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LINEARISED MOSER-TRUDINGER INEQUALITY

MEELAE KIM

As a limiting case of the Sobolev imbedding theorem, the Moser-Trudinger inequality
was obtained for functions in W*(Q) with resulting exponential class integrability.
Here we prove this inequality again and at the same time get sharper information for
the bound. We also generalise the linearised Moser inequality to higher dimensions,
which was first introduced by Beckner for functions on the unit disc. Both of our
results are obtained by using the method of Carleson and Chang. The last section
introduces an analogue of each inequality for the Laplacian instead of the gradient
under some restricted conditions.

1. INTRODUCTION

Let fi be an open bounded domain in the n-dimensional space R", n ^ 2. Let
be the completion of the function class CQ(Q.) equipped with the norm

= (J l ' for all u

where Vu is the gradient of u and |Vu| is its Euclidean norm.

As a limiting case q = n of the Sobolev imbedding theorem, Trudinger [12] intro-

duced an exponential Sobolev inequality and then, Moser [8] improved it as follows: if

u € W*($l), n ^ 2, with fn |Vu|n dx ^ 1; then there exists a constant Cn such that

(1) f e"" dx 4 Cnm(Sl),
Jn

where p = n/(n — 1), a ^ an = nwn_"~ , m(fi) = / n dx and u>n-i is the (n — 1)-

dimensional surface area of the unit sphere. The integral on the left actually is finite for

any positive a, but if a > an it can be made arbitrarily large by an appropriate choice

of u.
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In the proof, Moser used a symmetrisation technique and change of variables to
change the n-dimensional problem to a one-dimensional problem. Using the correspond-
ing inequality for the function which is defined on a compact manifold of dimension two
and having vanishing mean value, Moser [8] also showed that

(2) In / eFd( < / Fd£ + - / \VF\2d{ + K

where K is some positive constant and <f£ is the normalised surface measure on S2. Later
on, Onofri [10] obtained the best constant K = 0 and Beckner [2] generalised the Moser-
Onofri inequality to higher dimensions. We see applications of those inequalities in several
different geometry problems [4, 5, 9, 11]. On the other hand, in [3], using conformal
equivalence between the sphere and the plane Beckner proved that the Moser-Onofri
inequality on S2, (2) with K = 0, is equivalent to the linearised Sobolev inequality

(3) l n i | e2fdx+ ( i y <?'<&) < 1 + \ / |V/|2</z

for non-negative functions with zero boundary-value on the unit disk in R2. He developed
the relation of the sharp inequality (3) with Carleson-Chang's work. In Section 2, we
show the analogue of (3) for bounded domains ft in 1R". The advantage of studying the
linearised exponential Sobolev inequality in Rn is the fact that we can reduce it to a one
dimensional problem by using symmetrisation and change of variables, as we see from
Moser [8].

As an indication of the richness of the Moser inequality (1), there have been several
alternative proofs of it, see [1, 6, 7]. Adams [1] showed an analogue of inequality (1) for
higher order derivatives by using Riesz potentials. Specially in [6], Carson-Chang proved
the inequality (1) by using the same method as was used to show the existence of an
extremal function for the same inequality in the case when ft is the Euclidean ball in
Kn. In Section 3, we give another proof of the Moser inequality (1) by using Carleson-
Chang's method and at the same time we obtain a functional form of the Moser-Trudinger
inequality. As a consequence, in Section 4, we also obtain an inequality similar to the
Adams [1] inequality (when n — 2, m = 4) which was applied in [5].

2. LINEARISED MOSER-TRUDINGER INEQUALITY IN N-DIMENSIONS

The Moser-Onofri inequality

(4) ]

which played an important role in understanding some geometry problems (see [9, 10])
was generalised to higher dimensions by Beckner [2]. More recently, in [3], the following
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sharp inequality for non-negative function / with zero boundary value on the unit disk

in K'

(5) I n - / e2Ux+(-f e2Ux) ^ 1 + ±- / |Vf\2 dx
•n J\x\<\ Kir J\x\<\ / 4n J\x\<i

which is equivalent to the Moser-Onofri inequality (4) was obtained by using the confor-
mal equivalence between the sphere and the plane.

Prior to the above inequality (5), we find the following inequality from the lemma
by Carleson-Chang [6]

I n - / e2fdx < 1 + -L/" \Vf\2dx.

In this section, we generalise the inequality (5) to every 2-dimensional domain and
at the same time establish an analogue of it for higher dimensions by using Carleson-
Chang's method. And we obtain the general form of the function which satisfies the
equality (5). Also we shall give the proof of the equivalence between (4) and (5) which
is due to Beckner for better understanding the relation between the two inequalities.

T H E O R E M 2 . 1 .

for all non-negative functions f in W*(Q.) and each positive constant co. Here ft is a
bounded domain in Kn and m(ft) = fn dx.

Since Co(fi) functions are dense in W^fi), proving the theorem for the function in
Co(fi) is sufficient. We use symmetrisation and a change of variable as was used in [8]
to reduce the problem as a one-dimensional problem. By the results of symmetrisation
we obtain a rearranged function /* of / which is defined on the ball fi* centred at the
origin with radius R, / | r |^f l dx = m(fl). Since /* is radial, to change the problem to a
one dimensional one we set

(7)

0) £"-•
Thus our problem becomes the following: for all C1 functions tp defined on 0 ^ t < oo

with v>(°) = ° a n d <P'(t) ^ 0 we have

In f°° ec*C>-( dt + ( r '
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where c=con-("-1)/"(a;n_1)- ( 1 / T l ) .

For the proof of the theorem we need the lemma which follows from the argument

in [6, Lemma 1].

LEMMA 2 . 2 . Let

K$ = [ip : ifClis a function onO^Koo, tp(O) = 0, <p'(t) ^ 0, f°° <p'(t)n dt = S

and let <p0 £ Ks be the extremal function for sup /0°° ecv(()~( dt. Then for each c > 0
K

(9) r^(.HA = i+
JO D

where B is positive and satisfies

REMARK. The general form of the extremal function <p0 is the following:

Vo{t) = -c [in (1 + B) - ln^ '1"" ' + B)].

PROOF OF THEOREM: Let <̂ 0 be the extremal function for sup fo°° ec<f>^~t dt. Then
K,

by Lemma 2.2 we have

£ -l
i l/i

where S = /0°° (p'(t)n dt. Thus by (9) we get

Note that for all <p € Kg, /0°° e^^'' dt ^ 1, and the fact that 1/x + In x is an increasing
function for x ^ 1. Hence, from (10) we obtain

for all VP 6 A'j. D

REMARK. When n = 2, and Jl = 5 2 , by letting c0 = 2 in (6), we again obtain the sharp
inequality (5)

log- f e2Ux+(l-f e2'dz) \ l + ±[
n JB2 \IT JBI ) 4TT JB3

(11)

where the equality is attained for radial functions of the form
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COROLLARY 2 . 3 . Let Fn(t) = / / (y - l^y^dy for t > 1 and n ^ 2. Then
for/ ^0 in

Jn J wn_x n2"-1 Jn

PROOF: This result follows from Lemma 2.2. Observe that

F2(t) = l n t + - - l

which corresponds to equation (6) for n = 2. U

Before we finish this section, for better understanding about the sharp inequality (11)
we introduce Beckner's proof for the equivalence between the Moser-Onofri inequality

\(12) ln/^ eFdi < f^ Fdt + \

(d£: normalised measure on S2) and the sharp inequality (11).

By using the result of symmetrisation we assume that F(£) depends only on the
polar angle 0 on S2 and similarly / is radial on R.2. First, for each 5 > 0 set

(13)
Ixl > S.

Since our function F depends only on 9, notice that we can evaluate the integrals
on S2 by first integrating over the parallel Zg — {£ G S2 : e • £ = cos 9} orthogonal to
e and where the measure of Ze is 27rsin0 (that is, / s 2 F(£)d£ = (1/2) £ F(9)sin9d9 ) .
Thus, by using streographic projection from R2 to S2 — {0,0, —1} and (13) we obtain the
following inequality from (12)

-^—- I e2U
I + 62

 IT JB2

Let 7 = 52/(l + S2), then 0 < 7 ^ 1 and from the above inequality we have

(14) 1 ^ e
1 / ( - ) /

So we obtain the following sharp inequality by considering the minimum of the right hand
side of the inequality (14) as a function of 7 on (0,1],

I n - / e2'dx+(-[ e2ldx\ ^ \ +-j- [ |V/|2<fx.
n JB, \n JBI j 4n JB2 '

To show the other side of the inequality we need the following
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LEMMA 2 . 4 . (Beckner) Let K, A be positive definite self adjoint operators de-
fined on a (7-finite measure space satisfying the relation KK = KA — 1. Then the
following inequalities are equivalent

j g{Kg)dv < c + J glngdi/, for g ̂  0, J gdu - 1

\nJe2Jdv^c+ f\A1/2ffdv.

Now, assume the sharp inequality (11) holds. So we also have

(15) In- f e2!dx^\ + ̂ j \Vf\2dx.
ir JB2 4n JB2

Notice that since / has zero boundary-value we have

'B2--
ix-TJBJ^)dx

and the Green's function of — (1/4TT)A is

J -2 1n|x -2/1 + 2 In ± - \x
G{x,y) = { \x\

Thus, from the inequality (15) with the above Lemma we obtain
r r

/ g(x)G{x,y)g(y)dxdy ^lnne+ glngdx

where g ^ 0, / B j g dx = 1. To change the inequality for the function defined on R2 instead
of B2 replace g by the function g€(x) = (l/e2)g(x/e) supported in a ball of radius l/e
such that S^^1/I!)gc(x)dx = 1. So we get

(16) <ln7re+ / glngdx.
•>BUt

Hence, we have

(17) / g(x)(-\n\x - y\2)g(y)dxdy ̂ Imre + / glngdx
JK xlK •/R^

since the size of the support of function g was arbitrary, so by taking e sufficiently small
in (16), the inequality holds everywhere. And then by using the conformal equivalence
between R2 and S2, an inequality which is equivalent to (17) is obtained for the sphere
(see [3, Theorem 2]):

(18) ^ ^ F(t)(- In \t - V\2)F(r)) did-n < J^ - In \{ - r,\2d( + J^ F{() In |

where F ^ 0, jgi Fd£ = 1. Thus, by using duality starting from the Hardy-Littlewood-
Sobolev fractional inequality for 5 2 , (18) is proved to be equivalent to the Moser-Onofri
inequality (12) (see [3]).
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3. FUNCTIONAL FORM AND NUMURICAL ESTIMATES FOR T H E M O S E R - T R U D I N G E R

INEQUALITY

THEOREM 3 . 5 . Let ft be a bounded domain in Rn, n > 2. Let u G W*(fl) with

Jn

then there exist constants Ao, Ai, A2 which depend only on n such that

(fi) Jn
~* dx < Ao

where p = n/(n — 1), an = n(a;T1_i) '^"~1') m(Q) = Jn dx and u>n-i is the (n — 1)-
dimensional surface of the unit sphere.
In particular, when n = 2 or 3, we have

As earlier studies in the direction of the above theorem we found several other
proofs of the Moser inequality (1) in [1, 6, 7]. Usually they proved the boundedness of
the integral by using some constant c,, which depends only on n, with a variety of proofs.
In [6], they estimated the value c2 = 4.3556 by using some computer experiment.
REMARK. By Jetting S = 1 in the resulting inequalities of the theorem we can get a
constant bound cn in the Moser inequality (1), for example c2 = 4.63, C3 = 12.28, C4 =
85.86. But for large n it is not sharp.

Our proof relies on symmetrisation and a change of variable, as in Theorem 2.1, and
uses a sharp lemma by Carleson and Chang [6]. Consider the symmetrised function u* of
u which is defined on fi* — Ix : \x\ ^ R, f\x\<R dx = m ( n ) | . Without loss of generality,
assume that m(ft) - m(unit ball in Rn) (that is, R = 1). Thus, by (7) and (8), it suffices
to prove: if ip(t) is a C'-function defined on 0 ^ t < 00 with

(19) v(o) = o, v 'W^o, rv>'(t)ndt = s

Jo

where 8 ^ 1, n ^ 2, then there exist constants Ao,Ai,A2 such that
f°° eW-Ut^Ao + A^6.
Jo

In particular, when n — 2 or 3,

(20) (°° e""'"- ' dt ^ Aie
A*s.

Jo

To prove the theorem we shall estimate the integral / e ^ ' ' " ' dt on each interval
[0,a] and [a, 00) separately by using some specific point a £ [0,oo) which satisfies the
following.
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C L A I M . For each <p which satisfies (19) we can choose the point a to be the first point
such that

(21) <p{a) = [l - ((n - l)/n)n~l] ' "a'"-1"".

P R O O F OF CLAIM: Suppose not, then there will be two cases;

(i) for all t ^ 0, tp{t) < [l - ((n - I ) / " ) " ' 1 ] "tt"-1^11;

(ii) for all t > 0, <p(t) > [l - ((n - l)/n)"~1]1/ 'Vn-1>/B.

In case (i) we have

e*nt)-tdt ^ J00 JQ-an-iynr-iynn-n

-f-K-^TT-
If we assume that (ii) is true, and since

<p(t) < ( / ' V'(s)n ds) nt(n-l)/n for all O 0

by Holder's inequality, we have

n~l\l'n

for all t ^ 0. But this is a contradiction for sufficiently small t.

Now assuming the existence of the point a, let

Sl = fa <p'(t)ndt
Jo

H«52= H<ff(t)ndt.
Ja

By the property (21) of a and the fact that (pn(a) ^ a""1 /„" <//(s)n ds, Si and 52 satisfy

(22) 61 > 1 -
n

(23) 62 sj 1 - J, $ ( ^ i j

We need the following lemma to estimate the integral /a°° e ^ ^ " ' dt in the proof of
the theorem. At the end of this section we shall prove Lemma 3.7 by using Lemma 3.6

LEMMA 3 . 6 . (Carleson and Chang) Let

f r°° 1
K = <ip: if) is a C1 function defined on 0 < t < oo, ^(0) = 0, / ip'(i)ndt ^ 0}.

I Jo J
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Then for each c > 0 we have

SUp /°° e ^ ' ' " ' dt
K JO

Also when c"/3 —> oo, the inequality tends asymptotically to an equality.

LEMMA 3 . 7 . For each C1 function <p which satisfies (19) and with the fixed point
alet f^<p'{t)ndt^5

where

n-K l/(n-l)

PROOF OF THE THEOREM. Since 8i + 62 = 6 and 6Y ^ 1 - f(n - l ) / n ) " , by
Lemma 3.7 we have

ev"(t)-tf°
Ja

(24) = C3e<*J
e[(l-«"-l)/n)n-')1/(r-"-l]o

where c3 = cie"'^1"^""1^^""1'. Thus by (24) and property (21) of a, we get

r> P <"- '<f i= fae^P^-tdt+ r ^ W - ' i f t ^ re[(i-((n-D/nr-)•/(—)-i
JO J0 Ja Jo

(25) + C3e^el('-((»-l)/")n-1)1/(

Since ( l - [{n - l)/n) J - 1 < 0, we have

for all C 1 functions v' which satisfy (19). This proves the first part of the theorem.

On the other hand, if we rewrite (25) as

+ e[(l-(("-l)/n)"-1)1/(n-1»-l)JC3ecJi _ [\ _ L _

and notice that, when n — 2,3,

0 < c$e 7 -
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for all 0 ̂  8 ̂  1 then we have

r e^W-1 dt ^ c3e«5.
Jo

This finishes the proof of theorem. D

Before we use Lemma 3.6 to prove Lemma 3.7, we rewrite it for functions defined on
B-i as follows; let v £ CQ be a function defined on the unit ball Bn, then for each c > 0
we have

(26) ! / e^^dx
m(Bn) JBn

where/? = jBJVv\n dx.

PROOF OF LEMMA 3.7: To estimate the integral /a°° evP(')~' dt which also can be
recognised as the integral

^ _ f e»(H,.1)"("-".'W("-'»w(i[

by (7) and (8), we shall use a change of variable and the result of Lemma 3.6. Set

y = xea/n

g(y) = u{x) - n-("-(1/"»(Wn_1)-(1/nV(a).

Then g is a radial function defined on the unit ball Bn with zero boundary value having
the following properties
(27) S2 = e^~l)a f \Vg\ndy

and

g(y) = n-t-W-K.x)-*1 '

(28) = n-^'-i^r^W^-n In l

for all y £ Bn- Thus by using (28), we have

I00 e""'')-' dt = — f gn^-,)'""-""''"'"-"^) dx

= -H— f e"(-n-.)"/"-l)(3(!')+"-("-1)/"(-"-.)-(1/n>v(a))n/(n-'1e-V

(29) ^ _^_ e ^ (» )
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where c = n ( 2 n - 1 ) / n ( l / (n - I))(wn_1)1/nip(a)1/("~1). In the last estimate we used the fact

that (a + b)nnn~l) < an^n-^ + (n/(n - I))ab1^n~1'> + bn^n~^ if a,b > 0. Notice that

since 52 < ( ( n - l ) / n ) " ~ \ we have lyl^-1)-"**"""" < 1 for all y € Bn. Thus, from (29)
by using Holder's inequality we get

1 dt

Note that by (27) we have

so if we apply Lemma 3.6 (see (26)) we obtain

f°° e^W-t dt ^ n
2n/(n+l)eV''(o)-a

Ja

where

d = V ( a ) e ( 5 2 .
n — 1

By property (21) of a and the fact that xe( 1"n ) l ^ l/e(n - 1) for x ^ 0,

Thus,

(30) /°° e^W"' dt

where

4. APPLICATIONS OF 2-DIMENSIONAL RESULTS TO 4-DIMENSIONAL

ESTIMATES FOR A

As an application of Theorem 3.1 (when n = 2, fi = B2), we extend the inequality
for the gradient on B2 to the analogue of it for the Laplacian on B4 under the assumption
that our function is radial. We used the property of the Laplacian for the radial function
and a change of variable to obtain the following result.
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COROLLARY 4 . 8 . Let u € CQ{B4) be a radial function with fB4 \Au\2dx ^ 1.
Then there exist A[(= TTAI), A-I which depend only on n such that

m(B4

REMARK. In this case (that is, having the assumption about the L2 norm of Au ),
we may not use the symmetrisation technique as we did in the proofs of the previous
theorems. In general the relation between ||Au||2 and ||Au*||2 is unknown. Thus, for
using the result of Theorem 3.1, we restricted our u to a radial function.

REMARK. In [1], Adams showed an analogue of the Moser inequality for higher-order
derivatives. Specifically, when n = 4, it takes the following form. Let (I be a bounded
domain in R4, u 6 C$(Q,), fn \Au\2dx < 1, then there exists an constant CQ such that

l-fe^dx^co.

By using the same technique which we used above on the linearised Moser-Trudinger
inequality (11) in Section 2, we were able to extend it for the Laplacian on B4.

COROLLARY 4 . 9 .

e2fdx)
)

l n r ^ f e d x + ( n r ^ l e d x ) < 1 + xn \ n , I
m(B4) JB4 \m(5 4 ) JBt ) 48 • m(B4) JB4

for any non-negative radial function f in CQ{B4).
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