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TOPOLOGICAL REFLECTION GROUPS 

DRAGOMIR Z. DJOKOVIC 

0. Introduction. Let G be a closed subgroup of one of the classical compact 
groups 0(n), U(n), Sp(n). By a reflection we mean a matrix in one of these 
groups which is conjugate to the diagonal matrix diag (—1, 1, . . . , 1). We 
say that G is a topological reflection group (t.r.g.) if the subgroup of G generated 
by all reflections in G is dense in G. 

It was shown recently by Eaton and Perlman [5] that, in case of 0(n), the 
whole group 0(n) is the unique infinite irreducible t.r.g. In this paper we solve 
the analogous problem for U(n) and Spin). Our method of proof is quite 
different from the one used in [5]. We treat simultaneously all the three cases. 

The problem of classifying t.r.g.'s easily reduces to the case when the group 
is irreducible. In the irreducible case one has to distinguish the finite and 
infinite cases. Of course, the theory of finite reflection groups in 0{n) or U(n) 
is well-known. More generally in case of U(n) one knows all finite subgroups 
generated by pseudo-reflections [9], [2]. The list of all finite subgroups of 
Sp(n) generated by pseudo-reflections does not seem to be known. 

We shall consider only the case when G is an infinite irreducible t.r.g. Then 
the identity component Go of G has positive dimension. We again have to dis
tinguish two cases: first when Go is reducible and the second when it is irre
ducible. The complete answer in the first case is provided by Theorem 11 and 
in the second case by Theorem 14. It is interesting that such a mild hypothesis 
allows us to completely classify these t.r.g.'s. 

The proof of Theorem 14 relies heavily on the classification of totally 
geodesic submanifolds of the real, complex, and quaternionic projective 
spaces. In the real case this is well-known. The complex case is analysed in [1]. 
(I am indebted to Patrick Ryan for this reference.) We were not able to locate 
in the literature such a classification in the case of the quaternionic projective 
space. Therefore we have included the description of these submanifolds in 
Section 3. This is accomplished by classifying first some Lie triple systems in 
Section 2. 

1. Preliminaries. We denote by F one of the following : the real field R, the 
complex field C, or the division algebra of real quaternions H. By Un(F) we 
denote the corresponding unitary group. Thus Un(R.) = 0(n), Un(C) = 
U(n), and E/n(H) = Sp(n). 

We denote by 1, i, j , k the standard basic units of H and we identify C with 
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R + Ri , as usual. Hence R C C C H, and consequently 0{n) C U(n) C 
Sp{n). 

A reflection is a matrix R £ f/n(F) which is conjugate to diag 
( - 1 , 1, 1, . . . , 1). We denote by S$n(F) the set of all reflections of Un(F). 
Clearly we have &n(R) C &n(C) C ^ ( H ) . 

By Fw we denote the right F-vector space of dimension n consisting of column 
vectors. This vector space is equipped with the s tandard hermitian inner 
product (x, y) — x*y. The set of all unit vectors in Fn is a sphere wrhich we 
denote by S(Fn). The dimension of this sphere (as a manifold) is n — 1 if 
F = R, 2» - 1 if F = C, and 4w - 1 if F = H. 

The s tandard orthonormal basic vectors of Fn will be denoted by e\, . . . . , en. 
We shall denote by P(Fn) the projective space over F associated to Fn, and 

by £:FW\{0} —> P(Fn) the corresponding projection. 
Any two reflections in Un(F) are conjugate. Hence &n(F) is a homogeneous 

space for Un(F) and so a closed submanifold of Un(F). The map <J>:5(Fn) —» 
<^?n(F), defined by $ ( a ) = In — 2aa*, is smooth and surjective. I t induces a 
diffeomorphism </>: P(FW) - > « ^ n ( F ) . 

The centralizer of Ri = In — 2^i^i* = diag ( — 1, 1, 1, . . . , 1) in Un(F) is 
the obvious subgroup £/i(F) X Un-i(F). The Lie algebra g of Un(F) is the 
space of all skew-hermitian matrices, and the Lie algebra f) of Ui(F) X 
Un-i(F) consists of all skew-hermitian matrices of the form 

a 0 
0 X 

where a f F and X is of size (n — 1) X (n — 1). Conjugation by Ri is an 
involutive automorphism of g, Ï) is the ( + l)-eigenspace and let m be the 
( —l)-eigenspace. Clearly, m consists of matrices of the form 

0 — x*' 
\X 0 

The projective space P(Fn) is the symmetric space associated with the sym
metric pair described above (see [7]). 

The differential of p a t ex maps the space of tangent vectors I I, x G F w _ 1 

bijectively on the tangent space of P(Fn) a t p{e\). Hence wre may identify 
these spaces. 

L e t / : ( - e , + e ) - ^ 5 ( F w ) b e a s m o o t h m a p a n d l e t / ( 0 ) = a, / ' ( 0 ) = h 6 Fn. 
Then f*(t)f(t) = 1 for all t and by differentiating and evaluating a t t = 0 we 
obtain h*a + a*h = 0, or equivalently Re (a*h) = 0. Hence the tangent 
space of S(Fn) a t a consists of all vectors h G Fn satisfying the equation 
Re (a*h) = 0. 

We have $ ( / ( / ) ) = / n - 2 / ( 0 / * ( 0 , and $ ( / ( 0 ) ) = S (a) = ^ = A -
2aa*. Differentiating again a t / = 0, we obtain 

(d$)a(h) = -2(ha* + ah*). 
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It follows that the tangent space of &n(F) at Ra consists of all matrices of the 
form ah* + ha* where h Ç Fn and Re (a*h) = 0. If Re (a*h) = 0 then 

Rn(ah* + ha*)Ra = (In - 2aa*)(ah* + ha*)Rn 

= (ha* - ah* - 2aa*ha*)(In - 2aa*) 

= —ha* — ah* + 2a(a*h + h*a)a* = — (ah* + ha*). 

Thus conjugation by Ra induces the minus identity map in the tangent space 
of &n(F) at Ra. Since this conjugation induces an automorphism of £%n(F), 
considered as a Riemannian globally symmetric space (see [7]), it follows that 
this conjugation is the geodesic symmetry of &n(F) at the point Ra. We shall 
use this fact later in the proof of Theorem 14. 

If P is a group wTe shall denote by Monn(P) the group of monomial n X n 
matrices whose nonzero entries belong to P. Clearly, this group is isomorphic 
to the wreath product of P with the symmetric group Sn. 

2. Some Lie triple systems. We take here F = H and identify x G F* -1 

with 

(O -x*\ 

An easy computation gives 

r r / 0 -x*\ (0 -y*\] (0 -z*\] = (0 -u*\ 

where u = yx*z — xy*z + z(x*y — y*x). Thus, using the above identification, 
we can write 

(1) [[x, y], z] = yx*z — xy*z + z(x*y — y*x). 

A real vector subspace V C Fw_1 is called a Lie triple system if [[x, y],z] G V 
for all x, y, z G V. 

Sp(l) X Sp(n — 1) acts on g by restricting the adjoint action of Sp(n). The 
subspace m is stable under 5^(1) X Sp(n — 1). For 

(o A) e sp{l) x sp{n ~ 1} 

we have 

X 0 \ / 0 - x * \ / X 0 \ / 0 -Xx*yl*\. 
0 A]\x 0 / \ 0 A*) ~ \Ax\ 0 / 

Using dot to denote this module action and identifying m with Fw_1, we can 
write 

(J j))-x = ̂ x\ (xfF-1). 
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11 a (z Sp(l) X Sp(n — 1) and if V C M is a Lie triple system then a • V 
is also a Lie triple system; such pairs of systems are said to be equivalent. 

I t is easy to verify tha t the following are Lie triple systems in m: 
Type 1. 

{(£i, . . . , £ . , 0, . . . , 0 ) ' | £i, . . . , { „ <E R} 1 ^ m ^ w - 1. 

73>/?£ 2. Same as type 1 except tha t £i, . . . , £w £ C. 
jfype 3. Same as type 1 except t ha t £i, . . . , £m £ H. 
jH^e 4. 

{({, ,0, . . . , 0 ) 1 fi G H , €i + Si = 0}. 

T H E O R E M 1. £^ery nonzero Lie triple system V C m is equivalent to one of 
the systems of the four types given above. 

Proof. For nonzero x Ç F we have xH P\ F = x - Kx for a unique real 
subspace i£, of H containing R. For nonzero X £ i£T we have Kx\ = X~1KX = 
\KX. Let rx be the real dimension of Kx. 

We claim tha t Kx = x*V = {x*y\y £ V\. If X G 2 ^ then y = xX £ F and 
so x*3> = x*xX G x* F. This shows tha t Kx C ^* V. By specifying 2 = i in 
(1), we obtain 

yx*x + x(x*3/ + y*x) — 3x;y*x 6 F. 

Since x*x and x*;y + y*x are real numbers, it follows tha t x, y £ V =^ xy*x G V. 
Hence, then y*x £ Kx and since Kx = i£ r we also have x*y £ i£T- This shows 
tha t we also have x*V C KX} and so our claim is proved. 

Let r = max( r r ) for nonzero x Ç F. Then we have four cases according to 
whether r = 1, 2, 3 or 4. 

Case r = 1. For all nonzero x £ F we have i£.r = R. Since Kx = x*F , it 
follows tha t x*y Ç R for all x, y Ç F. This implies tha t the canonical map 
F ® R H - > H " _ 1 = m is injective (see, for instance, [4, Lemma 3]). Hence 
there exists an orthonormal R-basis a\, . . . , am in F where dirriR(F) = m. 
Choose A Ç Spin — 1) such tha t ^4at9 = e,, 1 ^ s ^ m. Then A • V is a Lie 
triple system of type 1. 

Case r = 2. Fix nonzero a G F such tha t r„ = 2 and set K = Ka. Clearly K 
is a subfield of H. We claim tha t for all nonzero x £ V we have Kx = K. I t 
suffices to prove this in the case when a*x ^ 0. Since x*a Ç Ka = K, we have 
i£x = x * F Z) x*aK = K. Now rx ^ 2 implies tha t Kx = K, and our claim is 
proved. 

Thus for all x, y Ç F we have x*}> Ç K. Consequently, the canonical map 
F ® K H —> m is injective. Hence there exists an orthonormal K-basis cii, . . . , am 

of F where m = d i m K ( F ) . There exists X Ç Sp(l) such tha t K = X^CX. 
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Choose A £ Sp(n — 1) such tha t Aas = es\ for I ^ s ^ m. Then 

X 0 
0 A 

is a Lie triple system of type 2. 

Case r = 4. Fix nonzero ez G F such t h a t i£« = H. We claim tha t Kx = H 
for all nonzero x G F. I t suffices to prove this when a*x ^ 0. Then the claim 
follows from Kx = x* V D x*atl = H. Hence V is an H-subspace of m and it is 
clearly equivalent to a Lie triple system of type 3. 

Case r = 3. Let a G F be a uni t vector such t ha t ra = 3 and write i£„ = K. 
We claim tha t F = aK. Otherwise let b Ç V\aK. Then a = a*b f a* F = 
i£„ = K and so c = b — «a 6 F. Clearly c ^ 0 and a*c = 0. Let X d K and 
pu t x = a, y = c, z = aX + c. Then x*z = X, 3>*3 = c*c, x*y = y*x = 0 and 
so it follows from (1) t ha t c\ — ac*c (z V. Hence c\ (E F, i.e., X £ Kc. This 
shows t ha t K (Z Kc and since rc ^ 3 we must have Kc = K. Now let a, 0 £ i£ 
and specify x, y, z in (1) to be # = aa, y = eft, z = c. Since now x*z = x*y = 0 
and y*z = fic*c, it follows t ha t — xy*z = —aapc*c (z V. i.e., a/3 Ç i£. Con
sequently X is closed under multiplication, which is impossible since diniR(i£) 
= 3. T h u s F = aK. 

We now claim tha t we can choose X £ K C\ Sp(l) such t h a t if b = a\ then 
Kb = R + Ri + Rj. If K = R + Ri + R j we take X = 1. Otherwise 
K~jb Ri + Rj and we can choose fi £ Ri + Rj such t h a t p & K. If W = 
K H (R + R i + Rj) then d i m R ( I F ) = 2 and so X H W» ^ 0. Choose 
X g W T \ S p ( l ) such t ha t XM G X . Since FF D R and d i m R ( I F ) = 2, W is a 
subfield of H and so X" 1 ^ D X~lW = IF. Since M Ç X -1i£ and ^ d_ W we mus t 
have X - 1 ^ = PF + RM = R + Ri + R j . Hence X , = KaX = X^K,, = X - 1 ^ 
= R + Ri + Rj. 

Now choose 4̂ Ç 5p(w — 1) such t ha t ^46 = <?i&. Then 

A • F = AbKh = eikKb = 6^i(Ri + R j + Rife) 

is precisely the Lie triple system of type 4. 
This completes the proof of the theorem. 

3. T o t a l l y geodes ic s u b m a n i f o l d s of t h e q u a t e r n i o n i c project ive 
space . As explained in Section 1, we identify H w - 1 with the tangent space of 
P(Hn) a t the point p{e\). We also identify m with Wn~l via the map 

( 0 —X\ Tjn-1 

There is a bijection between the connected total ly geodesic submanifolds of 
P(HW) containing the point p(e\) and the Lie triple systems in m (see 
[7, p. 189]). If M is such a submanifold then the associated Lie triple system 
in m is simply the tangent space of M a t the point p(e{). 
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If W is a real subspace of H ? we shall write p(W) instead of the more precise 
p(W\{0\). 

T H E O R E M 2. Connected totally geodesic submanifolds M of P(Hn) of positive 
dimension are precisely the following: 

Type 1. M = p(W) where W C Hw is an R-subspace such that x*y Ç R for 
all x,y £ W; 

Type 2. M = p(W) where W C H n is a C-subspace such that x*y Ç C for all 
x, y (z W (here the embedding C C H is not necessarily standard); 

Type 3. M = p(W) where W C Hn is an Yi-sub space. 
Type 4. M = p(W) where W — aR + bÇRi + R j + Rk) and a, b are non

zero vectors in YY1 such that a*b = 0. 

Proof. Let M be a totally geodesic submanifold of P(Hn) and dim M ^ 1. 
Since Sp(n) acts transitively on P(HW) , we may assume tha t p(ei) G M. Let L 
be the tangent space of M a t this point. Then V is a Lie triple system in m. 
The fixer of p(ei) in Spin) is the subgroup Sp(l) X Sp(n — 1). Hence, by 
Theorem 1, there exists A in this fixer such tha t A • V is one of the Lie triple 
systems listed just before Theorem 1. Using the correspondence between 
totally geodesic submanifolds containing p{e\) and Lie triple systems in tn, 
the proof now reduces to the verification tha t p(W) is totally geodesic in each 
of the following cases: 

W = dR + . . . + emR, W = eiC + . . . + emC, W = etf + . . . + emH, 

and W = 6^R + e2(Ri + Rj + Rk), 2 S m g n. 

The geodesic p(ei cos t + e2 sin /) lies in p(W) in the first three cases. In the 
first case the subgroup {1} X 0(m — 1) X {In-m] of Sp(n) leaves the sub-
space V = e2R + . . . + emR invariant and acts transitively on the unit 
sphere 5 ( F ) . Since geodesic is mapped to geodesic by this action, it follows tha t 
all geodesies git) such tha t g(0) = pie\) and g'(0) G V lie in piW). Therefore 
piW) is totally geodesic. Similar arguments are applicable in the remaining 
three cases. 

The proof is now completed. 

Let M = piW) as in Theorem 2. Let WH be the H-subspace of KL spanned 
by W. Then piWH) is the smallest quaternionic projective subspace con
taining M. The H-dimension of WH will be called the width of M and denoted 
by w(M). Note tha t if M is of type 4 then w(M) = 2. Later we shall be in 
particular interested in totally geodesic submanifolds M oi P ( H n ) of maximal 
width i.e., wiM) = n. Thus type 4 will be relevant only if n = 2. 

Results similar to Theorem 2 are valid for P(CW) and PÇRn). We did not 
include the case of P ( C n ) because it occurs in the l i terature (see [1, Lemma 4]). 
The complex totally geodesic subspaces of P ( C n ) are also described in 
[8, pp. 273-278]. Of course, totally geodesic submanifolds of P ( R n ) are jus t 
the projective subspaces. 
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4. Topo log ica l ref lect ion g r o u p s . We shall say t ha t a subgroup G of 
Un(F) (F = R, C, or H ) is a topological reflection group (t.r.g.) if it coincides 
with the closure of the subgroup generated by G H f ^ F ) , i.e., the set of 
reflections in G. 

In the sequel G denotes a t.r.g. We consider F n as a (G, F)-bimodule with G 
operating on the left and F on the right. We say t h a t G is irreducible if this 
bimodule is irreducible. 

T h e following proposition is well-known (at least in the cases F = R, or 
F = C ) . 

PROPOSITION 3. Let G C Un(F) be a t.r.g. There exists an orthogonal decom

position Fn = Vi © . . . © Vk into simple (G, F)-bimodules. If d (1 ^ i ^ k) 

is the subgroup of U(Vt) induced by G then Gt is a t.r.g. and G = 

Gi X . . . X G,. 

Since the proof is the same as in [6] for F = R, we shall omit it. 
This Proposition reduces the s tudy of t .r .g. 's to the irreducible case. Hence 

from now on we shall assume tha t G is an irreducible t.r.g. 
The case when G is finite has different flavor from the infinite case. Finite 

reflection groups have been extensively studied by Coxeter [3] and Shephard 
and Todd [9] in the real and complex case. A more recent s tudy of complex 
finite reflection groups has been carried out by A. M. Cohen [2]. All these 
authors use the word "reflection" in a more general sense, and so their results 
are more general. 

We shall be concerned exclusively with the case when G is infinite. I t tu rns 
out t ha t a complete classification is possible in all three cases real, complex, 
and quaternionic. As mentioned in the introduction, the real case has been 
dealt with by Ea ton and Perlman [5]. Our method is completely different and 
if we were to consider jus t the real case, our proof would be much simpler. In 
fact the complex case is also easy; only the quaternionic case presents a few 
surprises. 

We repeat once more tha t from now on G will be an infinite irreducible t.r.g. 
in Un(F). By G0 we denote the identi ty component of G. 

5. Several l e m m a s . In order to keep the proofs of the main theorems 
reasonably short, we shall prove in this section seven lemmas. 

LEMMA 4. Let U(l) be embedded in Sp(n) by X i—> \In. Then the normalizer of 
U(\) ™ Sp(n) is U(n) \J jU(n). 

Proof. Let A = (ars) be in this normalizer. Since i Ç U(l) there exists 
X G U(l) such tha t AiA~l = X, i.e., Ai = \A. T h u s arsi = \ars for all r, 5. 
I t follows tha t X = dzi. If X = i then arsi = iars implies t ha t ars G C and so 
A G U(n). Similarly, if X = —i then arsi = — iars implies ars G jC and so 
A e jU(n). 

Conversely, it is clear t ha t U(n) KJ jU(n) normalizes U(l). 
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LEMMA 5. Let Sp(l) be embedded in Sp(n) by X i—> \In. Then the normalizer of 
Sp{\) in Spin) is Sp(l) • 0(n). 

Proof Let A = (ars) £ Sp(n) be in this normalizer. Then for X £ Sp(l) 
there exists /x £ 5^>(1) such tha t ylX^4-1 = /*. Hence a r s \ = iiars for all r, s. If 
a r s 7̂  0 then ctrsXctrs-1 = /x, and s o a ^ X a r r 1 is independent off, 5. Consequently, 
if also apq F^ 0 then ar~

lapq commutes with X. Since X £ 5^(1) is arb i t rary this 
implies tha t ar~

xapq £ R. Hence A £ Sp(l) • 0(n). The converse is clear. 

LEMMA 6. Let R be a reflection of the form R = jA where A £ U(n). Then 

n = 2 and •4 = 1 ^1 where a £ £7(1). 
\ - a 0 / 

Proof. Clearly n = 2. Since 4 j = j 4 we have In = R2 = jAjA = — AA. 
Since 4 * = 4 _ 1 we also have Â = —A*, and so A' = —A, A' being the 
transpose of A. Thus A is a uni tary skew r-symmetric matrix. So let A — 
(ars), ars G C, asr = —ars. Since R = jA is a reflection, the matrix R — I = 

jA — I = j(A + 7) must have rank one. Thus 

j «12 an • • •> 
A + j = [—an j «23 

-au —«23 j 

Multiplying the first row on the left by —anj and adding it to the second row 
we conclude tha t cmjan — j - Consequently «12 has unit norm and it follows 
tha t ai,, = a2s = 0 for s =" 3 because A is unitary. Since rank (A + 7 ) = 1, 
we can conclude now tha t n = 2. This proves the lemma. 

LEMMA 7. If n = 3 then every reflection in Sp(l) • 0(n) lies in 0(n). If 
n = 2 and R is a reflection in Sp{\) • 0 (2 ) not lying in 0 ( 2 ) , then it is conjugate 

10 (Ji fy in Sp(l) • 0(2). 

Proof. Let R = aA be a reflection where a £ Sp(l) and A £ 0(n). Since 
•S^>(1) and 0(w) centralize each other, we have a2A2 = In which forces 
a2 = dzl . If R # 0(n) then we must have a2 = — 1 and replacing R by a 
suitable conjugate Xi^X-1, X G 5 p ( l ) , we may assume tha t a = i. Since 
A2 = — In, it follows tha t w is even, say n = 2m, and tha t A is conjugate in 

0(n) to the block-diagonal matrix with m blocks I on the diagonal. We 

may replace A by this conjugate. Then R is block-diagonal with m blocks 
0 i\ 

- i 0 / 
on the diagonal. Since R is a reflection we must have m = 1, n — 9, 

LEMMA 8. The normalizer in Sp(n) of the diagonal subgroup D = 
Sp(l) X . . . X 5^(1) is the group Monn(Sp(l)) of all monomial matrices in 
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Spin). (Recall that a matrix is monomial if in each row and each column it has 

precisely one nonzero entry.) 

Proof. The center of D has order 2n and it consists of all diagonal matr ices 
with diagonal entries ± 1 . If A (E Sp(n) normalizes D then it also normalizes 
its center. This implies t ha t A permutes the subspaces esF, 1 ^ s S n, i.e., 
A is a monomial matrix. 

Let D = Sp(l) X . . . X Sp(l) be the diagonal subgroup of Spin). 

L E M M A 9. The normaliser of D C\ U{n) in Sp(n) is the group Monn(U(l) U 
jU(l)). If n ^ 2 then the normalizer of D C\ SU(n) in Spin) is M o n n ( £ / ( l ) ) U 
jMonn(U(l)). 

Proof. If A normalizes D P\ U(n) then it also normalizes the subgroup of 
D C\ U(n) consisting of all matr ices having ± 1 as diagonal entries. This 
implies tha t A is a monomial matr ix. Since i = iln has order 4 and no eigen
values ± 1 , it follows t ha t AiA~l has dbi as diagonal entries. Hence if A = 
(ars) then i~larsi = ±aTS for all r, s. This implies t ha t ars € C or ars 6 j 'C . 
Since /l G Spin) and is monomial, it follows t ha t aTS Ç f / ( l ) VJ jU(l) if 
a r s F^ 0. The first assertion is proved. 

Now let » ^ 2 . T h e centralizer of D H SUM in S£(w) is P H f/(»). 
Hence the normalizer of D H SU(n) in Sp{n) is contained in Mon„(C/( l ) VJ 
jU(l)). On the other hand this normalizer contains Monn(U(l)). T h e index 
of Monn(U(l)) in M o n w ( [ / ( l ) KJjU(l)) is 2W and we can take as coset rep
resentatives the diagonal matrices with diagonal entries 1 or j . I t is clear t h a t 
only twro of these representatives, namely In and jln, normalize D Pi SU in). 
This proves the second assertion. 

L E M M A 10. Let Tn be the complete graph on vertices 1, . . . , n. Assume that 
the edges of Yn are colored black or white so that each triangle has precisely one or 
all three of its edges white. Then either all edges are white or the white edges induce 
two disjoint complete subgraphs. 

Proof. Let 12 be a connected component of the subgraph W of Yn induced 
by all the white edges. Using the proper ty t ha t if two edges of a triangle are 
white so is the third, we see a t once t h a t 12 is a complete subgraph. I t remains 
to show t h a t W has a t most two components . Otherwise let 12i, 122, Œ3 be 3 
different components of W and assume tha t 1 Ç fii, 2 6 fi2, 3 G Î23. Then the 
triangle j 1, 2, 3} must have all 3 edges black, contrary to our hypothesis. 

The lemma is proved. 

6. Case w h e n Go i s r educ ib le . In this section we classify infinité irreducible 
t.r.g. 's in Un(F) when Fn is not irreducible as a (Go, F)-bimodule . Recall t ha t 
Go is the identi ty component of G. Since G0 has positive dimension and G is a 
t.r.g., it follows t ha t n è 2. 
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We often need to consider U(l) and Sp(l) as embedded in Sp(n). Unless 
otherwise s tated we shall always use the embedding X >—» X7n. 

Let U(l) be the subgroup of Sp(2) consisting of the matrices 

Our first main result is the following theorem. 

T H E O R E M 11. Let G be an infinite irreducible t.r.g. in Un(F), F = R, C, or H. 
Assume that Fn is not irreducible as a (Go, F)-bimodule. Then F ^ R and 
n^2.IfF = G then G is conjugate in U(n) to the subgroup 

1) monomial matrices in U(n) with determinant ± 1 . 
If F = H then G is conjugate in Sp(n) to one of the following groups: 
2) Monn{Sp(l)); 
3) the group 1) above; 
4 ) M o n s ( C A ( l ) U j C / ( l ) ) ; 
5) (if n = 2) Sp(l) • Q where Q C. 0(2) is 0 ( 2 ) , cyclic of order 4, or dihedral 

of order a multiple of 8; 
6) (if n = 2) £7(1) • T where T is a finite subgroup of SU(2) containing 

I I and T is cyclic of order 4, binary dihedral, or binary polyhedral. 

Proof. Let Fn = \\ © . . . © Vr be the canonical decomposition of Fn as a 
(Go, F)-bimodule into its homogeneous components. Assume tha t the F -
dimension of one of these components, say Fi , is larger than one. If R £ G is a 
reflection, it follows tha t R fixes a nonzero vector in \\. Since \\, . . . , Vr is a 
system of imprimitivi ty of G, it follows tha t R\\ = V\. Since this holds for all 
reflections R Ç G and G is a t.r.g. wre deduce tha t G • Ti = V\. The irreducibility 
of G now implies tha t \\ = F. The other possibility is tha t each of Fi, . . . , Vr 

has F-dimension one (and so r = w). 
We shall t reat these two cases separately. 

Case 1. F7* is homogeneous as a (G0, F)-bimodule. Let IF be a simple (Go, F ) -
submodule of Fn. Assume tha t the F-dimension of IF is bigger than one. If 
R Ç G is a reflection then 7! fixes a nonzero vector a G W. Hence RW C\ 
W 9e 0. Since IF and also RW are simple (G0, F)-submodules, this implies tha t 
RW = IF. This is valid for each reflection R G G, and since G is a t.r.g. it 
follows tha t IF is G-stable. The irreducibility of G then implies tha t IF = Fn, i.e., 
F n is a simple (G0, F)-bimodule. This contradicts the hypothesis of the theorem. 

Thus , we must have dimF(W) = 1. Wi thout loss of generality we may 
assume tha t e sF, 1 S s ^ n are G0-submodules. Since all these submodules 
are isomorphic we may assume tha t Go is a subgroup of Z7i(F), the lat ter being 
embedded in Un(F) by X >—» X7n. 

We cannot have F = R because Ui(R) = 0 ( 1 ) is a group of order two and 
Go has positive dimension. Assume tha t F = C. Then the same dimension 
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argument implies that Go = U\(G) = U(l). On the other hand since G is a 
t.r.g. in U(n), we must have det(^4) = ± 1 for all A £ G and in particular for 
A G Go. This gives a contradiction. 

Hence, we must have F = H. Since Go is now a closed connected subgroup 
of 5^(1) of positive dimension, we have either Go = Sp(l) or otherwise we may 
assume that Go = U(l). 

Let first Go = Sp(l). By Lemma 5, G C Sp(l) • 0(n). If « ^ 3 then, by 
Lemma 7, every reflection in Sp(l) • 0(n) is in fact in 0(n). It follows that 
G C O(n), contradicting the fact that Go = Sp(l). Therefore we must have 
n = 2. Since G (^ 0(2) and G is a t.r.g., it follows from Lemma 7 that G con
tains all reflections of the form l where a is a pure quaternion and 

\—a 0 / 
aâ = 1. These reflections generate the group consisting of all matrices 

ô " M - " »)• »«*<»• 
We have G = Sp(l) • (G P\ 0(2)) and J ^ G H 0(2). It follows that 

G C\ 0(2) is generated by I I and some reflections. Therefore G C\ 0(2) 
^ J / 0 1\ 

is one of the following: the cyclic group of order 4 generated by I n ) , 
0 1\ . . . V ' 

a dihedral group containing I J, or 0(2). This gives case 5) of our 
theorem. 

Now let Go = f/(l). Then, by Lemma 4, G C U(n) KJ jU(n). We cannot 
have G C U(n) because G is a t.r.g. and this would imply det(^4) = dbl for 
all 4̂ Ç G, contrary to Go = U(l). Hence G must contain a reflection belonging 
to jU(n). By Lemma 6, it follows that n = 2 and that G D U(l). Therefore 
G = t /( l ) • r where T = G H S£/(2). Since G0 = £/(l), T must be finite. If a 
reflection i? Ç G is not in 0(1), then R £ C/(2) and i? = iA where ,4 G SU(2) 
is conjugate to I I. Therefore 7̂  must be generated by elements conjugate 

/ 0 1\ .V U / . / 0 1\ . 
to I i n ) ' ^ m c e T contains I I, it follows by consulting a list of finite 
subgroups of 5/7(2) ^Sp(l) [10, Theorem 2.6.7] that T is one of the fol
lowing: cyclic of order 4, binary dihedral, or binary polyhedral. 

This gives case 6) of the theorem. 

Case 2. Each of the homogeneous components Vu • • • » Vr has F-dimension 
one, and so r = n. 

Without any loss of generality we may assume that these homogeneous 
components are the subspaces <?iF, . . . , enF. Since G permutes these subspaces 
we have 

G C M o n n ( ^ ( F ) ) and G0 C Dn(F) = tfx(F) X . . . X UiQF). 

We cannot have F = R because Dn(R) is a finite group and Go has positive 
dimension. 
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Let 6:G-+Sn be the restriction of the canonical homomorphism 
Monw(Z7i(F)) —> Sn. If R G G is a non-diagonal reflection then 0(R) is a 
transposition. Since G is irreducible, 6(G) is a transitive subgroup of 5 n . Using 
tha t G is a t.r.g., it follows now tha t 0(G) = Sn. 

For g 6 Go let Xi(g), . . . , K(g) be the diagonal entries of g. Then each 
Xs: Go —> t / i (F ) is a group homomorphism. 

If i? G G is a non-diagonal reflection then R fixes n — 2 of the s tandard basic 
vectors of Fn, say the vectors e3, . . . ,ew. Fur thermore ifei = e2a: and Re2 = 
e\a~x for some a G f/ i(F). We have 

RgRei = Rge2a = Re2\2(g)a = eia~1\2(g)a 

and so \i(RgR) = a~1\2(g)a. In particular Xi(Go) and X2(Go) are conjugate in 
Ui(F). Replacing g by RgR in \i(RgR) = û;~1X2(g)a;, we obtain \2(RgR) = 

a\i(g)a~1. If 5 ^ 2 it is easy to check tha t \s(RgR) = \s(g). Hence 

RgRg-1 = diag (v, v, 1, . . . , 1) 

where 

n = MRgRr1) = crl\2(g)aMg)-\ 

v = XtiRgRr1) = a\!(g)a-l\2(g)-\ 

If F = C then v = \rx and since Xi and X2 are different characters of Go all 
matrices of the form diag (jit, /x_1, 1, . . . , 1) are in Go. By using other reflections 
in G, we may now conclude tha t G0 D Dn(C) H SU(n). Since G0 C Dn(C) 
and i G G implies det(^4) = ± 1 we must have G0 = Dn(C) P\ SU(n). I t is 
now easy to see tha t G consists of all monomial matrices in U(n) having 
determinant ± 1 . This is case 1) of the theorem. 

Next assume tha t F = H and tha t X5(G0) is a circle subgroup of Sp(l) for 
all s. Clearly we may assume tha t XS(G0) = U(l) for all s. Since Xi(RgR) = 
a~1\2(g)a, we have a~lU(\)a = U(l) and s o a Ç U(l) or a G jU(l). Since a 
similar conclusion is valid for each non-diagonal reflection in G, we deduce tha t 
G is contained in the group 

M = Monn(U(l)UjU(l)). 

If a G f /( l ) we have again y = jit-1 while if a G jU(l) we obtain v = p. 
Now assume tha t there exist reflections i?i, i?2 in G such tha t 0(i?i) = d(R2) = 
(1, 2), i?i^i = e2ai and i?2<?i = e2a2 with ai G Z7(l), a2 G jU(l). In tha t case 
all matrices of the form 

d i a g ( / x , M - U , . . . , l ) , M G tf(l), 

or 

diag(M , M, 1, . . . , 1 ) ,M G U(l), 

are in Go. Consequently G0 = A i ( C ) and it follows easily tha t G = M. Of 
course the same conclusion is obtained if the indices 1,2 are replaced by r, 5 
(r 7̂  5). This is case 4) of the theorem. 
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Now assuming t ha t such a pair of indices does not exist, i.e., for each pair 
of indices r} s (r ^ s) all reflections R £ G satisfying 0(R) = (r, s) are of the 
same type: either all have corresponding a in f / ( l ) or all have a in jU(l). 
Using Lemma 10, we may assume tha t there is an m (1 ^ m ^ n) such t h a t 
a G U(l) precisely for pairs r, 5 satisfying r, 5 ^ m or r, 6 ^ m + 1. Hence 
each of the reflections R £ G belongs to the group 

Mm = Jm^Monn(U(l))Jm 

where 

J-m 0 
0 J -l-n—m 

Therefore G C Mm and replacing G by a conjugate we may assume tha t 
m = n, i.e.,G C M o n n ( J 7 ( l ) ) . I t is clear t ha t Dn(G) r\SU(n) C Go C Dn(C) 
and since i G G now implies det(A) = ± 1 , we conclude t ha t G consists of 
monomial matrices in U(n) having de te rminant ± 1 . This is case 3) of the 
theorem. 

Finally, let F = H and As(Go) = 5^ (1 ) . The kernel Ns of Xs is connected 
because Go/Ns = Sp(l) and Sp(l) is simply connected. Therefore there exists 
a unique normal subgroup Ps of G0 such t h a t G0 = Ns X Ps and, of course, 
Ps = 5^ (1 ) . Since Xi and X2 are non-equivalent representat ions of Go, we have 
Ni ?± N2. This implies t ha t Px C ^ 2 . In general we have Pr C Ns if r ^ 5. 
Hence the elements of P\ are precisely the matrices 

diag(/x, 1, . . . , 1),/x G Sp(\). 

Hence we have Go = Dn(H) and since 6(G) = Sn, we have G = Monn(Sp(l)). 
T h u s we have case 2) of our theorem. 

This completes the proof. 

7. Case w h e n G0 is i rreducib le . In this section we consider the case when 
Fn is irreducible as a (G0, F)-bimodule . 

We shall need the following lemmas. 

L E M M A 12. The normalizer of SO(n) in Sp(n) is Sp(l) • 0(n). 

Proof. We use induction on n. T h e claim is trivial for n = 1. Let n = 2. 
Then every automorphism of 5 0 ( 2 ) is induced by conjugation by some element 
of 0 ( 2 ) . Hence the normalizer of 5 0 ( 2 ) is the product of 0 ( 2 ) and the cen-
tralizer of 5 0 ( 2 ) . This centralizer is Sp(l) • 5 0 ( 2 ) and the claim follows. 

Now let w è 3 and let 

0 1 
- 1 0 

0 

0 In-2 

If A normalizes S0(n) then APA~l has n — 2 eigenvalues equal + 1 and has 
order 4. Hence APA~l is conjugate to P in 0(n). T h u s there exists B G Oin) 
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such tha t BA commutes with P. Therefore we may assume tha t A is of the 
form 

Ay 0 
0 A* 

where Ai £ Sp{2) and A2 £ Spin — 2). By induction, we have Ai £ 
Sp(l) • 0 (2 ) and A2 G Spil) • 0(n - 2). This allows us to assume further 
tha t A i = X/2, ^ 2 = M^W-2 where X, /x £ 5^(1) . I t is now easy to see t ha t 
\fjL~1 must be real and so A — XC, C £ 0(w). 

This completes the proof. 

LEMMA 13. If n ^ 2 //zew 77 (w) VJ jUin) is the normalizer in Spin) of both 
SU in) and U(n). 

Proof. I t is clear tha t the centralizer of SU in) in Spin) is £7(1). On the 
other hand, the centralizer of £7(1) in Spin) is 77 (n). Consequently £7(1), 
77 (w) and SU in) have the same normalizer in Spin). Now it suffices to apply 
Lemma 4. 

T H E O R E M 14. Ze£ G be an infinite irreducible t.r.g. in Un(F), F = R, C, or 
H. Assume that Fn is irreducible as a (G0, ¥)-bimodule. We have n ^ 2. 

7 / F = R then G = 0(n). 
7/ F = C then either G = {A £ U(n)\det(A) = ± 1 } or » ^ 3 awd G w a 

conjugate of 0(n). 
If F = H /Aew G w owe of the following: Spin), a conjugate of {A £ 77(n)| 

det(^4) = ± 1 } (» ^ 3) , a conjugate of 0(n) in ^ 3), or a conjugate of 
Sp(l)-0(2) (» = 2). 

Proof. Let 7?0 be a fixed reflection in G. Recall t ha t &n(F) is diffeomorphic 
to P(FW) and is a Riemannian globally symmetric space. The group 77n(F) 
acts on &n(F) by conjugation. 

The orbit of Ro for the action of Go on &n(F) is a closed submanifold M. 
Note tha t I f has positive dimension because G0 is connected and Fn is an 
irreducible (Go, F)-bimodule. 

We claim tha t M is a totally geodesic submanifold of &n(F). If R £ M then 
RMR is again an orbit of G0 and since 7? G M P\ RMR we must have 
7*M£ = M. 

Let X be a tangent vector of ilf a t R0. Choose a smooth regular curve 
/ : ( — €, + e ) —> i f such t h a t / ( 0 ) = Ro and / ' (O) = X. Moreover we assume 
t h a t / is injective and tha t its image lies in a sufficiently small neighborhood of 
Ro. For a (z i~e,+ e), a 9e 0 let ga he the unique geodesic in S?n(F) joining 
the points Ro and fia). Moreover we assume tha t a is chosen so tha t the ratio 
of the distance f rom/(0) to fia) to the total length of the geodesic is irrational. 
This condition is easy to satisfy because all geodesies in 3%n(F) have the same 
length (see [7, p. 356]). We have ga(0) = / ( 0 ) = Ro and ga(p) = fia). Since 
gaiO) and gail3) are in M and for 7? G M we have RMR = M, it follows t ha t 
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ga{kfi) 6 M for all integers k. From our choice of a it follows t ha t the points 
ga(kf3) are dense on this geodesic and since M is closed we conclude t ha t the 
whole geodesic ga lies in M. Now we let a —+ 0, still subject to the same condi
tions as before. Then the limiting position of ga is the geodesic g with g(0) = 
Ro, and g'(0) a scalar multiple of / ' ( 0 ) = X . I t follows tha t the whole geodesic 
g lies in M, and so M is totally geodesic. 

By Theorem 2 and corresponding results for P(CW ) and P(Rn), we have 
Tf = (ct>op)(W) where IT is a suitable subspace of F", a n d £ : F w \ { 0 } - > P ( F n ) 
and (t>:P(Fn) —>&n(F) are the canonical maps defined in Section 1. Clearly, W 
is Go-invariant and so WF must coincide with Fw, i.e., the width of M must be n. 

If F = R then W = Rn, M = &n{R) and so G = 0(n). 
If F = C then either W = Cn or we may assume tha t W = Rn. In the first 

case M = ^? n (C) and so 67 = {4 G C/(«)|det(i4) = ± 1 } . In the second case 
M = &n(R) and so G 3 0(w) . Since M is stable under G0, it follows t h a t G0 

normalizes 0(w) . By Lemma 12, Go C t / ( l ) • 0 ( n ) , and since G0 is irreducible 
we have n ^ 3. We have G0 = SO(n) or G0 = t / ( l ) • SO(n), so G normalizes 
SO(n) and G C ^ ( 1 ) • 0(n), by Lemma 12. Since every reflection R d G lies 
in 0(n) (Lemma 7), we have G = 0(n). 

Now let F = H. Consider first the case when M is of type 1 (see Theorem 2) . 
In t ha t case we can assume tha t W = Rn and so M = £?n(R), G D 0(n). 
Clearly G0 stabilizes M and so it normalizes 0(n). By Lemma 12 G0 C ^ ( 1 ) • 
SO(n). Since Go is irreducible, it is non-abelian. I t follows t ha t in all cases G 
normalizes SO{n) and so G C Sp(l) • 0(n). 

If n ^ 3 then, by Lemma 7, every reflection R Ç G lies in 0 ( n ) forcing 
G = 0(n). If » = 2 the irreducibility of G0 implies t ha t Go = Sp(l) • 5 0 ( 2 ) , 
and so G = 5>(1) • 0 ( 2 ) . 

Now consider the case when M is of type 2 (see Theorem 2). We can now 
assume tha t W = Cw, and so M = ^ » ( C ) , G D M G t / ( w ) | d e t ( 4 ) = ± 1 } . 
Clearly, G0 normalizes SU(n) and so, by Lemma 13, G0 C U{n). T h u s G0 is 
either SU(n) or Z7(«). Lemma 13 implies t ha t G C £/(») \J jU(n). If w è 3, 
using Lemma 6, we can conclude tha t G C £/(w) and so G = j i G ^ ( ^ ) | 
det(^4) = ± 1 } . If n = 2 we cannot have G0 = SU(2) because the subspace 

(\)H is 5c7(2)-invariant . Then G0 = U(2) and so G - f/(2) VJ j£ / (2 ) = 

^ - ^ ( 1 ) • 0 ( 2 ) ^ , where 

If M is of type 3 (see Theorem 2) then W = Hn, M = ^?„(H) , and so 
G = Spin). 

Finally, let M be of type 4. Since the width of M is 2 we must have n = 2. 

We may assume tha t IT consists of all vectors a — I I where £ Ç R and 

rj + rj = 0. If a is normalized so t ha t a*a = 1 we can write J = cos t, 
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7] = a sin /, where a2 = — 1. Then (</> o p) («) is the reflection 

/ — cos 0 a sin 0\ 
\ — a sin 6 cos 0/ 

Thus M consists of all such matrices. Each of these reflections interchanges the 

subspaces I I • H and I I • H. Since M is normalized by Go, these sub-

spaces must be Go-invariant. This is a contradiction, and so this case cannot 
occur. 

The proof is now completed. 

Note added in proof. The connected totally geodesic submanifolds of P(Hn), 
which we have classified in Theorem 2, have been determined earlier by 
J. A. Wolf in his paper "Elliptic spaces in Grassmann manifolds", Illinois J. 
Math. 7 (1963), 447-462. His proof is different and is based on the classification 
of compact Riemannian symmetric spaces of rank one. 

Finite subgroups of the quaternionic unitary group Sp(n) which are gen
erated by pseudo-reflections have been classified recently by A. AI. Cohen 
in his paper "Finite quaternionic reflection groups", Memorandum Nr. 229 
(1978), Technische Hogeschool Twente, Enschede, Netherlands. 

T. Yu. Sysoeva has classified in her paper "Reductive linear algebraic groups 
generated by quasi-reflections," Serdika 1 (1975), No. 3-4, 337-345, all com
plex groups mentioned in the title. (A quasi-reflection is an invertible linear 
transformation u such that rank(« — 1) = 1.) 
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