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1. Introduction. It is well known that one can use classical maximum principles to
develop maximum principles for auxiliary functions defined on the solution of certain
elliptic equations of the order of higher than 2. In [6] Payne considers the semilinear
equation

�2u = f (u) (1)

in a bounded domain � of Rn. He shows that the maximum value, for auxiliary
functions containing the terms |∇2u|2 − u,i�u,i, and for certain restrictions on f ′(u), is
achieved on the boundary of the domain. An application of these techniques appears in
[4] where the author modifies such functions to obtain results similar to those in [6] for
a semilinear equation from thin plate theory. Other results for semilinear fourth-order
equations can be found in [5, 8, 9, 12].

There are some works which primarily deal with fourth- and higher-order linear
equations. For example, Dunninger in [3] developed maximum principles for equations
of the form

�2u − a�u + bu = 0 in �, (2)

where � is a bounded domain in Rn, and other related linear fourth-order equations.
In [7], the author obtains a maximum principle for a function defined on the solution
of the sixth-order equation

�3u − a�2u + b�u − cu = F(x) (3)

in a bounded domain � of R2. Finally, in [1], the author extends the results in [7] to
include the variable coefficient case and examines a related eighth-order linear equation
of the form

�4u − a�3u + b�2u − c�u + du = f (x) in � ⊂ R2 (4)

where � is bounded and b may be nonconstant.
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One can find additional results for higher-order linear elliptic equations in [2, 11].
In this paper we show that one can obtain maximum principle results for the

semilinear fourth-, sixth- and eighth-order versions of the constant-coefficient, linear
elliptic equations (2), (3), (4), and for the sixth- and eighth-order generalizations of
equation (1), by modifying the auxiliary functions used in [6]. From these maximum
principles we deduce integral bounds on certain gradients of the solutions of several
partial differential equations, subject to different boundary conditions.

2. Notation. Throughout this paper, the summation convention on repeated
indices is used. Commas will denote partial differentiation. Additionally, we make
the following identifications for the squares of the first, second, third, and fourth
gradients of w:

|∇w|2 = w,iw,i

|∇2w|2 = w,ijw,ij

|∇3w|2 = w,ijkw,ijk

|∇4w|2 = w,ijklw,ijkl

for indices i, j, k, l = 1, 2, . . . .n.
Furthermore, we note that

∑
i,j,k,l

will denote
∑

i

∑
j

∑
k

∑
l

for indices i, j, k, l = 1, 2, . . . .n.

Finally, we assume that � is a bounded domain in Rn.

3. Fourth-order equations. Here, we consider the semilinear equation

�2u − a�u + bf (u) = 0 in �. (5)

We now use a slight modification of an auxiliary function found in [6] to deduce the
following result:

THEOREM 1. Suppose that u ∈ C5(�) ∩ C3(�̄) is a solution of (5) and a, b are
nonnegative constants. If f ∈ C1(R) satisfies f ′(u) ≥ 0, then the function

V = |∇2u|2 − u,i(�u),i + b
(

4 − n
n + 2

) ∫ u

0
f (s)ds + n − 4

2(n + 2)
(�u)2 + a

2
|∇u|2

takes its maximum value on ∂�.

Proof. A straightforward calculation shows that

�V = 2|∇3u|2 − 6
n + 2

(�u),i(�u),i + 6b
n + 2

f ′|∇u|2 + a|∇2u|2 + a
(

n − 4
n + 2

)
(�u)2.

Using the well-known inequalities,

|∇3u|2 ≥ 3
n + 2

(�u),i(�u),i, (6)

|∇2u|2 ≥ 1
n

(�u)2 (see [10]) (7)
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and our assumptions on a, b and f ′(u), we see that �V is subharmonic in � and so the
conclusion follows. �

4. Sixth-order equations. In this section of the paper, we deduce maximum
principles for the solutions of two classes of semilinear sixth-order partial differential
equations. First we introduce the equation

�3u + f (u) = 0 in �. (8)

Now we establish the following theorem:

THEOREM 2. Let u in C7(�) ∩ C5(�̄) be a solution of (8). Suppose that f ∈ C1(R)
satisfies f ′(u) ≤ 0 and n ≤ 3. Then the function

P = |∇3u|2 + 1
2

u,i(�2u),i − (�u),iju,ij − 1
4

(�u),i(�u),i

takes its maximum value on ∂�.

The proof of Theorem 2 requires the lemma below which extends inequality (6).

LEMMA 1. Let w be an arbitrary function in C4(�). Then

|∇4w|2 ≥ 6
n + 5

(�w),ij(�w),ij. (9)

Proof. Let ε > 0 be arbitrary. Then

∑
i,j,k,l

[w,ijkl − ε{(�w),ilδjk + (�w),ijδlk + (�w),ikδjl

+ (�w),jkδil + (�w),jlδik + (�w),klδij}]2 ≥ 0.

This inequality reduces to the following:

w,ijklw,ijkl − 12ε(�w),ij(�w),ij + 6ε2(n + 5)(�w),ij(�w),ij ≥ 0.

Viewing the previous expression as a quadratic expression in ε, we see that the
discriminant of this expression leads to the inequality

|∇4w|2 = w,ijklw,ijkl ≥ 6
n + 5

(�w),ij(�w),ij,

as was to be shown.

Now we prove Theorem 2 by showing that P is subharmonic in �. First we calculate

P,l = 2u,ijku,ijkl + 1
2

u,il(�2u),i + 1
2

u,i(�2u),il − (�u),iju,ijl − (�u),ijlu,ij

− 1
2

(�u),il(�u),i.
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Therefore,

�P = 2u,ijklu,ijkl + 2u,ijk(�u),ijk + 1
2

(�u),i(�2u),i + u,il(�2u),il

+ 1
2

u,i(�3u),i − (�u),ij(�u),ij − (�u),ijlu,ijl − (�u),ijlu,ijl

− (�2u),iju,ij − 1
2

(�u),il(�u),il − 1
2

(�2u),i(�u),i

= 2|∇4u|2 − 1
2

f
′ |∇u|2 − 3

2
(�u),il(�u),il.

Hence by (9) and the assumption that f ′(u) ≤ 0, it follows that �P is nonnegative.

The second class of sixth-order equation that we consider contains linearities in
both the Laplacian and Bilaplacian of the solution and has the form

�3u − a�2u + b�u − cf (u) = 0 in �. (10)

We prove: �

THEOREM 3. Let u ∈ C7(�) ∩ C5(�̄) be a solution of (10), where the constants
a, b, c ≥ 0. If f ∈ C1(R) satisfies f ′(u) ≥ 0 and n ≤ 3 then the function

R = |∇3u|2 + 1
2

u,i(�2u),i − (�u),iju,ij − 1
4

(�u),i(�u),i + a
2
|∇2u|2

− a
2

u,i(�u),i + b
4
|∇u|2

takes on its maximum value on ∂�.

Proof. Using our calculation from Theorem 2 and applying the Laplacian to the
last three terms in R yield

�R = 2|∇4u|2 + c
2

f ′|∇u|2 − 3
2

(�u),ij(�u),ij + b
2
|∇2u|2 + b

2
u,i(�u),i

+ a|∇3u|2 + a
2

u,i(�2u),i − b
2

u,i(�u),i − a
2

u,i(�2u),i − a
2

(�u),i(�u),i.

= 2|∇4u|2 − 3
2

(�u),ij(�u),ij + a|∇3u|2 + c
2

f ′|∇u|2 + b
2
|∇2u|2

− a
2

(�u),i(�u),i.

By (6), (9), the nonnegativity of a, b and c and the assumption that f ′(u) ≥ 0 we observe
that �R ≥ 0. �

5. Eighth-order equations. Before we state and prove results for semilinear eighth-
order equations, we begin here by proving a maximum principle for some linear eighth-
order equations.

The auxiliary function that we introduce below will provide the basis for more
complicated auxiliary functions associated with our semilinear equations.
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THEOREM 4. Suppose u ∈ C9(�) ∩ C7(�̄) is a solution of �4u = 0. If n ≤ 4, then
the function

S = |∇2(�2u)|2 − (�2u),i(�3u),i

takes its maximum value on the boundary of �.

Proof. Note that

S,l = 2(�2u),ij(�2u),ijl − (�2u),il(�3u),i − (�2u).i(�3u),il.

Hence,

�S = 2(�2u),ijl(�2u),ijl + 2(�2u),il(�3u),il − (�3u),i(�3u),i
− 2(�2u),il(�3u),il − (�2u),i(�4u),i

= 2(�2u),ijl(�2u),ijl − (�3u),i(�3u),i − (�2u),i(�4u),i.

Using the equation �4u = 0 and (6) (in which we replace u by �2u), we see that �S ≥ 0.
Next, we consider the linear eighth-order equation,

�4u = cu in �, where the constant c < 0 (11)

and deduce the following theorem. �
THEOREM 5. Let u ∈ C9(�) ∩ C7(�̄) be a solution of (11). Suppose that n ≤ 4. Then

the function

Q = |∇2(�2u)|2 − (�2u),i(�3u),i − c|∇2u|2 + cu,i(�u),i

takes its maximum value on the boundary of �.

Here, we note that the auxiliary function in Theorem 5 is a combination of the
terms in the auxiliary functions for equation (1) and the homogeneous equation of
Theorem 4.

Proof. A calculation similar to that of Theorem 4 above yields:

�Q = 2(�2u),ijk(�2u),ijk − (�3u),i(�3u),i − c(�2u),iu,i − 2c|∇3u|2
+ cu,i(�2u),i + c(�u),i(�u),i

= 2(�2u),ijk(�2u),ijk − (�3u),i(�3u),i − 2c|∇3u|2 + c(�u),i(�u),i.

Finally, we use (6) twice to conclude that �Q ≥ 0.
Now we consider a semilinear eighth-order equation for which our next theorem

is stated. �
THEOREM 6. Suppose u ∈ C9(�) ∩ C7(�̄) is a solution of the equation �4u = f (u)

and n ≤ 3. Furthermore, suppose that for constants γ and β and for a function f ∈ C1(R),
the following conditions are satisfied:

(i) 1 + 2β ≤ γ ≤ 1, − 1
5

≤ β

γ
< 0

(ii) f ′ < 0,
γ

−(1 + 2β)
≤ f ′ ≤ −(2β + γ ).
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Then, the function

T = |∇2(�2u)|2 − (�2u),i(�3u),i + γ |∇2u|2 − γ u,i(�u),i − β

2
(�2u)2

+β(�u)(�3u) − β

∫ u

0
f (s)ds

takes its maximum value on the boundary of �.

Proof. We show that T is subharmonic in �. Hence, by a straight-forward
calculation, we have

�T = 2(�2u),ijk(�2u),ijk − (�3u),i(�3u),i + 2γ |∇3u|2
− γ (�u),i(�u),i − γ u,i(�2u),i−β(�2u),i(�2u),i − β(�2u)(�3u)

+β(�2u)(�3u) + β(�u)(�4u) + 2β(�u),i(�3u),i − βf ′|∇u|2
−βf (�u) − (�2u),i(�4u),i

= 2|∇3(�2u)|2 − (�3u),i(�3u),i − (f ′ + γ )u,i(�2u),i
+ 2γ |∇3u|2 − γ (�u),i(�u),i − β(�2u),i(�2u),i + 2β(�u),i(�3u),i
−βf ′|∇u|2

≥ 2|∇3(�2u)|2 − (1 − β)(�3u),i(�3u),i

−
(

f ′

2
+ γ

2
+ βf ′

)
|∇u|2 +

[
−

(
f ′

2
+ γ

2

)
− β

]
(�2u),i(�2u),i

+ 2γ |∇3u|2 − (γ − β)(�u),i(�u),i.

Using assumptions (i), (ii) and inequality (6), �T ≥ 0. �
REMARK. We note that functions of the form f (u) = c1tan−1(u) + c2u, for suitable

choices of the constants c1, c2, γ , β , satisfy the conditions of Theorem 6.

Finally, we state our last theorem for an eighth-order semilinear equation of the
form

�4u − a�3u + b�2u − c�u + df (u) = 0 in �. (12)

THEOREM 7. Let u ∈ C9(�) ∩ C7(�̄) be a solution of (12), where the constants
a, c ≥ 0, the constant d > 0, b ≥ α > 0 (α is a constant), f ∈ C1(R), and n ≤ 3.

Define the function

W = |∇2(�2u)|2 − (�2u),i(�3u),i + a
2

(�2u),i(�2u),i + c
2

(�u),i(�u),i

+α|∇2u|2 − αu,i(�u),i + g(x)|∇u|2,
where g ∈ C2(�) ∩ C(�̄) is a positive function bounded below by α. Then W takes its
maximum value on the boundary of �, if the following additional conditions hold:

(i) 0 ≤ f ′ ≤ α

d

(ii) �g − 10
α

g2 − 4
|∇g|2

g
≥ 0.
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We leave the details of this proof to the reader.

6. Applications. Here we give an application of Theorem 2 by considering the
following boundary value problem for functions u ∈ C7(�) ∩ C5(�̄):

�3u + f (u) = 0 in �,

u = ∂u
∂n

= ∂2u
∂n2

= 0 on ∂�.

Using Theorem 2 we easily deduce that

P ≤ max
∂�

[
|∇3u|2 − 1

4
(�u),i(�u),i

]
.

Now we deduce integral bounds on |∇3u|2. We integrate in a term by term manner
the left side of this equation, using integration by parts and apply the boundary
conditions above: ∫

�

u,ijku,ijkdx =
∫

∂�

u,ijnku,ijkds −
∫

�

u,ij(�u),ijdx

and so ∫
�

u,ijku,ijkdx −
∫

�

u,ij(�u),ijdx = −2
∫

�

u,ij(�u),ijdx

= −2
∫

∂�

u,inj(�u),ijds + 2
∫

�

u,i(�2u),idx.

Thus,
∫

�

u,ijku,ijkdx −
∫

�

u,ij(�u),ijdx + 1
2

∫
�

u,i(�2u),idx = 5
2

∫
�

u,i(�2u),idx

= 5
2

∫
∂�

u,ini(�2u)ds − 5
2

∫
�

(�u)(�2u)dx

= −5
2

∫
�

(�u)(�2u)dx = −5
2

∫
∂�

(�u)(�u),inids + 5
2

∫
�

(�u),i(�u),idx

= 5
2

∫
�

(�u),i(�u),idx.

Gathering all terms in P together and integrating, we see that
∫

�

u,ijku,ijkdx −
∫

�

u,ij(�u),ijdx + 1
2

∫
�

u,i(�2u),idx − 1
4

∫
�

(�u),i(�u),idx

= 3
2

∫
�

(�u),i(�u),idx.

A further computation using integration by parts shows that
∫

�

|∇3u|2dx =
∫

�

(�u),i(�u),idx
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and so finally we deduce the following integral bound on the square of the third
gradient of u:

∫
�

|∇3u|2dx ≤ 2
3

[
max
∂�

(
|∇3u|2dx − 1

4
(�u),i(�u),i

)]
Area(�).

Here, we just briefly mention an application of say Theorem 5 in which some
integral bounds can be obtained.

We consider the following boundary value problem for functions u ∈ C9(�) ∩
C7(�̄) :

�4u = cu in �, where c < 0,

u = ∂u
∂n

= 0 on ∂�,

�2u = ∂(�2u)
∂n

= 0 on ∂�.

Using integration by parts we obtain the following integral inequality:
∫

�

(|∇2(�2u)|2 − c|∇2u|2)dx ≤ 1
2

max
∂�

(|∇2(�2u)|2 − c|∇2u|2)Area(�).
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