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Abstract
We prove an isomorphism theorem between the canonical denotation systems for large natural numbers and large
countable ordinal numbers, linking two fundamental concepts in Proof Theory. The first one is fast-growing hierar-
chies. These are sequences of functions on N obtained through processes such as the ones that yield multiplication
from addition, exponentiation from multiplication, etc. and represent the canonical way of speaking about large fi-
nite numbers. The second one is ordinal collapsing functions, which represent the best-known method of describing
large computable ordinals.

We observe that fast-growing hierarchies can be naturally extended to functors on the categories of natural
numbers and of linear orders. The isomorphism theorem asserts that the categorical extensions of binary fast-
growing hierarchies to ordinals are isomorphic to denotation systems given by cardinal collapsing functions. As an
application of this fact, we obtain a restatement of the subsystem Π1

1-CA0 of analysis as a higher-type well-ordering
principle asserting that binary fast-growing hierarchies preserve well-foundedness.

1. Introduction

1.1. Motivation

Mathematicians often face the need to express very large quantities for one reason or another. In some
extreme occasions, these numbers are incomprehensibly large. Examples include Graham’s number
𝑔64 (see Gardner [10]; see also Graham-Rothschild [14]) or Friedman’s tree number TREE(3) (see
Friedman [9]). These immense numbers are completely foreign to our everyday experience, and so
we would naturally like to attempt to provide a sense of scale for them. The way this is usually done
is via fast-growing hierarchies, collections of functions 𝑓𝛼 : N → N, where 𝛼 ranges over elements
of N, or possibly even over transfinite numbers, and each 𝑓𝛼 eventually dominates 𝑓𝛽 , for all 𝛽 < 𝛼.
One is mainly interested in fast-growing hierarchies obtained through a given recursive construction
which usually generalizes the process that produces multiplication as iterated addition, exponentiation
as iterated multiplication, etc. A commonly known example of such a hierarchy is given by Knuth’s
arrow hierarchy (see Knuth [17]):

𝑓𝑛 (𝑎, 𝑏) = 𝑎 ↑↑ · · · ↑︸���︷︷���︸
𝑛 times

𝑏.
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Fast-growing functions are really the ‘canonical’ way to express the magnitude of large integers and
place them into perspective. Knuth’s and other related hierarchies (some of which will be discussed
below) have proven to be effective for this purpose and indeed can be used to give bounds for the numbers
𝑔64 and TREE(3) which illustrate their magnitude to the greatest extent one could perhaps hope for.

For completely different purposes, logicians – and, in particular, proof theorists – often face the need
to talk about large countably infinite ordinal numbers (in fact, large computable ordinal numbers) such
as the Bachmann-Howard ordinal 𝜓(𝜀ℵ1+1). There is also a ‘canonical’ way to express these via what are
known as ordinal collapsing functions. These allow us to make use of uncountable numbers to express
large countably infinite (and indeed computable) numbers. In this article, we will prove an isomorphism
theorem (Theorem 14 on p. 12) according to which the two constructions – ordinal collapsing functions
and fast-growing hierarchies – can be regarded as one and the same.

1.2. Fast-growing hierarchies

Let us focus our attention on hierarchies of unary functions. Fast-growing hierarchies can be defined
in various ways, and doing so often results in one hierarchy being a refinement of another. Another
example is the Hardy hierarchy (introduced by Wainer [25], though implicit in G. H. Hardy’s [15]
construction of a subset of R of cardinality ℵ1), the iterative fast-growing hierarchy and the binary
fast-growing hierarchy. Let us focus on the latter one, for the sake of definiteness, though we remark
that the constructions in this article could be adapted to the other hierarchies. It is defined by transfinite
induction according to the following construction:

𝐵0(𝑛) = 𝑛 + 1
𝐵𝛼+1(𝑛) = 𝐵𝛼 ◦ 𝐵𝛼 (𝑛)

𝐵𝜆 (𝑛) = 𝐵𝜆[𝑛] (𝑛), at limit stages,

where for each limit ordinal 𝜆, {𝜆[𝑛] : 𝑛 ∈ N} is a sequence which converges to 𝜆, fixed in advance.
The precise functions defined depend on the sequences chosen, but for natural choices of sequences, the
functions behave very regularly. The ordinal 𝜀0 is defined by

𝜀0 = sup{𝜔, 𝜔𝜔 , 𝜔𝜔𝜔
, . . .}.

𝐵𝜀0 is a total recursive function whose totality cannot be proved in Peano Arithmetic (or, equivalently,
Arithmetical Comprehension, ACA0). The foundational significance of fast-growing functions was
observed by Ackermann and, later, by Kreisel [18].

Theorem 1 (Kreisel 1952, essentially). There is a canonical well-ordering W of N of length 𝜀0 such
that the following theories prove the same Π0

2 theorems:

1. Arithmetical Comprehension;
2. Primitive Recursive Arithmetic + {𝐵𝛼 is total : 𝛼 ∈ 𝑊}.

In particular, the two theories are equiconsistent.

Kreisel’s theorem is a computational analysis of arithmetic in the sense that it gives an explicit
characterization of the recursive functions which are provably total.

1.3. Fast-growing functions and ordinal denotation systems

Kreisel’s result is of great foundational significance and has led to a great deal of metamathematical
and combinatorial results in the context of arithmetic, as well as generalizations to stronger systems.
For instance, one can prove a version of Kreisel’s theorem for the subsystem Π1

1-CA0 of analysis where
𝐵𝜀0 is replaced by 𝐵𝜓0 (ℵ𝜔) (see Buchholz [4]). Here, 𝜓0(ℵ𝜔) is the Takeuti ordinal, a recursive ordinal
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that is most easily described by ordinal collapsing functions for the uncountable cardinals ℵ𝑛, where
𝑛 ∈ N. Π1

1-CA0 is a historically and mathematically important theory, and is the strongest of the
‘big five’ subsystems of Second-Order Arithmetic commonly studied in Reverse Mathematics. Ordinal
collapsing functions were introduced by Bachmann [3] and are a powerful method in proof theory
involved in the description of large recursive ordinals, such as the Bachmann-Howard ordinal 𝜓(𝜀ℵ1+1),
the Takeuti ordinal and other larger numbers such as the proof-theoretic ordinals of KPi and KP + Π3-
reflection. These ordinals involve collapsing functions for inaccessible and weakly compact cardinals,
respectively; see Rathjen [20] for an overview. Indeed, ordinal collapsing functions are the canonical
method of speaking about large countable ordinals.

The first observation we make is that fast-growing hierarchies can be regarded as functors on the
category of natural numbers with strictly increasing functions as morphisms. This fact was perhaps
underpinning the main result of [2]. Let us say more about this observation.

For our purposes, it will be convenient to shift our focus to the norm-based presentation of fast-
growing hierarchies. This presentation goes back to [5] and, for our purposes, is described as follows:
suppose that we are given a denotation system D for ordinals. We will use D to index a fast-growing
hierarchy. The definition of ‘denotation system’ is recalled in the next section, where these are defined as
a particular kind of dilator. The reader unfamiliar with denotation systems might temporarily think of D
as a system for representing ordinals in some way using natural numbers as parameters. For example, we
may think of representing ordinals <𝜔𝜔 as sums of powers of 𝜔 using integers as parameters together
with the symbol ‘𝜔’; for example,

𝜔7 + 𝜔3 + 21.

The norm 𝑁𝛼 of an ordinal 𝛼 is the strict supremum of the natural number parameters which occur in
the denotation. We define

𝐵𝛼 (𝑛) = sup
(
{𝐵𝛽 ◦ 𝐵𝛽 (𝑛) : 𝛽 < 𝛼 ∧ 𝑁𝛽 ≤ 𝑛} ∪ {𝑛 + 1}

)
.

Natural numbers can be represented by repeated applications of functions in the hierarchy:

𝑚 = 𝐵𝛼𝑘𝐵𝛼𝑘−1 . . . 𝐵𝛼1 (𝑛). (1)

If n is fixed and some constraints are imposed on the values 𝛼1, . . . , 𝛼𝑘 , then the resulting representation
is unique. We define

𝐵𝐷 (𝑛) = 𝐵𝐷 (𝜔) (𝑛) = sup{𝐵𝛽 ◦ 𝐵𝛽 (𝑛) : 𝑁𝛽 ≤ 𝑛} ∪ {𝑛 + 1}.

Making use of the representation of natural numbers in terms of iterations of the fast-growing hierarchy,
we can regard 𝐵𝐷 as a functor on the category of natural numbers with strictly increasing functions as
morphisms. This is proved in §3.

From the fact that 𝐵𝐷 is a functor on the category of natural numbers, it follows that 𝐵𝐷 can be
uniquely extended to a finitary functor on the category of linear orders. In particular, expressions of the
form (1) can be given transfinite parameters and construed as denotations for elements of some linear
order. In §4, we give an alternative (isomorphic) definition of the functor 𝐵𝐷 as a term system performing
a formal ordinal collapse of D. Thus, the main contribution of this work is captured by the following:

Fundamental Observation. Binary fast-growing functors are naturally isomorphic to ordinal de-
notation systems given by ordinal collapses.

This insight is made precise by Theorem 14 on p. 12, which, together with Proposition 9 on
p. 10, asserts that the ‘canonical’ method used to refer to large countable numbers is derived from
a functorialization of the ‘canonical’ method used to refer to large finite numbers. In particular, we have
an object 𝐵𝐷 which can be simultaneously viewed through the lenses of two fundamental concepts in
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Proof Theory (fast-growing functions and ordinal collapses), connecting the two fields of study. For
example, we can use fast-growing functors to express the Bachmann-Howard ordinal as

𝜓(𝜀ℵ1+1) = 𝐵𝐷 (0),

where

𝐷 =
∑
𝑛∈N

(
exp𝑛 ◦Add(1)

)

and where exp is the natural exponential functor mapping a linear order X to 𝜔𝑋 and Add(1) is the
addition functor mapping X to 𝑋 + 1.

1.4. An application

In §5, we use functorial fast-growing hierarchies to prove a result in Reverse Mathematics. We first show
that the ordinal collapses given by 𝐵𝐷 are well-foundedness-preserving, so that if A is a well-order, then
so too is 𝐵𝐷 (𝐴). This justifies us calling 𝐵𝐷 an ‘ordinal denotation system’ rather than a denotation
system for elements of some linear order.

In fact, 𝐵𝐷 is a functor on the category of ordinal numbers and indeed a dilator. The proof of this
fact requires the use of a powerful set-existence principle called Π1

1-CA0, and this is unavoidable: the
fact that 𝐵𝐷 is well-foundedness-preserving, in turn, implies Π1

1-CA0. This way, we obtain a restatement
of Π1

1-CA0 in terms of fast-growing hierarchies and abstract ordinal collapses. We state the theorem; for
all undefined terms, we refer the reader to the following section.
Theorem 2. The following are equivalent over ACA0:
1. Π1

1-CA0;
2. for every dilator D, 𝐵𝐷 is a dilator.

To establish the reversal in Theorem 2, it suffices to consider so-called weakly finite dilators. Theorem
2 fits within the family of results known as well-ordering principles. Most commonly, these are principles
of the form ‘if X is a well-order, then 𝑓 (𝑋) is a well-order’, where f is some transformation. These
principles have been extensively studied in Reverse Mathematics and have led to reformulations of several
subsystems of analysis. Some examples are the works of Girard [13], Friedman (unpublished), Hirst [16],
Afshari-Rathjen [1], Marcone-Montalbán [19], Rathjen-Valencia Vizcaíno [21], Thomson-Rathjen [23]
and [22]. Higher-type well-ordering principles were used by Girard [11] and Freund [7] to characterize
Π1

1-CA0. Freund’s theorem is an ingredient of our proof of Theorem 2. Freund’s principle maps dilators
to well-orderings, while ours and Girard’s map dilators to dilators. Girard’s characterization of Π1

1-
CA0 asserts the totality of the functor Λ, which itself is reminiscent of fundamental-sequence–based
fast-growing hierarchies. Well-ordering principles for theories such as Π1

1-CA0 which are not Π1
2-

axiomatizable require the use of higher-type objects such as dilators.
Although throughout this article we focus on the binary fast-growing hierarchy 𝐵𝐷 , we mention that

the statement of Theorem 2 applies to many of the other usual fast-growing hierarchies as well. The use
of 𝐵𝐷 is merely for convenience and to simplify the computations involved.

2. Preliminaries

We deal with the category LO. The objects of LO are linear orders whose domains are subsets of N. The
morphisms are strictly increasing maps between these orders. We shall work within the subsystem ACA0
of second-order arithmetic. This is the system in the language of second-order arithmetic (which contains
sorts for natural numbers and sets of natural numbers) whose principal axioms are the induction axiom
and the schema asserting that every arithmetically definable set exists. When it leads to no confusion,
we shall leave the precise formalization of statements to the reader and work informally.
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In the language of second-order arithmetic, one cannot generally speak of functors from LO to LO;
thus, we shall restrict to dealing with finitary functors (i.e., functors preserving co-limits of upward
directed diagrams (direct limits in the model-theoretic sense)). These can be coded by sets of natural
numbers:

We consider Nat, the full subcategory of LO where objects are natural numbers n, which we identify
with the orders ([0, 𝑛), <). Since both ObNat and MorNat are countable, each functor from Nat to LO can
be coded by a set of natural numbers. Each functor 𝐷 : Nat → LO can be uniquely extended to a finitary
functor 𝐷 : LO → LO as follows:

Below, we write 𝐴′ ⊆fin 𝐴 if 𝐴′ is a finite subset (or substructure) of A. Given a linear order
A, we consider an upward directed diagram 𝐻𝐴 consisting of all finite suborders 𝐴′ ⊆fin 𝐴 and all
morphisms id𝐴′→𝐴′′ , for 𝐴′ ⊆fin 𝐴′′ ⊆fin 𝐴, where id𝐴′→𝐴′′ : 𝐴′ → 𝐴′′ denotes the inclusion map given
by id𝐴′→𝐴′′ (𝑥) = 𝑥. Let 𝐻 ′

𝐴 be the naturally isomorphic diagram in which all objects are orders in ObNat.
Applying D to all morphisms and objects in 𝐻 ′

𝐴, we obtain a diagram 𝐷 [𝐻 ′
𝐴] and define

𝐷 (𝐴) = lim
−−→

𝐷 [𝐻 ′
𝐴],

where lim
−−→

𝐷 [𝐻 ′
𝐴] denotes the co-limit of the diagram. The value 𝐷 ( 𝑓 ), for an LO-morphism 𝑓 : 𝐴 → 𝐶

is recovered in the natural way.
A finitary functor D on LO coded by a set of natural numbers is called a pre-dilator if it preserves

pullbacks. Clearly, D preserves pullbacks if and only if its restriction to Nat preserves pullbacks.
It will be convenient for our purposes to work with inclusion-preserving (or ⊆-preserving) functors.

These are the functors D such that for any order A and any suborder B of A,
1. 𝐷 (𝐵) is a suborder of 𝐷 (𝐴), and furthermore,
2. 𝐷 (id𝐵→𝐴) = id𝐷 (𝐵)→𝐷 (𝐴) .
Finitary ⊆-preserving functors were called 𝜔-local functors by S. Feferman [6].1 For ⊆-preserving
functors, there are convenient reformulations of the conditions of being a finitary functor and a pre-
dilator. Namely, a ⊆-preserving functor D is finitary if and only if for any order A, we have

𝐷 (𝐴) =
⋃

𝐴′ ⊆fin𝐴

𝐷 (𝐴′).

An ⊆-preserving finitary functor D is a pre-dilator iff for any order A and its suborders 𝐵,𝐶 ⊆ 𝐴 we
have 𝐷 (𝐵 ∩ 𝐶) = 𝐷 (𝐵) ∩ 𝐷 (𝐶).

Working in ACA0, we code ⊆-preserving finitary functors as follows. We consider the full subcategory
FO of LO, where objects are finite linear orders. As in the case of Nat, both ObFO and MorFO are countable,
so ⊆-preserving functors D from FO to LO can each be coded naturally by a set of natural numbers. We
extend any such D to a functor with domain LO by putting

𝐷 (𝐴) =
⋃

𝐴′⊆fin𝐴

𝐷 (𝐴′) and 𝐷 ( 𝑓 ) =
⋃

𝐴′⊆fin𝐴

𝐷 ( 𝑓 � 𝐴′).

Here, for 𝑓 : 𝐴 → 𝐶 and 𝐴′ ⊆ 𝐴, 𝑓 � 𝐴′ : 𝐴′ → 𝐶 is the restriction of f.
A pre-dilator is called a dilator if it maps well-orders to well-orders. Dilators were introduced

by Girard [12], to whom we refer the reader for further background. The fundamental theorem of
dilators states that every pre-dilator D is naturally isomorphic to a denotation system, a special kind of
⊆-preserving predilators.

Each denotation system D consists of a set of terms 𝑡 (𝑥1, . . . , 𝑥𝑛) and comparison rules establishing,
for each pair of terms 𝑡 (𝑥) and 𝑠(𝑦), which one is greater, depending on the relative ordering of
the constants 𝑥 and 𝑦. Note that we do not allow 𝑡 (𝑥) = 𝑠(𝑦) unless 𝑡 (𝑥) and 𝑠(𝑦) are syntactically
the same term. This allows us to define a binary relation 𝐷 (𝐴) for each linear order A as follows: the

1Feferman [6] is an early reference for functorial ordinal notation systems.
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domain of 𝐷 (𝐴) is the set of all expressions 𝑡 (𝑎1, . . . , 𝑎𝑛), where 𝑎1 > . . . > 𝑎𝑛 are elements of A and
𝑡 (𝑥1, . . . , 𝑥𝑛) is a D-term. The relative ordering of elements of the domain of 𝐷 (𝐴) is determined by
the comparison rules for each pair of terms.

Given a strictly increasing map 𝑓 : 𝐴 → 𝐶 between finite orderings A and C, we define

𝐷 ( 𝑓 ) : 𝐷 (𝐴) → 𝐷 (𝐶)

𝐷 ( 𝑓 ) : 𝑡 (𝑎1, . . . , 𝑎𝑛) ↦→ 𝑡 ( 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑛)).

We shall sometimes identify the values of terms 𝑡 (𝑥1, . . . , 𝑥𝑛) with the ordinals they denote. If
𝛼 = 𝑡 (𝑥1, . . . , 𝑥𝑛), we call the set {𝑥1, . . . , 𝑥𝑛} the support of 𝛼 and denote it by supp(𝛼). Given ordinals
𝛼, 𝛽, we write

supp(𝛼) < 𝛽 if 𝑥𝑖 < 𝛽 for all 𝑥𝑖 ∈ supp(𝛼).

2.1. Conventions

Whenever we deal with a linear order L, we will write <𝐿 to indicate the ordering. If no confusion
arises, we may occasionally omit reference to L and simply write <.

When dealing with functions 𝑓 (𝑥), we will sometimes omit brackets and simply write 𝑓 𝑥. The
purpose of this is to avoid cluttering when dealing with nested application of functions.

3. The functoriality of fast-growing hierarchies

In this section, we fix a dilator D and investigate the functorial structure of 𝐵𝐷 . All the constructions in
this section are formalizable in ACA0. Note that the norms 𝑁𝛼 – and hence the B-hierarchy on 𝐷 (𝜔) –
are unaffected if we replace D by a naturally isomorphic denotation system. Hence, in order to simplify
notation, we will assume that D is a denotation system (in fact, we will only use that it is ⊆-preserving).
If so, 𝑁𝛼 = min{𝑛 | 𝛼 ∈ 𝐷 (𝑛)}.
Definition 3. Let n be a natural number and 𝛼 ∈ 𝐷 (𝜔) ∪ {𝐷 (𝜔)}. An (𝑛, 𝛼)-normal form term is an
expression of one of the following forms:
1. m, where 𝑚 < 𝑛 is a natural number, or
2. 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛), where

(a) 𝛼𝑘 <𝐷 (𝜔) · · · <𝐷 (𝜔) 𝛼1 <𝐷 (𝜔) 𝛼; and
(b) 𝑁𝛼𝑖+1 ≤ 𝐵𝛼𝑖 . . . 𝐵𝛼1 (𝑛) for all i with 0 ≤ 𝑖 < 𝑘 .
Normal form terms denote natural numbers obtained simply by evaluating the functions. If 𝑚 =

𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛) is as above, we may omit reference to 𝛼 and call this expression the n-normal form of
m; if so, we may write

𝑚
𝑁𝐹
= 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛).

For finite sequences of ordinals (𝛼1, . . . , 𝛼𝑘 ) ∈ (𝐷 (𝜔))<𝜔 , the lexicographical comparision <lex is
defined in the usual manner: by putting

(𝛼1, . . . , 𝛼𝑘 ) <lex (𝛽1, . . . , 𝛽𝑙)

if there exists 0 ≤ 𝑛 ≤ min(𝑘, 𝑙) such that 𝛼𝑖 = 𝛽𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 and either 𝑛 = 𝑘 < 𝑙 or 𝑛 < min(𝑘, 𝑙)
and 𝛼𝑛+1 <𝐷 (𝜔) 𝛽𝑛+1.
Lemma 4 (ACA0). Suppose 𝛼 ∈ 𝐷 (𝜔) ∪ {𝐷 (𝜔)} and 𝑛 ∈ N. Then,
1. each number smaller than 𝐵𝛼 (𝑛) is the value of a unique (𝑛, 𝛼)-normal form; and
2. for any two (𝑛, 𝛼)-normal forms 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛) and 𝐵𝛽𝑙 . . . 𝐵𝛽1 (𝑛), we have

𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛) < 𝐵𝛽𝑙 . . . 𝐵𝛽1 (𝑛) ⇐⇒ (𝛼1, . . . , 𝛼𝑘 ) <lex (𝛽1, . . . , 𝛽𝑙).
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Proof. We prove the lemma by transfinite induction on 𝛼. If there are no 𝛼′ <𝐷 (𝜔) 𝛼 with 𝑁𝛼′ ≤ 𝑛,
then 𝐵𝛼 (𝑛) = 𝑛 + 1 and the only (𝑛, 𝛼)-normal forms are constants ≤ 𝑛, and hence, the lemma holds.

Otherwise, choose 𝛼′ <𝐷 (𝜔) 𝛼 such that 𝑁𝛼′ ≤ 𝑛 and 𝐵𝛼 (𝑛) = 𝐵𝛼′ (𝐵𝛼′ (𝑛)). Let 𝑠 = 𝐵𝛼′ (𝑛). By
induction hypothesis,

1. any number < 𝐵𝛼′ (𝑠) is the value of a unique (𝑠, 𝛼′)-normal form;
2. any number < 𝑠 is the value of a unique (𝑛, 𝛼′)-normal form.

Combining these two facts, we observe that each number < 𝐵𝛼 (𝑛) is the value of the unique term of
one of the following three forms:

1. m, for 𝑚 < 𝑛;
2. 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛), where 𝛼𝑘 <𝐷 (𝜔) · · · <𝐷 (𝜔) 𝛼1 <𝐷 (𝜔) 𝛼

′ and 𝑁𝛼𝑖+1 ≤ 𝐵𝛼𝑖 . . . 𝐵𝛼1 (𝑛) for all i with
0 ≤ 𝑖 < 𝑘;

3. 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝐵𝛼′ (𝑛)), where 𝛼𝑘 <𝐷 (𝜔) · · · <𝐷 (𝜔) 𝛼1 <𝐷 (𝜔) 𝛼
′ and 𝑁𝛼𝑖+1 ≤ 𝐵𝛼𝑖 . . . 𝐵𝛼1 (𝐵𝛼′ (𝑛))

for all i with 0 ≤ 𝑖 < 𝑘 .

Since 𝛼′ <𝐷 (𝜔) 𝛼 and 𝑁𝛼′ ≤ 𝑛, it follows that any number < 𝐵𝛼 (𝑛) is indeed the value of an
(𝑛, 𝛼)-normal form. To prove that (𝑛, 𝛼)-normal forms are compared as prescribed, we simply need to
consider the cases of the forms (2) and (3). If both normal forms are of the same form, then we get the
comparison property directly by induction hypothesis. The fact that the comparison property holds for
terms of different forms follows from the fact that any term of the form (2) has smaller value than any
term of the form (3). This is because, by construction, every term of the form (2) has value < 𝑠 and
every term of the form (3) has value ≥ 𝑠. �

Definition 5. Let 𝑓 : 𝑛 → 𝑛′ be a strictly increasing function. We define the function 𝐵𝐷 ( 𝑓 ) : 𝐵𝐷 (𝑛) →
𝐵𝐷 (𝑛′) to be the unique strictly increasing function such that

1. if 𝑚 < 𝑛, then 𝐵𝐷 ( 𝑓 ) (𝑚) = 𝑓 (𝑚);
2. if 𝑛 ≤ 𝑚 < 𝐵𝐷 (𝑛) and 𝑚

𝑁𝐹
= 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛), then

𝐵𝐷 ( 𝑓 ) (𝑚) = 𝐵𝛼′
𝑘
. . . 𝐵𝛼′

1
(𝑛′),

where 𝛼′
𝑖 = 𝐷 (𝐵𝐷 ( 𝑓 )) (𝛼𝑖) for each i.

Lemma 6 (ACA0). Let 𝑓 : 𝑛 → 𝑛′ be a strictly increasing function. Then, there is a unique strictly
increasing function 𝐵𝐷 ( 𝑓 ) satisfying Definition 5.

Proof. By induction on 𝑠 ≤ 𝐵𝐷 (𝑛), we define a sequence of strictly increasing maps

𝑔𝑠 : 𝑠 → 𝐵𝐷 (𝑛′)

such that 𝑔𝑠+1 extends 𝑔𝑠 for each s. The map 𝑔0 : 0 → 𝐵𝐷 (𝑛′) is simply the empty map.
Assume that we already have defined maps 𝑔0, . . . , 𝑔𝑠 and established that they are an increasing

family of strictly increasing functions. We define the map

𝑔𝑠+1 : (𝑠 + 1) → 𝐵𝐷 (𝑛′)

as follows:

1. if 𝑚 < 𝑛, then we put 𝑔𝑚+1(𝑚) = 𝑚;
2. if 𝑛 ≤ 𝑚

𝑁𝐹
= 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛), then we put 𝑔𝑠+1(𝑚) = 𝐵𝛼′

𝑘
. . . 𝐵𝛼′

1
(𝑛′), where 𝛼′

𝑖 = 𝐷 (𝑔𝑠) (𝛼𝑖) for
each i.

https://doi.org/10.1017/fms.2023.128 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.128


8 J. P. Aguilera, F. Pakhomov and A. Weiermann

Note that in the second clause, the values 𝐷 (𝑔𝑠) (𝛼𝑖) are well defined. This is because, by the condition
on n-normal forms, we have

𝑁𝛼𝑖 ≤ 𝐵𝛼𝑖−1 . . . 𝐵𝛼1 (𝑛
′) < 𝑚 ≤ 𝑠, (2)

and hence, 𝛼𝑖 ∈ 𝐷 (𝑠).
Let us check that the expression 𝑔𝑠+1(𝑚) in (2) is an 𝑛′-normal form. The fact that 𝛼′

𝑘 <𝐷 (𝜔)

. . . <𝐷 (𝜔) 𝛼
′
1 simply follows from the functoriality of D. We show that 𝑁𝛼′

𝑖 ≤ 𝐵𝛼′
𝑖−1

. . . 𝐵𝛼′
1
(𝑛′). By

definition, 𝛼′
𝑖 = 𝐷 (𝑔𝑠) (𝛼𝑖). Thus, 𝛼′

𝑖 is the value of a D-term where all the constants result from shifting
constants ≤𝑁𝛼𝑖 according to 𝑔𝑠 . Hence, 𝛼′

𝑖 is the value of a D-term with constants ≤ 𝑔𝑠 (𝑁𝛼𝑖). In other
words, 𝐷 (𝑔𝑠) (𝛼𝑖) ∈ 𝐷 (𝑔𝑠 (𝑁𝛼𝑖)). By the definition of N, it follows that

𝑁𝛼′
𝑖 ≤ 𝑔𝑠 (𝑁𝛼𝑖) ≤ 𝑔𝑠 (𝐵𝛼𝑖−1 . . . 𝐵𝛼1 (𝑛)) = 𝐵𝛼′

𝑖−1
. . . 𝐵𝛼′

1
(𝑛′),

as desired. Hence, all the values produced in (2) are indeed normal forms.
Now, the comparision algorithm for n-normal forms provided by Lemma 4 implies that 𝑔𝑠+1 is

strictly increasing. If 𝑠 = 0, then 𝑔𝑠+1 extends 𝑔𝑠 simply because 𝑔0 is the empty map. If 𝑠 > 0, then we
immediately obtain that 𝑔𝑠+1 extends 𝑔𝑠 from their definitions and the fact that 𝑔𝑠 extends 𝑔𝑠−1.

Consider

𝑔 : 𝐵𝐷 (𝑛) → 𝐵𝐷 (𝑛′)

given by

𝑔 =
⋃

𝑚≤𝐵𝐷 (𝑛)

𝑔𝑚.

From the definition, it is clear that g satisfies properties (1) and (2) of the definition of 𝐵𝐷 ( 𝑓 ). By a
straightforward induction on m, we show that if

𝑔′ : 𝐵𝐷 (𝑛) → 𝐵𝐷 (𝑛′)

is any other function satisfying properties (1) and (2) of the definition of 𝐵𝐷 ( 𝑓 ), then 𝑔(𝑚) = 𝑔′(𝑚).
Therefore, the definition of 𝐵𝐷 ( 𝑓 ) indeed defines a unique strictly increasing function. �

Corollary 7. 𝐵𝐷 is a functor on the category Nat.
Commenting on an earlier draft of this article, Wainer has brought to our attention an earlier result

of his [24] in which he establishes functoriality for a version of the binary fast-growing hierarchy in the
context of tree-ordinals.

4. Fast-growing hierarchies as ordinal collapses

In this section, we give an alternate definition of 𝐵𝐷 in terms of formal ‘ordinal collapses’ which will
directly result in a ⊆-preserving dilator. These are orderings defined formally using the notation of
ordinal collapsing functions in a way that results in them having similar properties. This will become
clearer in the following section; cf. for example, Lemma 20; see also the comment following Definition 8.

We will show that the new construction, as a functor, is naturally isomorphic to the one constructed
in the previous section. It will be clear from the construction that this definition coincides with the
previous one when applied to (finite) natural numbers with the usual ordering. As a consequence of this
and Corollary 7, it follows that the new definition coincides with the previous one for arbitrary linear
orderings A. Again, all the constructions will be formalizable in ACA0.

Recall that for a linear order A, 2𝐴 is the linear order consisting of formal base-2 Cantor normal forms

2𝑎1 + . . . + 2𝑎𝑛
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with 𝑎1 >𝐴 . . . >𝐴 𝑎𝑛. These formal sums are compared in the natural way – that is, 2𝑎1 + . . .+2𝑎𝑛 <2𝐴

2𝑏1 + . . .+2𝑏𝑚 if (𝑎1, . . . , 𝑎𝑛) <lex (𝑏1, . . . , 𝑏𝑚). Here, the empty sum is allowed and identified with the
term 0. This construction naturally extends to a dilator: given a strictly increasing function 𝑓 : 𝐴 → 𝐵,
we define

2 𝑓 : 2𝐴 → 2𝐵

2 𝑓 : 2𝑎1 + . . . + 2𝑎𝑛 ↦→ 2 𝑓 (𝑎1) + . . . + 2 𝑓 (𝑎𝑛) .

Below, if A is a linear ordering and 𝑎 ∈ 𝐴, we denote by 𝐴 � 𝑎 the initial segment {𝑥 ∈ 𝐴 : 𝑥 < 𝑎},
viewed as a linear order.

Definition 8. Let A be a linear ordering. 𝐵𝐷 (𝐴) is defined to be the (inclusion-)least linear ordering C
such that the following hold:

1. C contains the term 𝑎★, for any 𝑎 ∈ 𝐴.
2. C contains the term 𝜓(0).
3. Suppose that

(a) 𝛼1, . . . , 𝛼𝑘 , 𝛼𝑘+1 ∈ 𝐷 (𝐶),
(b) 𝜓(2𝛼1 + . . . + 2𝛼𝑘 ) ∈ 𝐶,
(c) 𝛼𝑘+1 <𝐷 (𝐶) 𝛼𝑘 , and
(d) 𝛼𝑘+1 ∈ 𝐷 (𝐶 � 𝜓(2𝛼1 + . . . + 2𝛼𝑘 ));
then, 𝜓(2𝛼1 + . . . + 2𝛼𝑘 + 2𝛼𝑘+1) ∈ 𝐶.

4. if 𝑎 <𝐴 𝑏, then 𝑎★ <𝐶 𝑏★.
5. 𝑎★ <𝐶 𝜓(𝑡), for any 𝑎★, 𝜓(𝑡) ∈ 𝐶.
6. if 𝜓(𝑡), 𝜓(𝑢) ∈ 𝐶, 𝑡, 𝑢 ∈ 2𝐷 (𝐶) , and 𝑡 <2𝐷 (𝐶) 𝑢, then 𝜓(𝑡) <𝐶 𝜓(𝑢).

We shall refer to 𝐵𝐷 as the collapsing functor built over D. This is because Definition 8 could be
regarded as a term system performing formal ordinal collapsing which admit a variation of the usual
semantics for ordinal collapsing functions familiar from Ordinal Analysis.

Proposition 9 (ZFC). Let 𝛼 be an ordinal and D be an ⊆-preserving dilator. Let Ω be a regular cardinal
such that max(|𝛼 |, |𝐷 |) < Ω. We define a partial function

�̃�𝛼 : Ω + 2𝐷 (Ω) + 1 → Ω

by recursion on 2𝐷 (Ω) as follows:
Suppose 𝛼𝑛 < 𝛼𝑛−1 < · · · < 𝛼1. Then, Ω + 2𝛼1 + . . . + 2𝛼𝑛 < 2𝐷 (Ω) is in the domain of �̃�𝛼 if for

each 𝑖 < 𝑛, 𝛼𝑖+1 ∈ 𝐷 (�̃�𝛼 (Ω + 2𝛼1 + . . . + 2𝛼𝑖 )). Additionally, we add Ω + 2𝐷 (Ω) to the domain of �̃�𝛼.
For 𝛽 ∈ dom(�̃�𝛼), we put

�̃�𝛼 (𝛽) = min
{
Ω \

(
𝛼 ∪

{
�̃�𝛼 (𝛽′) | 𝛽′ ∈ 𝛽 ∩ dom(�̃�𝛼)

})}
.

Then, �̃�𝛼 (Ω + 2𝐷 (Ω) ) is a well-order isomorphic to 𝐵𝐷 (𝛼).

Proof. First, using the fact that max(|𝛼 |, |𝐷 |) < Ω, a simple induction shows that

∀𝛽 ∈ dom(�̃�𝛼)
���𝛼 ∪

{
�̃�𝛼 (𝛽′) | 𝛽′ ∈ 𝛽 ∩ dom(�̃�𝛼)

}��� < Ω,

and hence, �̃�𝛼 (𝛽) is defined.
Given this, the isomorphism is essentially immediate from the definition of 𝐵𝐷 (𝛼). Note that the

conditions on the domain of �̃�𝛼 correspond to the term-formation rules of 𝐵𝐷 in Definition 8(1)–8(3);
that the range of the function �̃�𝛼 takes values in (𝛼,Ω), corresponding to Definition 8(4) and 8(5); and
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indeed that �̃�𝛼 (𝛽) is precisely the least ordinal greater than �̃�𝛼 (𝛽′) for 𝛽′ < 𝛽 in the domain of �̃�𝛼,
corresponding to Definition 8(6). From this, it follows that the function

𝜄𝛼 : 𝐵𝐷 (𝛼) → �̃�𝛼 (Ω + 2𝐷 (Ω) )

𝛾 ↦→ 𝛾, (𝛾 < 𝛼)

𝜓(2𝛼1 + · · · + 2𝛼𝑛 ) ↦→ �̃�𝛼 (Ω + 2𝛼1 + · · · + 2𝛼𝑛 )

is an isomorphism. �

The function �̃�𝛼 in Proposition 9 is a ‘pure’ variant of collapsing function, where the ordinals < Ω are
not closed under any ordinal functions (e.g., addition or the Veblen functions) as part of the construction;
these are represented either as constants or values of �̃�𝛼. The ordinals ≥ Ω are represented according
to the dilator D.

While Proposition 9 gives a natural semantics for the collapsing functor 𝐵𝐷 , it requires access to
uncountable cardinals. We now establish the totality of 𝐵𝐷 in the weak system ACA0.

Lemma 10 (ACA0). Suppose D is an ⊆-preserving pre-dilator and A is a linear ordering. Then, 𝐵𝐷 (𝐴)
exists.

Proof. The idea is to construct 𝐵𝐷 (𝐴) as the limit of an inductive definition of length 𝜔. We construct
linear orders

𝐵𝐷,0 (𝐴) ⊆ 𝐵𝐷,1 (𝐴) ⊆ . . . ⊆ 𝐵𝐷,𝑛 (𝐴) ⊆ . . .

Recursively, we denote by 𝐵𝐷,<𝑛 (𝐴) the already defined linear order
⋃
𝑚<𝑛

𝐵𝐷,𝑚 (𝐴) and define 𝐵𝐷,𝑛 (𝐴)

to contain the following terms:

1. 𝑎★, for 𝑎 ∈ 𝐴;
2. 𝜓(0);
3. 𝜓(2𝛼1 + . . . + 2𝛼𝑘 + 2𝛼𝑘+1 ), whenever 𝛼1, . . . , 𝛼𝑘 , 𝛼𝑘+1 ∈ 𝐷 (𝐵𝐷,<𝑛 (𝐴)) are such that

(a) 𝜓(2𝛼1 + . . . + 2𝛼𝑘 ) ∈ 𝐵𝐷,<𝑛 (𝐴),
(b) 𝛼𝑘+1 <𝐷 (𝐵𝐷,<𝑛 (𝐴)) 𝛼𝑘 , and
(c) 𝛼𝑘+1 ∈ 𝐷 (𝐵𝐷,<𝑛 (𝐴)�𝜓(2𝛼1 + . . . + 2𝛼𝑘 )).

The order on these terms is defined in the same way as above (i.e., 𝑎★ <𝐵𝐷,<𝑛 (𝐴) 𝑏★ if and only if
𝑎 <𝐴 𝑏); we always have 𝑎★ <𝐵𝐷,<𝑛 (𝐴) 𝜓(𝑡); and 𝜓(𝑡) <𝐵𝐷,𝑛 (𝐴) 𝜓(𝑢) if and only if 𝑡 <2𝐷 (𝐵) 𝑢. It is
straightforward to check that, provably in ACA0, the order 𝐵𝐷 (𝐴) constructed as the union of the chain
{𝐵𝐷,<𝑛 (𝐴) : 𝑛 ∈ N} satisfies the definition of 𝐵𝐷 (𝐴), for any linear ordering A. �

Definition 11. Let A and 𝐴′ be linear orders and 𝑓 : 𝐴 → 𝐴′ be a morphism. We define

𝐵𝐷 ( 𝑓 ) : 𝐵𝐷 (𝐴) → 𝐵𝐷 (𝐴′)

to be the unique map 𝑔 : 𝐵𝐷 (𝐴) → 𝐵𝐷 (𝐵) such that

1. 𝑔(𝑎★) = ( 𝑓 (𝑎))★, and
2. 𝑔(𝜓(𝑡)) = 𝜓(2𝐷 (𝑔) (𝑡)).

Lemma 12 (ACA0). Suppose that A and 𝐴′ are linear orders and 𝑓 : 𝐴 → 𝐴′ is a morphism. Then,
𝐵𝐷 ( 𝑓 ) exists.

Proof. This is similar to the previous proof. By induction, we define a sequence of embeddings
𝐵𝐷,𝑛 ( 𝑓 ) : 𝐵𝐷,𝑛 (𝐴) → 𝐵𝐷,𝑛 (𝐵). Letting

𝐵𝐷,<𝑛 ( 𝑓 ) =
⋃
𝑚<𝑛

𝐵𝐷,𝑚( 𝑓 ) : 𝐵𝐷,<𝑛 (𝐴) → 𝐵𝐷,<𝑛 (𝐵),
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we put

1. 𝐵𝐷,𝑛 ( 𝑓 ) (𝑎
★) = ( 𝑓 (𝑎))★, and

2. 𝐵𝐷,𝑛 ( 𝑓 ) (𝜓(𝑡)) = 𝜓(2𝐷 (𝐵𝐷,<𝑛 ( 𝑓 )) (𝑡)).

Clearly, 𝐵𝐷,<𝜔 ( 𝑓 ) satisfies the definition of 𝐵𝐷 ( 𝑓 ). By induction on n, one shows that for any
𝑔 : 𝐵𝐷 (𝐴) → 𝐵𝐷 (𝐵) satisfying the definition of 𝐵𝐷 ( 𝑓 ), we have

𝑔�𝐵𝐷,𝑛 (𝐴) = 𝐵𝐷,𝑛 ( 𝑓 ).

Thus, indeed there is a unique mapping satisfying the definition of 𝐵𝐷 ( 𝑓 ). �

Lemma 13 (ACA0). Suppose D is a ⊆-preserving pre-dilator. Then, so too is 𝐵𝐷 .

Proof. The functoriality and ⊆-preservation of 𝐵𝐷 are immediate from the definition. In order to check
that 𝐵𝐷 is finitary, it is enough to show that for any A, we have

𝐵𝐷 (𝐴) =
⋃

𝐴′ ⊆fin𝐴

𝐵𝐷 (𝐴′).

This is done by showing, via a straightforward induction on n, that

𝐵𝐷,𝑛 (𝐴) =
⋃

𝐴′ ⊆fin𝐴

𝐵𝐷,𝑛 (𝐴
′).

By a straightforward induction on n, we also show that for any order A and any suborders 𝐴′, 𝐴′′ of A,
we have

𝐵𝐷,𝑛 (𝐴
′) ∩ 𝐵𝐷,𝑛 (𝐴

′′) = 𝐵𝐷,𝑛 (𝐴
′ ∩ 𝐴′′).

This implies that for any order A and its suborders 𝐴′, 𝐴′′, we have

𝐵𝐷 (𝐴′) ∩ 𝐵𝐷 (𝐴′′) = 𝐵𝐷 (𝐴′ ∩ 𝐴′′)

(i.e., that 𝐵𝐷 preserves pullbacks). This concludes the proof that 𝐵𝐷 is a ⊆-preserving pre-dilator. �

For an arbitrary pre-dilator D, we may define the pre-dilator 𝐵𝐷 to be 𝐵𝐷′ , where 𝐷 ′ is some fixed
⊆-preserving pre-dilator naturally isomorphic to D. Below, a pre-dilator D is weakly finite if it maps
finite orders to finite orders.

Together with Proposition 9, Theorem 14 below asserts (in particular) that if D is a denotation system
for ordinals, then the binary fast-growing functor given by D is isomorphic to an ordinal collapsing
function; hence, it can be regarded as a precise formulation of the fundamental observation on p. 4.

Theorem 14 (ACA0). Suppose D is a weakly finite dilator. Let 𝐵𝐷 be the collapsing functor over D as
in Definition 8 and let �̂�𝐷 be the fast-growing functor over D defined in §3. Then, there is a natural
isomorphism

𝜂 : 𝐵𝐷 � �̂�𝐷 .

Proof. Let 𝜃𝐷 : 𝐷 → 𝐷 ′ be the natural isomorphism given by the definition of 𝐵𝐷 for arbitrary pre-
dilators D. For each 𝑛 ∈ N, let

𝜂𝑛 : �̂�𝐷 (𝑛) → 𝐵𝐷 (𝑛)
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be the function given by

𝑚 ↦→ 𝑚★, if 𝑚 < 𝑛,

𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛) ↦→ 𝜓(2𝛼′
1 + · · · + 2𝛼′

𝑘 ), where 𝛼′
𝑖 = 𝜃𝐵𝐷 (𝑛) (𝛼𝑖), otherwise.

It is clear that the collection of 𝜂𝑛 for 𝑛 ∈ N forms a natural isomorphism between �̂�𝐷 : Nat → LO
to 𝐵𝐷 � Nat, the restriction of 𝐵𝐷 to the category Nat. Indeed, suppose that 𝑓 : 𝑛 → 𝑛′ is strictly
increasing. Then, for each number 𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛) < �̂�𝐷 (𝑛), and letting 𝛼′

𝑖 be as above, we have

𝐵𝐷 ( 𝑓 ) ◦ 𝜂𝑛
(
𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛)

)
= 𝐵𝐷 ( 𝑓 )

(
𝜓(2𝛼′

1 + · · · + 2𝛼′
𝑘 )
)

= 𝜓(2𝐷 (𝐵𝐷 ( 𝑓 )) (𝛼′
1) + · · · + 2𝐷 (𝐵𝐷 ( 𝑓 )) (𝛼′

𝑘 ) )

= 𝜂𝑛′
(
𝐵𝐷 (�̂�𝐷 ( 𝑓 )) (𝛼𝑘 )

. . . 𝐵𝐷 (�̂�𝐷 ( 𝑓 )) (𝛼1)
(𝑛′)

)
= 𝜂𝑛′ ◦ �̂�𝐷 ( 𝑓 )

(
𝐵𝛼𝑘 . . . 𝐵𝛼1 (𝑛)

)
.

Since both �̂�𝐷 and 𝐵𝐷 are finitary, this natural transformation extends to a natural isomorphism between
the extension of �̂�𝐷 to LO and 𝐵𝐷 , as desired. �

Remark 15. We note, without giving details, that, in fact, the operation

𝐷 ↦−→ 𝐵𝐷

could be extended to a pullback-preserving functor on the category of pre-dilators; in other words, B
is a preptyx and – as we will see in the next section – indeed it is a ptyx. Furthermore, if we treat the
category of pre-dilators as a category of structures (denotation systems can be regarded as structures),
then, in fact, the definition of B in terms of formal ‘ordinal collapses’ will be a ⊆-preserving functor.

Remark 16. The construction of 𝐵𝐷 (𝐴), in fact, works for all ⊆-preserving finitary functors 𝐷 : LO →
LO. We decided not to cover the extension to finitary functors in this paper for the following reason:
The fact that any dilator is naturally isomorphic to a ⊆-preserving one is a known fact following from
Girard’s fundamental theorem of dilators. There is an unpublished result by the second author that
establishes an analog of Girard’s theorem for finitary functors on LO that, in particular, implies that
any finitary functor on LO is naturally isomorphic to a ⊆-preserving one. This result shall appear in a
forthcoming article by the second and third authors.

In order to make sense of 𝐵𝐷 in the case when D is not ⊆-preserving, it suffices to choose a denotation
system 𝐷 ′ and put 𝐵𝐷 = 𝐵𝐷′ .

5. Π1
1-Comprehension from fast-growing hierarchies

In this section, we present a characterization of the system Π1
1-CA0 in terms of fast-growing hierarchies.

Theorem 17. The following are equivalent over ACA0:

1. Π1
1-CA0;

2. for every weakly finite dilator D, 𝐵𝐷 is a weakly finite dilator;
3. for every dilator D, 𝐵𝐷 is a dilator.

Lemma 18 (Π1
1-CA0). For any dilator D and any well-ordering A, 𝐵𝐷 (𝐴) is well-ordered.

Proof. By the definition of 𝐵𝐷 , it suffices to consider the case that D is ⊆-preserving.
Let Ω be the largest well-ordered initial segment of 𝐵𝐷 (𝐴). This exists by Π1

1-CA0. By hypothesis,
D is a dilator, so 𝐷 (Ω) is well-ordered. By induction on ordinals 𝛼 ∈ 𝐷 (Ω), we show that for every
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𝜓(2𝛼1 + · · · + 2𝛼𝑘 ) ∈ Ω, if 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛼) ∈ 𝐵𝐷 (𝐴), then

𝑎 := 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛼) ∈ Ω.

Suppose that 𝑥 <𝐵𝐷 (𝐴) 𝑎. Then, either

𝑥 ≤ 𝜓(2𝛼1 + · · · + 2𝛼𝑘 )

or else there are 𝑙 ∈ N and 𝛽1, . . . , 𝛽𝑙 with 𝛽𝑙 <𝐷 (𝐵𝐷 (𝐴)) · · · <𝐷 (𝐵𝐷 (𝐴)) 𝛽1 < 𝛼 such that

𝑥 ≤ 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛽1 + · · · + 2𝛽𝑙 ).

We show by induction on 𝑖 ≤ 𝑙 that

1. 𝛽𝑖 ∈ 𝐷 (Ω), and
2. 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛽1 + · · · + 2𝛽𝑖 ) ∈ Ω.

By the definition of 𝐵𝐷 , we have

𝛽𝑖+1 ∈ 𝐷 (𝐵𝐷 (𝐴) � 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛽1 + · · · + 2𝛽𝑖 )).

By the induction hypothesis on i, 𝜓(2𝛼1 + · · · + 2𝛼𝑘 + 2𝛽1 + · · · + 2𝛽𝑖 ) ∈ Ω (this is immediate by the
assumption on 𝛼1, . . . , 𝛼𝑘 in the case 𝑖 = 0) and Ω is an initial segment of 𝐵𝐷 (𝐴), so the first claim
follows. The second follows from the induction hypothesis on 𝛼. We have shown that every element
𝑥 <𝐵𝐷 (𝐴) 𝑎 belongs to Ω, and thus, 𝑎 ∈ Ω, as desired.

By a straightforward induction on k, it follows that

𝜓(2𝛼1 + · · · + 2𝛼𝑘 ) ∈ Ω

for all 𝜓(2𝛼1 + · · · + 2𝛼𝑘 ) ∈ 𝐵𝐷 (𝐴) – that is, that 𝐵𝐷 (𝐴) = Ω, and thus, 𝐵𝐷 (𝐴) is well ordered. �

Lemma 19 (ACA0). Suppose that for every weakly finite dilator D, 𝐵𝐷 is a weakly finite dilator. Then,
for every dilator D, 𝐵𝐷 is a dilator.

Proof. If D and 𝐷 ′ are naturally isomorphic pre-dilators, then so too are 𝐵𝐷 and 𝐵𝐷′ . Hence, it suffices
to prove the theorem for denotation systems D. Let D be a denotation system and enumerate all ordinal
terms of D by 𝑑0, 𝑑1, . . .; write 𝑛𝑖 for the arity of 𝑑𝑖 . We define a new dilator �̂� consisting of terms 𝑑𝑖
of arity 𝑛𝑖 + 𝑖. Clearly, �̂� will be weakly finite. The comparison rules for �̂� are given by

𝑑𝑖 (𝑥1, . . . , 𝑥𝑛𝑖 , 𝑥1, . . . , 𝑥𝑖) <�̂� 𝑑 𝑗 (𝑦1, . . . , 𝑦𝑛 𝑗 , �̂�1, . . . , �̂� 𝑗 )

if and only if one of the following holds:

1. 𝑑𝑖 (𝑥1, . . . , 𝑥𝑛𝑖 ) <𝐷 𝑑 𝑗 (𝑦1, . . . , 𝑦𝑛 𝑗 ), or else
2. 𝑖 = 𝑗 , 𝑥1 = 𝑦1, . . . , 𝑥𝑛𝑖 = 𝑦𝑛𝑖 , and (𝑥1, . . . , 𝑥𝑖) <𝑙𝑒𝑥 ( �̂�1, . . . , �̂� 𝑗 ).

It is easy to check that <�̂� is a linear order. And it is easy to see that for any A, we have an embedding
of �̂� (𝐴) into 2𝐴 · 𝐷 (𝐴):

𝑑𝑖 (𝑎1, . . . , 𝑎𝑛𝑖 , 𝑏1, . . . , 𝑏𝑖) ↦−→ 2𝐴 · 𝑑𝑖 (𝑎1, . . . , 𝑎𝑛𝑖 ) + 2𝑏1 + . . . + 2𝑏𝑖 .

Thus, �̂� is a dilator. Observe that for each finite order A, the order �̂� (𝐴) contains only terms of the form
𝑑𝑖 (. . .), where 𝑖 ≤ |𝐴|, and hence, �̂� (𝐴) is finite. Therefore, �̂� is a weakly finite dilator. Thus, 𝐵�̂� is a
dilator.

In order to show that 𝐵𝐷 preserves well-foundedness, it is enough to find a strictly increasing map

𝑒 : 𝐵𝐷 (𝐴) → 𝐵�̂� (𝜔 + 𝐴)
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for an arbitrary well-order A. We fix a well-order A and define, by recursion on n,

𝑒𝑛 : 𝐵𝐷,𝑛 (𝐴) → 𝐵�̂�,𝑛 (𝜔 + 𝐴)

1. 𝑒𝑛 (𝑎
★) = (𝜔 + 𝑎)★;

2. 𝑒𝑛 (𝜓(2𝛼1 + . . . + 2𝛼𝑘 )) = 𝜓(2𝛼′
1 + . . . + 2𝛼′

𝑘 ), where if 𝛼𝑖 = 𝑑 𝑗 (𝑎1, . . . , 𝑎𝑛 𝑗 ), then 𝛼′
𝑖 =

𝑑 𝑗 (𝑒𝑛−1(𝑎1), . . . , 𝑒𝑛−1(𝑎𝑛 𝑗 ), ( 𝑗 − 1)★, . . . , 0★).

By a straightforward induction on n, we show that 𝑒𝑛’s form a sequence of expanding strictly increasing
maps. We finish the proof by defining 𝑒 =

⋃
𝑛<𝜔

𝑒𝑛. �

In order to complete the proof, we have to show that if 𝐵𝐷 is a dilator for every dilator D, then Π1
1-

CA0 holds. This will be done by appealing to a theorem of Freund [7] whereby Π1
1-CA0 is equivalent

to a higher-order fixed-point principle. Using the terminology of Freund [7], this is the statement that
every dilator D has a well-founded Bachmann-Howard fixed point (we recall this definition during the
course of the forthcoming proof).

Lemma 20 (ACA0). Suppose that 𝐵𝐷 is a dilator for every dilator D. Then, every dilator has a well-
founded Bachmann-Howard fixed point.

Proof. It suffices to restrict to the case where D is a denotation system and, in particular, ⊆-preserving.
We need to find a Bachmann-Howard fixed point: a well-ordering A and a function

𝜃 : 𝐷 (𝐴) → 𝐴

such that the following hold:

1. whenever we have 𝛼 <𝐷 (𝐴) 𝛽 and supp(𝛼) <𝐴 𝜃 (𝛽), then we have 𝜃 (𝛼) <𝐴 𝜃 (𝛽), and
2. supp(𝛼) <𝐴 𝜃 (𝛼) for every 𝛼 ∈ 𝐷 (𝐴).

Consider the dilator 𝐹 = (𝜔 + 1)𝐷 + 𝜔. This is defined as follows: Given a linear order B, the order
𝐹 (𝐵) consists of terms of two types:

3. (𝜔 + 1)𝛼 + 𝑎, where 𝛼 ∈ 𝐷 (𝐵) and 𝑎 ≤ 𝜔;
4. Λ + 𝑛, where 𝑛 < 𝜔.

The terms are compared according to the following rules:

5. terms of the first type are always smaller than the terms of the second type;
6. (𝜔 + 1)𝛼 + 𝑎 is smaller than (𝜔 + 1)𝛽 + 𝑏 if and only if either 𝛼 < 𝛽 or 𝛼 = 𝛽 and 𝑎 < 𝑏;
7. Λ + 𝑛 is smaller than Λ + 𝑚 if and only if 𝑛 < 𝑚.

For a strictly increasing function 𝑓 : 𝐵 → 𝐶, we put

𝐹 ( 𝑓 ) : 𝐹 (𝐵) → 𝐹 (𝐶)

(𝜔 + 1)𝛼 + 𝑎 ↦→ (𝜔 + 1) (𝐷 ( 𝑓 ) (𝛼)) + 𝑎;
Λ + 𝑛 ↦→ Λ + 𝑛.

It is easy to see that F is indeed a dilator.
We put 𝐴 = 𝐵𝐹 (0). This is a well-ordering since 𝐵𝐹 is a dilator by hypothesis. Note that all elements

of A are of the form 𝜓(2𝛼1 + . . . + 2𝛼𝑛 ), where 𝛼𝑖 ∈ 𝐹 (𝐴). We define

𝜃 : 𝐷 (𝐴) → 𝐴

to be the function that maps 𝛼 ∈ 𝐷 (𝐴) to the least element of A of the form

𝜓(2𝛼1 + . . . + 2𝛼𝑛 + 2(𝜔+1)𝛼+𝜔).
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This function is well defined (i.e., for any 𝛼 ∈ 𝐷 (𝐴), there is some element of A as above). Indeed, the
elements of the form 𝜓(2Λ+𝑛) are cofinal in A. Thus, for any 𝛼 ∈ 𝐷 (𝐴), one can find n large enough so
that 𝛼 ∈ 𝐷 (𝐴�𝜓(2Λ+𝑛)), and hence,

𝜓(2Λ+𝑛 + 2(𝜔+1)𝛼+𝜔) ∈ 𝐴.

Let us verify that 𝜃 satisfies property (1): we suppose 𝛼 <𝐷 (𝐴) 𝛽 and supp(𝛼) <𝐴 𝜃 (𝛽) and claim
that 𝜃 (𝛼) <𝐴 𝜃 (𝛽). Let 𝛽1, . . ., 𝛽𝑛 be such that

𝜃 (𝛽) = 𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝜔).

Observe that all elements of the form

𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝑚)

are in A and are cofinal below 𝜃 (𝛽). It follows that, since

supp(𝛼) = supp((𝜔 + 1)𝛼 + 𝜔)

is a finite set, we can find 𝑚 ∈ N large enough so that

supp(𝛼) <𝐴 𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝑚). (3)

For such an m, 𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝑚 + 2(𝜔+1)𝛼+𝜔) is in A, by (3) and since

(𝜔 + 1)𝛼 + 𝜔 <𝐹 (𝐴) (𝜔 + 1)𝛽 + 𝑚

follows from 𝛼 <𝐷 (𝐴) 𝛽. Therefore,

𝜃 (𝛼) ≤ 𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝑚 + 2(𝜔+1)𝛼+𝜔)

< 𝜓(2𝛽1 + . . . + 2𝛽𝑛 + 2(𝜔+1)𝛽+𝜔)

= 𝜃 (𝛽).

The fact that 𝜃 satisfies (2) is immediate from the construction. Indeed, for any 𝛼 ∈ 𝐷 (𝐴), the value
𝜃 (𝛼) is of the form 𝜓(2𝛼1 + . . . + 2𝛼𝑛 + 2(𝜔+1)𝛼+𝜔) ∈ 𝐴 and by the definition of 𝐵𝐹 (𝐴), we have

supp(𝛼) = supp((𝜔 + 1)𝛼 + 𝜔) <𝐴 𝜓(2𝛼1 + . . . + 2𝛼𝑛 ) <𝐴 𝜃 (𝛼),

as desired. �

Putting together the lemmata in this section, the proof of Theorem 17 is now complete.

Remark 21. By appealing to the main theorem of Freund [8] and carefully formalizing the definition
of 𝐵𝐷 in Section 4, the equivalence in Theorem 17 can be proved in RCA0.
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