, at instants in
figure 16(b, f ). As having been discussed in § 3.1, this type of phase difference also appears
in the quasisteady stage, suggesting that the DRL agent has learned a more complicated
strategy than the opposition control.

From instant in figure 16(a) to figure 16(b), ω∗ rapidly increases, which retards the
growth of the cw-vortex. At the instant in figure 16(b), ω∗ reaches its local maximum and
then sharply decreases, promoting for the shedding of the cw-vortex and the formation
of the following positive shear layer as evidenced at the instant in figure 16(c). Similar
phenomena can also be found at instants in figure 16(d, f,h). Comparing instants in
figure 16(b,d, f,h), the large low-pressure region gradually becomes smaller and the
pressure difference between the upper and lower surfaces is gradually attenuated. This
indicates that the DRL-guided control successfully modulates the vortex dynamics. At the
instant in figure 16(c), the elastic force is at its negative maximum, the clockwise rotation
stimulates the growth of the negative shear layer while retarding the growth of the positive
shear layer, leading to an upwards lift force so as to counteract downward elastic force.
Similar phenomena can be found at instants in figure 16(e,g,i).

The time-averaged flow fields displayed in figure 17 further reveal the impact of
DRL-guided control. Through comparisons, one can note that the low-velocity far
downstream region in the uncontrolled VIV case vanishes after control, making the
DRL-controlled flow resemble the uncontrolled stationary case, while the length of the
recirculation bubble represented by the zero streamwise velocity contour is increased by
16 %. Prior studies (Rabault et al. 2019; Ren et al. 2021a) have shown that the change in the
drag force is strongly related to the length of the recirculation bubble, where an elongated
recirculation bubble is usually accompanied by attenuated and delayed vortex shedding.
Furthermore, the attenuated transverse flow after control indicates a much weaker source
of cross-flow vibration.

3.5. Dynamic mode decomposition analysis
To demonstrate changes in the coherent flow structures and flow stability characteristics
before and after control, we perform a series of DMD analyses over three flow types,
i.e. the uncontrolled stationary case, the uncontrolled VIV case and the DRL-controlled
case. Compared with the more popular method of proper orthogonal decomposition,
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Figure 17. Comparisons of the time-averaged streamwise velocity, transverse velocity and pressure field
between (a) the uncontrolled stationary cylinder, (b) the uncontrolled VIV cylinder and (c) the DRL-controlled
VIV cylinder. In subpanels (a i) and (c i), the recirculation bubble is represented by the ū = 0 contour line.

which extracts flow structures based on their energy ranking, DMD provides more clear
information related to time or frequencies. With DMD, the unsteady flow field can be
reconstructed using limited DMD modes, i.e.

v(x, t) =
L�N∑
i=0

eμitΦ i(x), (3.2)

where N is the total number of snapshots. The real and imaginary parts of μi represent
the growth rate and angular frequency of the ith DMD mode Φ i(x), respectively. Note that
we have included in Φ i(x) the corresponding amplitude, which reflects the influence of
the initial data on the DMD mode. Detailed information about the DMD algorithm can be
found in Schmid (2010) and Wang et al. (2017a).

In this study, we extract a series of flow fields with a time interval of 0.02T0 within a
duration of one vortex shedding period, and the numbers of snapshots used in the three
flow systems are 307, 275 and 279, respectively. In our tests, these numbers of snapshots
are sufficient to obtain converged DMD results. When conducting the DMD analysis, we
select part of the whole domain ranging from x∗ = 0.50 to x∗ = 14 and from y∗ = −4 to
y∗ = 4. It should be noted that the zone that contains the moving cylinder is removed, so
as to avoid the effect of moving structure on the DMD analysis. As can be seen from the
DMD modes of figure 19, this subdomain is large enough to cover most flow features both
around the cylinder and in the wake.

Sorting the DMD modes by their frequencies, we obtain the frequencies
(non-dimensionalized as Strouhal numbers) and growth rates of all DMD modes. For the
sake of brevity, we list the data for the first four DMD modes in table 3. Here, the Strouhal
number of Mode 1 is consistent with the lift frequency extracted in figure 13, and is the
dominating fluctuation frequency, i.e. the vortex shedding frequency. The frequencies of
Mode 3 and Mode 5 correspond to two and three times the vortex shedding frequency,
respectively. The first four growth rates for all three cases are of an order of 10−4 or smaller,
implying that the corresponding modes are neutrally stable.

In addition to table 3, we plot the growth rate against the Strouhal number for all
DMD modes in figure 18. The negative-frequency points are the adjoint modes, making
the data symmetrical along the vertical axis. For the uncontrolled stationary case, only a
few modes including Mode 1 have positive growth rates. For the uncontrolled VIV case,
approximately one-third of the DMD modes have positive growth rates. However, after
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Configuration DMD mode Strouhal number Growth rate (×10−5)

Uncontrolled stationary case 0 0 −2.491
1 0.163 0.290
3 0.327 − 2.258
5 0.490 − 4.025

Uncontrolled VIV case 0 0 − 1.774
1 0.182 0.373
3 0.364 − 1.024
5 0.546 8.453

DRL-controlled VIV case 0 0 −12.1278
1 0.180 −21.415
3 0.359 −10.916
5 0.539 − 8.982

Table 3. Comparisons of the amplitude, Strouhal number and growth rate of the first four DMD modes.
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Figure 18. Scatter plots of the Strouhal number versus growth rate. (a–c) Results for the uncontrolled
stationary case, the uncontrolled VIV case and the DRL-controlled VIV case, respectively. (d) A comparison
between the three cases involving only the low-frequency modes. The colours determine the mode number.
Negative Strouhal numbers represent the corresponding adjoint modes.
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Figure 19. The three dominant DMD modes calculated from the uncontrolled stationary case, the
uncontrolled VIV case and the DRL-controlled VIV case.

control, no positive growth rate is found, proving that the DRL-guided control does
enhance the flow stability. Moreover, the two peaks in the uncontrolled case suggest
that the flow instability can be triggered by either low-frequency or high-frequency
perturbations. This potential source of instability is eliminated by the DRL-guided control.

Figure 19 shows the dominant DMD modes of the uncontrolled stationary case, the
uncontrolled VIV case and the DRL-controlled VIV case. Among these modes, Mode 0
is the mean mode that corresponds to the time-averaged vorticity field, where one can see
a pair of symmetrical shear layers. After control, Mode 1 shows a much narrower shear
layer compared with figure 19(b i), as well as an elongated shear layer compared with
figure 19(a i), consistent with the time-averaged variables illustrated in figure 17. Mode 1
is connected to the lift fluctuation and is thus strongly associated with VIV suppression.
In Mode 1, one can see in-line alternating vortices behind the cylinder in figure 19(a ii)
and figure 19(c ii), which are much narrower and weaker than those in the uncontrolled
VIV case. Vortices whose centre are off the centrelines appear in the uncontrolled VIV
case, suggesting that their momentum along the cross-flow direction is larger, gained when
interacting with the cylinder. This phenomenon is evidence of larger lift fluctuations of the
cylinder exerted by the surrounding fluid. These flow features explain the changes after
the VIV is suppressed. In Mode 3, one can see pairs of counter-rotating vortices whose
centres are symmetrical along the centreline of the wake flow, which is the main cause
of drag fluctuation. Comparing figures 19(b iii) and 19(c iii), the attenuated near-wall flow
structures after control explain the remarkably mitigated drag fluctuation.

Therefore, the DMD analysis explains the remarkable enhancement of flow stability
achieved with DRL-guided control. Furthermore, changes in the coherent structures show
that DRL-guided control mediates the flow to a state resembling that of the stationary
case while generating an elongated recirculation bubble as well as weak small-scale flow
structures.
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Figure 20. Transfer learning for cases at Reynolds numbers ranging from 40 to 300. In panels (a,b), the first
episode starts from the learned strategy at Re = 100. For the Re = 300 case in (b), the DRL agent inherits the
converged strategy from the Re = 200 condition.

3.6. Robustness at different Reynolds numbers
In this section, we test the robustness of the DRL-guided control strategy within a
Reynolds number range of [40, 300]. Instead of directly applying the learned strategy to
the off-design conditions, we introduce the idea of transfer learning to further improve
performance. We retain almost all of the same set-ups as in the Re = 100 case but
reinitialize the ‘actor’ and ‘critic’ neural networks with well-trained model parameters
as in the control strategy of § 3.2. The training then continues until reaching convergence.
The converging trends for various Reynolds numbers are shown in figure 20. Note that in
figure 20(a), the actuation range of ω∗ ∈ [−1, 1] is retained. However, due to the saturated
forcing occurring around Re = 180, we enlarge the actuation range and choose an interval
of [−2, 2] for the Re = 200 case. For the Re = 300 case, we choose a larger actuation
interval of [−3, 3] and start the transfer learning via inheriting the strategy learned at
Re = 200. Instantaneous vorticity fields, as well as the vibration responses and AFC
forcing at selected Reynolds numbers, are organized into figure 21.

At Re = 40, the VIV is under the subcritical Re condition (Mittal & Singh 2005). When
the DRL-guided control is turned on at t∗ = 0, the flow becomes steady and only slight
rotary forcing is needed to sustain the suppressed VIV. For Re � 120, the starting point of
the transfer learning shows that the learned strategy at Re = 100 is already good, capable
of suppressing the VIV to a level around 0.001 times the cylinder diameter. In the following
transfer learning process, the curve only shows a very slow decreasing trend, indicating
that there is almost no more space for the DRL agent to improve its performance. As Re
is further increased to 140, a larger VIV amplitude is noted in the beginning, suggesting
that the learned strategy cannot be directly applied under this condition. However, with
transfer learning, the control performance can be further improved to a level of roughly
〈|y∗|〉 = 0.003. This case vigorously verifies the advantage of transfer learning.

As Re is further increased to 160, a similar trend is observed as in the case of
Re = 140, while showing a higher starting point and less effective control performance.
This change suggests that the increased Re starts to make the VIV control more difficult.
The DRL-guided control experiences a failure when Re is increased to 180, and the
performance is only slightly improved as the learning proceeds. The finally converged
strategy shows unsuccessful VIV suppression, as depicted in figure 21(c iv). Meanwhile,
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Figure 21. The flow fields, vibration response and rotational forcing from DRL-guided control at selected
Reynolds numbers. Instantaneous snapshots of (a) the uncontrolled VIV case and (b) the DRL-controlled VIV
case. (c) Temporal variations of the vibration amplitude before and after the control is turned on, as well as the
AFC forcing. In panels (a,b), instants are selected when the cylinder is crossing its equilibrium position with
upward velocity.

we also note that the actuators have already reached saturation at this point, explaining
why the DRL can hardly improve the performance during transfer learning. Therefore, we
expand the actuation range in cases when a higher Reynolds number is involved.
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From the perspective of the flow field, one can also observe that in figure 21(a ii,iii,b ii,iii,
c ii,iii), a transition from the C(2S) vortex shedding pattern to the 2S pattern occurs. The
phenomenon that the DRL-controlled flow field shows a larger centre-to-centre distance
between two adjacent and like-signed vortices suggests that the vortex shedding period is
enlarged by the rotary control. The less successful case, the Re = 180 case, does not show
a pattern transition but the distance between the parallel-moving vortices is narrowed.
At Re = 200 and Re = 300, a dramatic transition of the alternating 2S vortex shedding
pattern to the C(2S) pattern is observed, which can be explained by the high-frequency
rotary forcing in figures 21(c v) and 21(c vi). This frequency shift in the rotary forcing
reveals a distinct mechanism of VIV control, which, as concluded by Du & Sun (2015), is
due to the fact that the vortex shedding frequency is attracted to the forcing frequency. In
other words, for the cases when Re = 200 and Re = 300, the control strategy discovered
by the DRL actually utilizes the ‘lock-on’ effect. A similar vortex shedding pattern of the
Re = 300 case can also be found in the work of Protas & Wesfreid (2002), where harmonic
rotary control with a frequency of two times the vortex shedding frequency was utilized.
In fact, this frequency ratio matches the forcing frequency over the vibration frequency in
figure 21(c vi) well.

It should be noted that in this section, while performing the transfer learning, we do not
follow the prior practice in § 3.1, in which a group of three or five trials was conducted so
as to avoid the possible effects of training randomness, and thus we do not intend to imply
that the strategies showcased in figure 21 are the only optimal ones. Our main objective is
to demonstrate the robustness of DRL-guided control in terms of different Re, and these
cases indeed prove that the DRL-guided control is qualified. In addition, we understand
that the VIV at Re = 300 involves the 3-D effect. Here we still choose the 2-D simulations
so as to keep consistent with the other cases. In the future, 3-D and even the fully turbulent
conditions would be thoroughly studied. Note that in higher-Reynolds-number conditions,
our choice of state space, action and reward for VIV control would not be affected, thus
we anticipate that the model-free and data-driven DRL could possibly be still effective.

3.7. Robustness with a perturbed upstream flow
In the Introduction, we mentioned that current studies related to DRL-guided AFC lacks
sufficient tests and confirmations with perturbed environments, which is the more realistic
situation. In this section, we further verify the robustness of the DRL-guided control
strategy in a perturbed upstream flow. We superpose a harmonic perturbation to the
uniform velocity U0 at the inlet (Konstantinidis & Bouris 2009; Zhao et al. 2013; Ma
et al. 2021), and thus the inlet velocity becomes

U′
0 = U0(1 + εp sin(2πfpt)), (3.3)

where εp is the perturbation amplitude and fp the perturbation frequency. In the study
of Konstantinidis & Bouris (2009), both the harmonic (as (3.3)) and the non-harmonic
upstream perturbations induced complicated flow patterns and hydrodynamic force
responses. In a recent study that focused on the effect of a sinusoidal streamwise gust
on the vortex-induced force on an oscillating rectangular cylinder using both wind tunnel
experiments and a CFD approach (Ma et al. 2021), it was found that the flow structure
was sensitive to the upstream flow condition. For demonstration purposes, we fix the
perturbation amplitude to quite a challenging level, εp = 0.5 (a value of 0.325 is used
in Konstantinidis & Bouris (2009) and Zhao et al. (2013)). In this sense, the robustness
is essentially different from that of § 3.4, due to the fact that the Reynolds number of the
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Figure 22. Comparisons of the instantaneous streamwise velocity between (a) the uncontrolled cases and
(b) the DRL-controlled cases. (c) The vibration responses and rotational forcing both before and after the
AFC is turned on. Cases with four perturbation frequencies are illustrated from subpanel (i) to subpanel (iv).

incoming velocity dynamically varies within a range of [50, 150]. We then focus on the
effect of perturbation frequency on the DRL-guided control and test a series of fp, with the
dimensionless frequencies fpT0 being 1, 0.5, 0.25 and 0.125, respectively. For consistency,
the DRL-guided control uses the same learned strategy that was tested in §§ 3.2 and 3.3.
The instantaneous snapshots, as well as the temporal response of the vibration amplitude
and the AFC forcing, are depicted in figure 22.

In cases where the perturbation frequency is large, the streamwise velocity is easier
to mix up, causing a less clear streamwise wave as shown in figure 22(a). As shown by
the distributions of the high-velocity and low-velocity regions, which can be regarded
as signatures of the vibrating cylinder, low-frequency perturbations generally have a
stronger impact on the flow field. After control, the DRL-controlled flow field appears
to have well-attenuated flow signatures for all perturbation frequencies. Furthermore, as
can be seen from figure 22(c), the vibrations are all well suppressed. After the dynamical
vibration reaches convergence, the average 〈|y∗|〉 become 0.0013, 0.0027, 0.0141 and
0.0028, respectively. In addition, when perturbations are introduced to the FSI system, one
can see remarkable reactions from the variations in ω∗. In figure 22(c i), the rotary control
is almost unaffected by the perturbation. However, in figure 22(c ii–iv), the AFC forcing
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almost reaches saturation. When the perturbation frequency approaches the VIV resonance
frequency (see table 1), we see the most challenging case with fpT0 being 1/4, as shown in
figure 22(c iii). In this case, the asynchronous perturbation and vibration cause difficulties
for the DRL in making decisions and induce high-frequency and saturated actuations.

The onset of complicated frequency features reflects the significant impact of the
perturbed upstream flow on the flow and vibration response, whereas the DRL agent
can still successfully realize the vibration suppression objective. Therefore, the above
robustness tests prove that the DRL-guided control is not only efficient under uniform
upstream flow conditions, but is also successful when the environment is experiencing a
certain level of perturbation.

In our prior study (Ren et al. 2021b) targeted at eliminating the wake signatures of a
circular cylinder, it was observed that the attenuated wake signature is closely related to the
hydrodynamic forces exerted on the cylinder, as well as the vibration characteristics. The
findings here, on the opposite side, show that the suppression of vibration also facilitates
the attenuation of wake signatures, even with strong upstream perturbations.

4. Summary and conclusion

In the present work, we have demonstrated the application of DRL-guided AFC to the
classical VIV problem. Through self-rotary control guided by the DRL agent in a real-time
and self-adaptive manner, the VIV was eventually suppressed, with a reduction in the VIV
amplitude of 99.6 %. Through case studies and detailed analysis, we have drawn the
following conclusions.

(i) Under the lock-in condition, the DRL-guided AFC was found to be capable of
suppressing the VIV with relatively small actuations and energy input, indicating
that the control method is effective and efficient.

(ii) With all possible combinations of sensory-motor cues being tested, the combination
of displacement, velocity and acceleration sensors showed the best performance,
while the acceleration sensor alone played the most significant individual role. This
finding was confirmed by sensitivity analysis. Three distinct search paths during
training were observed, intuitively illustrating the logical approach of the AI and
showing that the DRL exploration process is interpretable.

(iii) The DMD analysis showed that the DRL control remarkably enhanced the flow
stability and transformed the flow field into a state resembling an uncontrolled
stationary one, while leading to an elongated recirculation bubble and mitigating
small-scale flow structures. The DMD analysis offered solid evidence that the DRL
exploitation was physically interpretable.

(iv) With various Reynolds numbers and a perturbed upstream flow, DRL-guided
control could still successfully suppress flow-induced vibration, indicating that the
DRL-guided control is robust. Moreover, the idea of transfer learning has also
been proven to be a powerful tool with which to extend the capability of DRL in
complicated tasks.

Therefore, we can conclude that the present DRL-guided VIV control method is
effective, efficient, interpretable and robust. Although the physical model of VIV is
relatively simple, the case we have demonstrated in this study can provide insight for future
studies concerning more complicated flow-related systems, especially the control in fully
turbulent regime. The rich physics and practical significance of turbulence control make us
firmly believe that the DRL-guided turbulence control is a very valuable field to explore.
Moreover, the DRL-guided control method with interpretations from the physical aspect
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can help us understand how AI identifies an optimal controller and the physical rationale
behind it.
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Appendix A. Response to a specified sinusoidal signal through the controller

Because the learned controller is established as the form of a neural network, it is less
straightforward when describing its features. In this supplementary section, we investigate
how the controller learned at the 1996th episode reacts when simple sinusoidal signals are
specified as the input. We consider a non-normalized vibration amplitude formulated as

y = yAD0 sin
(

2πSt
T0

t
)

, (A1)

where yA is the specified dimensionless vibration amplitude, and St represents the
dimensionless vibration frequency. The dimensionless state variables y∗, ẏ∗, ÿ∗ can then
be deduced and function as the input of the DRL controller, i.e.

y∗ = yA sin
(

2πSt
T0

t
)

,

ẏ∗ = 2πStyA cos
(

2πSt
T0

t
)

,

ÿ∗ = −4π2St2yA sin
(

2πSt
T0

t
)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

A systematic parametric study concerning values of yA ranging from 0.001 to 1 and St
ranging from 0.1 to 0.3 provides an overall view of the response of the controller. These
ranges can sufficiently cover all possible yA − St pairs during the training and deterministic
control process. The results are organized into figure 23.

From the phase diagrams, one can draw the following conclusions.

(i) A marginal actuation bias exists, especially when the vibration amplitude is small.
However, compared with the actuation amplitude, this bias is still very small. In
the aforementioned discussions in § 3.3, we did not find clear evidence that this
bias plays a significant role in the control strategy. Therefore, we believe it is just a
consequence of an imperfectly trained controller.

(ii) The action amplitude reaches the saturation state easily. This fact also coincides with
the saturated actuation in the initial stage of control, as shown in figure 9. As having
been discussed in § 3.3, this control ensures sufficiently large forcing strength in
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Figure 23. The AFC response with specified sinusoidally varying sensor signals as the control input. (a) The
mean rotational forcing, (b) the fluctuation amplitude of the rotational forcing, (c) the frequency of the rotational
forcing, and (d) the phase lag between the rotational forcing and the transverse displacement. (a) Average ω∗.
(b) Amplitude of ω∗. (c) Frequency of ω∗. (d) ω∗ − ÿ∗ phase lag (deg.).

Case Network architecture (actor, critic) Learning rate (actor, critic) Discount factor

I 64 × 64, 64 × 64 3 × 10−4, 4 × 10−4 0.97
II 32 × 32, 32 × 32 3 × 10−4, 4 × 10−4 0.97
III 50 × 50, 50 × 50 1 × 10−4, 1 × 10−4 0.97
IV 50 × 50, 50 × 50 1 × 10−4, 1 × 10−4 0.97
V 50 × 50, 50 × 50 3 × 10−4, 4 × 10−4 0.96
VI 50 × 50, 50 × 50 3 × 10−4, 4 × 10−4 0.98

Table 4. Extra hyperparameters used to examine the effect of hyperparameters on the DRL-guided control.

the initial stage, which is significant in rapidly controlling the vibration to a new
quasisteady state.

(iii) The actuation frequency is always identical to the vibration frequency. This once
again confirms the finding in § 3.2 that the DRL agent does not focus on finding
optimal frequencies that utilize the ‘lock-on’ effect. The DRL agent is actually
adapting to the system frequency.
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Figure 24. Learning process with six sets of hyperparameters, labelled from I to VI. Here the curve with
hyperparameters used in figure 4(c) functions as the reference.
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Figure 25. Trajectories of the (i) mean drag (ii) r.m.s. of the vortex force and (iii) absolute value of transverse
displacement against the r.m.s. of the rotational velocity.

(iv) The ω∗ − ...y∗ phase difference reveals somewhat complicated features. It is quite
sensitive to the vibration frequency, while only being slightly affected by yA, except
when yA is small. As shown in figure 4(c), in the training, especially in Stage III, the
vibration amplitude lies right in this range. Moreover, in Stage III, the DRL agent
is mainly seeking the optimal phase between the actuation and kinematic variables.
The fact that the phase lag is affected by both the vibration frequency and vibration
amplitude makes the phase-adjusting task quite challenging. This explains why the
DRL agent requires much effort in Stage III.
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Appendix B. Effect of hyperparameters

As a general view in the field of machine learning, hyperparameters could affect the
final output. To examine this effect, we perform six extra learnings that utilize different
combinations of hyperparameters. The set-ups and results are shown in table 4, figure 24
and figure 25. We choose some significant hyperparameters that could affect the training
process, i.e. the neural network structure, the learning rate and the discount factor.
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