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By a topological semiring we mean a Hausdorff space S together with two
continuous associative operations on S such that one (called multiplication) distri-
butes across the other (called addition). That is, we insist that

x(y + z) = xy + xz and (x + y) z = xz + yz

for all x,y and z in S. Note that, in contrast to the purely algebraic situation
[1,2], we do not postulate the existence of an additive identity which is a multi-
plicative zero.

In this note we point out conditions under which the existence of such an
element is equivalent to the double simplicity of the semiring. We also discuss
maximal and minimal double ideals together with several examples.

We let £[ + ] represent the set of additive idempotents. Similarly £[ • ] =
{e: e2 = e}. An additive (multiplicative), ideal of a semiring is a non-empty
set / such that

The minimal additive or multiplicative ideal is denoted by K[ + ] or K\_ • ].
For references on the properties of these sets, the reader may see [4, 5]. We say a
set / is a double ideal if it is both an additive and a multiplicative ideal. A semiring
containing no proper double ideal will be called doubly simple.

THEOREM 1. Let S be a compact additively and multiplicatively commutative
semiring. Then S is doubly simple if and only if there is an element 0 in S such
that 0 + x = x and Ox = 0 for all xeS.

PROOF. Suppose S is doubly simple. Notice that £[ + ] is a multiplicative
ideal of S and thus contains the minimal such, X[ • ]. Now according to [4; pp.
97 and 98], 2C[ • ] is the union of multiplicative groups each of which is of the
form eSe for some e in £[ • ] n K[ • ]. Consider one of these groups, eSe. Clearly,
it is a compact subsemiring and thus contains a minimal additive ideal. This minimal
additive ideal of eSe must be a group since addition is commutative. On the other
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hand, it is additively idempotent and thus a single point, say k. Now k + x = k
for all x e eSe. Hence

k2 = k(k + e) = k2 + ke = k2 + k = k

and we see that k is a multiplicative idempotent. Therefore e = k. Now, if y e eSe
and y~J is its multiplicative inverse in eSe, then we have

e = e + y = yy~l + ye = y(y~1+e) = ye = y.

Thus eSe consists of the single point e, and K[ •] is multiplicatively idempotent.
But since S is multiplicatively commutative, X[ • ] is a group. Thus K[ • ] is a
single point 0, such that Ox = 0 for all x e S, and 0 + 0 = 0. Now 0 + S is a double
ideal of S, so 0 + S = S.Thus if x e S, there exists a y in S such that x = S such
that x = 0 + y. Therefore,

On the other hand, suppose there is such an element 0 is S and suppose A is
a double ideal. Clearly 0 e A since 0 is the minimal multiplicative ideal. Now

S = 0 + S ^ A + S c A

and the proof is complete.

EXAMPLE A. Here are several doubly simple semirings:
i) any ring;
ii) the real interval [0,1] with x • y = x/\y and x + y = x V y,
iii) [0,1] with ordinary multiplication and x + y = x V y\
iv) [0,1] with x + y = x V y and xy = x for all x,y.

This last mentioned semiring illustrates the necessity of commutativity in
Theorem 1, since it is doubly simple but lacks a multiplicative zero.

Note that the cartesian product of semirings is a semiring under coordinate-
wise addition and multiplication; and that the product of doubly simple semirings is
again doubly simple. To see this, let {Sa} be a collection of doubly simple semirings.
Suppose tht J is a double ideal of IT,, Sx = S and / is in J. Then S + SfS + S ^ J.
But

s = na(sa + sj(a)s. + s.) = n,sa

since for each a, Sa + Sa/(a)Sa + Sx is a double ideal of Sx and hence equals
Sa. Therefore J = UXSX.

Another method of generating doubly simple semirings is the adjunction of
a 0 to a semiring. That is, if S is a semiring, and an element 0 is adjoined to S so
that 0 + x = x + 0 = x and Ox = xO = 0 for all x in S, then S U {0} is a doubly
simple semiring. Note that if S already possessed a zero, the newly adjoined one
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must be an isolated point. However, in general, a zero need not be isolated,
e.g. example A(iii). Indeed, in the infinite product of semirings with zero, the
product zero cannot be isolated.

If/: R -* S is a continuous semiring homorphism (i.e., a continuous function
between semirings which preserves both operations), and R is doubly simple, then
so is /(R).

EXAMPLE B. We describe a generalization of the semigroup ring. Let S be a
semigroup. Let T be a subset of S with T ̂  T2 and with multiplication on T
finite-to-one (i.e., for each t in T, {(a,b)eTx T: ab = t] is a finite set). For
each x e T, let Rx be a topological semiring which is additively commutative.
For a and b in T let fa,b:Ra->Rb be a continuous semiring homomorphism.
Suppose further that for each a, b, and c in T,

fb.c ° fa.b = fa.c-

F o r / a n d g in UX€TRX, define

U+g)(x)=f(x) + g(x)

a n d (S*g)(x)= I /..,[/(«)]/».xQK&)].
ab=x

With these definitions, (11* e T Rx,*, + ) is a topological semiring, and it is easy
to check that if each Rx has a zero (in the sense of Theorem 1) and if fa,b preserves
zero for each a,b in T, then (U.xeTRx, *, + ) also has a zero in this sense, and hence
is doubly simple.

The above situation arises in several interesting ways. Suppose S and T are
both the additive non-negative integers. Let R be a semiring with an automorphim
/. For each xeS, let Rx = R and for each m and n in S, let/B(III = /""-". A simpler
example can be generated by taking S = T to be a semigroup with S = S2 and
finite-to-one multiplication. For each x in S let Rx = R be a semiring and fa,b
the identity for each a,b in S. (II*6 s R, *, + ) might be called a semigroup semiring.

Finally, let R be a semiring. Consider a non-empty set A and a point 0 not in
y4. Let S = J4 U {0} with multiplication defined by a2 = a for all a in S and
ab = 0 if a # b. Then S is a semigroup and A has the properties of T above.
For each a,b in A, let/a>6 be the identity. Then

( [ ] *>* ,+) «([ ]*>•>+)
a e A a e A

where • indicates coordinatewise multiplication.

EXAMPLE C. Let R,S be topological semirings and f,g :R -> S be two contin-
uous semiring homorphisms. On R x S, define

(x,y) + (a,b) = (x + a,y + b)
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and
(x,y)(a,b) = (xa,yf(a) + g(x)b).

Then R x S with these operations is a topological semiring and if / and g are
zero preserving, then R x S has a zero in the sense of Theorem 1 and is doubly
simple.

EXAMPLE D. Let (L, A) be a compact semilattice with isolated identity a.
OnL x [0,1], define

(P,x) + (q,y) = (p A q,x A y).

L x {0} is an idsal of L x [0,1]. Let =5? = L x [0,1] jL x {0}, and on Se define

(a,x)(a,y) = {a,x\J y);

let {a,x){p,y) = (a,x) if p # a; and let Q>,x)(q,>>) = (p,x) + (g,j;) if p # a ^ g.
Note that (a,l) (x,}>) = (a,l) and (a,l) + (x,y) = (x,y) for all (x,y) in JK Hence ̂ f
is doubly simple. If L is {1,2,3,} and x f\y represents min {x,t} then 3? is topo-
logically a triad.

THEOREM 2. 7n any compact semiring S there is a minimal double ideal K
which is compact and doubly simple.

PROOF. AS in the corresponding theorem for compact semigroups, S has
a minimal closed double ideal K. Now suppose D is a double ideal of S contained
in K. Let d be any element of D. Then

S + SdS + S c D

and S + SdS + S is a closed double ideal of S. Thus K = S + SdS i S s B ,
so X = D. Therefore X is a minimal double ideal.

Let J be a double ideal of K. Note that K + KJK + K is a double ideal
of S and is contained in K. Thus

K = K + KJK + K <=j.

Therefore K — J and so K is doubly simple.

THEOREM 3. If S is a compact semiring containing a proper double ideal
I, then S has a maximal proper double ideal M, and M is open.

PROOF. We omit the argument, which is analogous to the corresponding one
for compact semigroups, but remark that the ideal generated by any set A s S
is AVASVSAV SAS KJA + SvS + AuS + A + SuAS+SvSA + Su
S + ASvS + SA\JS + AS + SvS + SA+S\JS + SAS U SAS + SKJS +
SAS + S.
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REMARK. If S is a connected semiring and contains a minimal double ideal
ideal K, then K is also connected.

PROOF. Let k be an element of K, and note that S + SkS + S is a double
ideal of S contained in K. Thus K = S + SKS + S, which is the continuous
image of a connected set, and hence connected.

Now suppose S is a compact semiring and J is a closed double ideal of S.
Just as in the case of semigroups [5; p.] we acquire an equivalence relation ~
by defining x ~ y if and only if x = y or x and y are both in J. This equivalence is
a congruence with respect to both addition and multiplication. We denote the quo-
tient semiring (mod ~) by S/J and notice that J is a zero for the addition as well as
the multiplication of S/J.

Thus we find that every compact semiring is associated with a doubly simple
semiring K and a semiring S/K having a double zero. A semiring having such a
double zero is easily obtained by considering the real interval [l,oo) under ordinary
addition and multiplication. Compactify this semiring by adding a point oo and
defining xoo = oox = x+oo = co+x = co for all x.

Let S be a compact semiring with commutative addition. Define a relation
p on S by xpy if and only if there exist e and/in £[ + ] (S) such that x + e = y + f.
In [3] Bourne defines a closed congruence a on a semiring S with commutative
addition and a zero in the sense of theorem 1, by xay if and only if there exists an
a in S such that x + a = y + a. He shows that Sjo is a ring. Clearly, this result
does not depend on S having a zero.

THEOREM 4. If p and a are defined as in the preceding paragraph, then
p = a, for any compact additively commutative semiring.

PROOF. It is easy to see that if xpy, then there exists e in £[ + ] (S) such
that x + e = y + e, which implies that p £ a. Now suppose x + a = y + a
for some a in 5. Then x + a + a = y + a + a, and inductively x + na = y + na
for all n. Let e = e in T(a); there is a net {nxa} such that nxa^>e. Hence
x + e = lima (x + nxa) = limx{y + nxa) = y + e. Therefore a c. p.

Notice that this congruence identifies the additive idempotents of S,
suggesting that the study of compact additively commutative semirings largely
reduces to the study of rings and of additively idempotent semirings. Now
the additively idempotent semiring ([0,1], • ,\/) has not only a zero in the
sense of Theorem 1 but also an element 1 which is an additive zero and a multi-
plicative identity. Indeed we have the following.

THEOREM 5. IfS is a compact additively and multiplicatively commutative,
additively idempotent semiring with S2 = S, then S contains an element k such
that k + x = k for all x in S, and a unique maximal subsemiring S' such that
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kx = x for all x in S'. S' is a closed subsemiring of the minimal double ideal
and is connected if S is connected.

PROOF. X[ + ] is a group and hence contains a single point k. Since S2 = S,
we have S = S£[ • ] [6]. Thus there is a multiplicative idempotent e in S and
an element s of S such that k = se. Now

k2 = k(k + e) = k2 + ke = k2 + k = k,

so k is a multiplicative identity for kS, and kS is a subsemiring. Let £ represent the
minimal double ideal. Since {/c} and K are additive ideals, {k} meets K; that is
k e K. But K is a multiplicative ideal, so kS ^K . Suppose C is a subsemiring
containing k as a multiplicative identity. For each y in C we have y = kye kS,
i.e., C £ /cS. Thus fcS is the unique maximal such semiring.Clearly kS is clos-
ed and is connected if S is connected.

Even if S has a multiplicative identity 1, it need not be k. This can be seen in
the semigroup semiring of ([0,1], • V) over Z2 (the integers mod 2), that is [0,1]
x [0,1] with

(x,y)(a,b) = (xaVyb,ya\/xb).

Here k = (1,1), 1 = (1,0) and S' is the diagonal.
It would be interesting to know the structure of the S' of the last theorem.
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