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On semi-simple radical classes

B.J. Gardner and Patrick N. Stewart

It has been incorrectly asserted that each non-trivial semi-simple

radical class of associative rings is a variety defined by an

equation of the form xn =2 . In this paper we give, for each
non-trivial semi-simple radical class of associative rings, a set

of equations which does define that class as a variety.

We shall discuss conditions on a class C of associative rings which
are equivalent to € ©being a semi-simple radical class. See [1] for a
discussion of the more general case in which C is a class of algebras
which are not necessarily associative rings. Our theorem corrects an
assertion which appears to have been first made by Snider [6]} and which has

been widely accepted by other authors.
If a is an element of a ring R , [a] denotes the subring of R
which is generated by a , and the class of rings R such that [aq] = [a]2

for each a € R is denoted by Bl .

Let P be a finite non-empty set of prime numbers and, for each

p €P, N(p) a finite non-empty set of positive integers. The equations

(1) (I{p : p € Pz =0
and
. n
(2) pxﬂ{xp L ine N(p)} =0 for each p € P,

where ﬁ =T{q € P: g # p} , define a variety which we shall denote by
V(p, N)
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LEMMA. Each of the varieties V(P, N) <is contained in Bl , and if
F is a field in V(P, N) , then F 1s a subfield of the field of order
qm for some q € P and m € N(q) .

Proof. Let a ©be an element of a ring R € V(P, N) . Since the

greatest common divisor of the numbers ﬁ, p € P, is 1 , the equations in

(2) force a € [a]2 . Thus, [a]= [a]2 and so V(P, ¥) Bl .

Assume that F is a field in V(P, N) . From equation (1) we see
that F has characteristic ¢ for some g € P . Now, from (2),

H{ qn'l } -
a -1 :m€N(g)t =0

for each non-zero a € F , so F is finite. Let u € F be such that

M
[ul =F . Then u? ™ =1 for some m € N(g) and so F is a subfield of
the field of order qm . //

THEOREM. Let C # {0} be a class of associative rings which is not

the class of all associative rings. The following are equivalent:
(i) C 1is a semi-simple radical class;
(i¢i7) C = V(P, N) for some P and N as above;

(i1i) C is a variety contained in Bl .

Proof. We shall use two results from [7]: Every finitely generated

ring in Bl is isomorphic to a finite direct product of finite fields

(Theorem 3.4); C is a semi-simple radical class if and only if there is a
non-empty finite set F of finite fields, closed under taking subfields
and such that a ring R belongs to C if and only if every finitely
generated subring of R 1is isomorphic to a finite direct product of fields

in F (Theorem L4.3).

(i) @ (i7). Let C be a semi-simple radical class, F the set of
fields whose existence is guaranteed by [7, Theorem 4.3],

P={p:3 afield in F of characteristic p} and, for each p € P ,

H(p) = {n : 3 a field of order P’ in F} . We will show that
C =P, N .
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It is clear that € < V(P, N) because if 0 #a € R € C , then [a]

is isomorphic to a finite direct product of fields in F < V(P, WN) .

Conversely, suppose R € V(P, N} and S 1is a (non-zero) finitely

generated subring of R . By the lemma above, R belongs to Bl , S0 S

is isomorphic to a direct product of finite fields [7, Theorem 3.4]. Each

of these fields must be in V(P, N) and so, using the lemma again, each is
a subfield of a field in F . Since F is closed under taking subfields,

S is isomorphic to a finite direct product of fields in F . Thus, R 1is
in C by [7, Theorem 4.3].

(i2) = (1iZ). This is the first assertion in the lemma.
(222) = (7). Let C ©be a variety, C E-Bl . Let F be the class of

finite fields in C . Since C contains a non-zero ring, it follows from
[7, Theorem 3.4 that F # § . Also, since C is a variety, F is closed
under taking subfields and, using [7, Theorem 3.4] again, we see that a
ring R is in € if and only if every finitely generated subring of R

is isomorphic to a finite direct product of fields in F . 1In view of [7,
Theorem L.3] it is sufficient to prove that F is finite (we identify
isomorphic fields). Suppose F., Foy vees Fh, ... are fields in F . For
each n , choose u, € Fn such that Bﬂ; = Ih . Since Fn €Cc Bl .
{ul , the subring of ﬂfﬁ which is generated by

u = (ul, u2, ceey U, ...) , is isomorphic to a finite direct product of

n
finite fields [7, Theorem 3.4]. Thus, there are only a finite number of

possibilities for the characteristic of Fn . Moreover, there exists an

integer k such that uk = u . It follows that there are only a finite

number of possibilities for the dimension of Fn over its prime subfield.

Hence there are only a finite number of possibilities for the fields

Fl, F2, ey Fn’ ... and so F 1is finite. This completes the proof of
the theorem. //

For each integer n Z 2 , let Vn denote the variety defined by
" =z . It follows from the implication (Z%Z) = (1) that Un is a semi-

simple radical class. It has been claimed that every semi-simple radical
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class is one of the varieties Vn (for references see [1]), but this is
not correct: each Vn contains the field of order 2 , but V(P, N) does
not contain the field of order 2 wunless 2 € P .

Various other conditions are equivalent to those given in the theorem.

(tv) C 1s a homomorphically closed semi-simple class
(see [9, Corollary 32.2] for (i) < (iv));

(v) C is an idempotent (that is, extension closed) variety
(see [9, Theorem 3k.1] for (iv) < (v));

(vi) C is a variety with attainable identities (see [I1,
Theorem 1.5] for (i) < (iv) < (vi));

(vit) C <is a variety generated by a finite set of finite
fields (see [3] for (v) < (vii));

(viii) C is a variety consisting entirely of arithmetic rings
(see [2] for (i) < (v) <= (viii) and [4] for
(vii) <= (viii)).
Finally, we note that other equational definitions of these varieties

are considered in [5] and [8].
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