BULL. AUSTRAL. MATH. SOC. VOL. 13 (1975), 349-353.

On semi-simple radical classes B.J. Gardner and Patrick N. Stewart

It has been incorrectly asserted that each non-trivial semi-simple radical class of associative rings is a variety defined by an equation of the form $x^n = x$. In this paper we give, for each non-trivial semi-simple radical class of associative rings, a set of equations which does define that class as a variety.

We shall discuss conditions on a class C of associative rings which are equivalent to C being a semi-simple radical class. See [1] for a discussion of the more general case in which C is a class of algebras which are not necessarily associative rings. Our theorem corrects an assertion which appears to have been first made by Snider [6] and which has been widely accepted by other authors.

If a is an element of a ring R, [a] denotes the subring of R which is generated by a, and the class of rings R such that $[a] = [a]^2$ for each $a \in R$ is denoted by B_1 .

Let P be a finite non-empty set of prime numbers and, for each $p \in P$, N(p) a finite non-empty set of positive integers. The equations

(1)
$$(\Pi\{p : p \in P\})x = 0$$

and

(2)
$$\hat{p}x \Pi \left\{ x^{p^n-1} - 1 : n \in N(p) \right\} = 0$$
 for each $p \in P$,

where $\hat{p}=\Pi\{q\in P\,:\,q\neq p\}$, define a variety which we shall denote by $V(P,\,N)$.

Received 14 August 1975.

349

LEMMA. Each of the varieties V(P, N) is contained in B_1 , and if F is a field in V(P, N), then F is a subfield of the field of order q^m for some $q \in P$ and $m \in N(q)$.

Proof. Let a be an element of a ring $R \in V(P, N)$. Since the greatest common divisor of the numbers $\hat{p}, p \in P$, is 1, the equations in (2) force $a \in [a]^2$. Thus, $[a] = [a]^2$ and so $V(P, N) \subseteq B_1$.

Assume that F is a field in V(P, N). From equation (1) we see that F has characteristic q for some $q \in P$. Now, from (2),

$$\Pi\left\{a^{q^{n}-1}-1: n \in N(q)\right\} = 0$$

for each non-zero $a \in F$, so F is finite. Let $u \in F$ be such that [u] = F. Then $uq^{m-1} = 1$ for some $m \in N(q)$ and so F is a subfield of the field of order q^{m} . //

THEOREM. Let $C \neq \{0\}$ be a class of associative rings which is not the class of all associative rings. The following are equivalent:

(i) C is a semi-simple radical class;

(ii) C = V(P, N) for some P and N as above;

(iii) C is a variety contained in $B_{\!_{1}}$.

Proof. We shall use two results from [7]: Every finitely generated ring in B_1 is isomorphic to a finite direct product of finite fields (Theorem 3.4); C is a semi-simple radical class if and only if there is a non-empty finite set F of finite fields, closed under taking subfields and such that a ring R belongs to C if and only if every finitely generated subring of R is isomorphic to a finite direct product of fields in F (Theorem 4.3).

 $(i) \Rightarrow (ii)$. Let C be a semi-simple radical class, F the set of fields whose existence is guaranteed by [7, Theorem 4.3], $P = \{p : \exists \text{ a field in } F \text{ of characteristic } p\}$ and, for each $p \in P$, $N(p) = \{n : \exists \text{ a field of order } p^n \text{ in } F\}$. We will show that C = V(P, N).

350

It is clear that $C \subseteq V(P, N)$ because if $0 \neq a \in R \in C$, then [a] is isomorphic to a finite direct product of fields in $F \subseteq V(P, N)$.

Conversely, suppose $R \in V(P, N)$ and S is a (non-zero) finitely generated subring of R. By the lemma above, R belongs to B_1 , so Sis isomorphic to a direct product of finite fields [7, Theorem 3.4]. Each of these fields must be in V(P, N) and so, using the lemma again, each is a subfield of a field in F. Since F is closed under taking subfields, S is isomorphic to a finite direct product of fields in F. Thus, R is in C by [7, Theorem 4.3].

 $(ii) \Rightarrow (iii)$. This is the first assertion in the lemma.

 $(iii) \Rightarrow (i)$. Let C be a variety, $C \subseteq B_1$. Let F be the class of finite fields in C. Since C contains a non-zero ring, it follows from [7, Theorem 3.4] that $F \neq \emptyset$. Also, since C is a variety, F is closed under taking subfields and, using [7, Theorem 3.4] again, we see that a ring R is in C if and only if every finitely generated subring of R is isomorphic to a finite direct product of fields in F. In view of [7, Theorem 4.3] it is sufficient to prove that F is finite (we identify isomorphic fields). Suppose $F_1, F_2, \ldots, F_n, \ldots$ are fields in F. For each n, choose $u_n \in F_n$ such that $[u_n] = F_n$. Since $F_n \in C \subseteq B_1$, [u], the subring of $\mathbb{N}F_n$ which is generated by $u = (u_1, u_2, \ldots, u_n, \ldots)$, is isomorphic to a finite number of possibilities for the characteristic of F_n . Moreover, there exists an integer k such that $u^k = u$. It follows that there are only a finite number of possibilities for the dimension of F_n over its prime subfield.

Hence there are only a finite number of possibilities for the fields $F_1, F_2, \ldots, F_n, \ldots$ and so F is finite. This completes the proof of the theorem. //

For each integer $n \ge 2$, let V_n denote the variety defined by $x^n = x$. It follows from the implication $(iii) \Rightarrow (i)$ that V_n is a semisimple radical class. It has been claimed that every semi-simple radical 352

class is one of the varieties V_n (for references see [1]), but this is not correct: each V_n contains the field of order 2, but V(P, N) does not contain the field of order 2 unless $2 \in P$.

Various other conditions are equivalent to those given in the theorem.

- (iv) C is a homomorphically closed semi-simple class (see [9, Corollary 32.2] for (i) \Leftrightarrow (iv));
- (v) C is an idempotent (that is, extension closed) variety
 (see [9, Theorem 34.1] for (iv) ↔ (v));
- (vi) C is a variety with attainable identities (see [1, Theorem 1.5] for $(i) \iff (iv) \iff (vi)$);
- (vii) C is a variety generated by a finite set of finite fields (see [3] for (v) ⇔ (vii));
- (viii) C is a variety consisting entirely of arithmetic rings
 (see [2] for (i) ⇔ (v) ⇔ (viii) and [4] for
 (vii) ⇔ (viii)).

Finally, we note that other equational definitions of these varieties are considered in [5] and [8].

References

- [1] B.J. Gardner, "Semi-simple radical classes of algebras and attainability of identities", submitted.
- [2] L.C.A. van Leeuwen, "A note on primitive classes of rings", submitted.
- [3] Л.М. Мартынов [L.M. Martynov], "О разрешимых кольцах" [On solvable rings], Ural. Gos. Univ. Mat. Zap. 8 (1972), tetrad' 3, 82-93.
- [4] Gerhard Michler und Rudolf Wille, "Die primitiven Klassen arithmetis arithmetischer Ringe", Math. Z. 113 (1970), 369-372.
- [5] Л.Н. Шеврин, Л.М. Мартынов [L.N. Ševrin, L.M. Martynov], "О достижимых классах алгебр" [On attainable classes of algebras], Sibirsk. Mat. Ž. 12 (1971), 1363-1381.
- [6] Robert L. Snider, "Complemented hereditary radicals", Bull. Austral. Math. Soc. 4 (1971), 307-320.

- [7] Patrick N. Stewart, "Semi-simple radical classes", Pacific J. Math. 32 (1970), 249-254.
- [8] Heinrich Werner und Rudolf Wille, "Charakterisierungen der primitiven Klassen arithmetischer Ringe", Math. Z. 115 (1970), 197-200.
- [9] Richard Wiegandt, Radical and semisimple classes of rings (Queen's Papers in Pure and Applied Mathematics, 37. Queen's University, Kingston, Ontario, 1974).

Department of Mathematics, University of Tasmania, Hobart, . Tasmania; Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada.