Integral Functions with Gap Power Series
By P. Erpos and A. J. MACINTYRE
(Recetved 27th March 1951, Read 4th May 1951.)
1. Let
7@ =Za,2s M)

be an integral function, A, being a strictly increasing sequence of non-
negative integers. We shall use the notations
M (r) =mox | f(2) |, m(r) =min | (2) |,
Iz =2 lz]=r
p(r) = max | a, | %,
n=20,12 ...

describing M (r) as the maximum modulus, m(r) as the minimum
modulus and p(r) as the maximum term of f(z).

The present paper is a development of a remark by Polya (Math.
Zeit., 29 (1929), 549-640, last sentence of the paper) that if

lim IOg (./_\3’ + 1.___/\3") > %

— log A, (2)
— m() _ fjm s
1 = = 1. 3
then Jm e T e M) (3)
Qur first result is
THEOREM 1.
If
g 1
z - - <w, 4
=0 /\n+1 - ’\n © ( )

n

then (3) holds.

Theorem 1 is clearly a sharpened form of Pélya’s result, for from
(2) it evidently follows that for sufficiently large »

App1—An> A: +te> nl ¥4 for some positive ¢ and §.
Theorem 1 is best possible, as is shown by our next result.

THEOREM 2.
If
2 e e (4
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then there exists an integral function of the form (1) such that

O Wp—

o wm=t R, wn =t ©
We generalise these theorems in two ways. First, relaxing the gap
hypothesis we have

TaEOREM 3.
If for a positive tnteger h
* 1
S ———— < ® 7
n=90 An +h = /\n ( )
then
) = p(r) 1
im {7 = o7 i) (8)
,; . M(r)= 2h—1
but if
s 1 __s (9)

n=0 An +h ’\n -
for every h, then there exists an integral function of the form (1) such that

li p(r) — : M)= 0. 10}
i M (r) r-l—l>n:o M (r) (10

The conjecture that under condition (7) we could derive

fim ’JZ—((%>0 (11)

7> o

is disproved trivially by the example
T8 (n3)! 4 S8 +1 (nd + 1)1,
0 0

Our recond generalisation relaxes the gap condition of Theorem 1
in a different way, but imposes in addition a condition on the order
of the function. We have

THEOREM 4.
If as n tends to infinity

n

z

k=0 Aer1— A
and the function f(z) is of finite order, or if

5 ! 0 (log \), (13)

k=0 Mes1— A

and f(z) is of zero order, then (2) holds.
This theorem cannot be materially strengthened since the example

=o (log A,), (12)
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constructed for Theorem 2 will be of finite order if
1 n 1
im — § —— _ >0
isw g, -0 Aps1— A

and of zero order if

li 1 n 1 w
1m = .
o> log A k=0 Ak+1_hk

2. Proof of Theorem 1. To prove the theorem we need an element-

ary inequality. If ¢, + ¢ + € + ... is & convergent series of non-
negative numbers and if a sequence 3, is defined by
1 j
8,=max —————= X ¢, (14)
iene; =1+ 1) o .
then .
28 =142 Z‘. n ~H e, (15)
: n=2 0
We have

28”= ¥4, .6,
00

where 4, , = (j, — ¢, + 1) —32 or zero, as v falls in ¢, < v < j, or not,
%., jo being the values of 4, j for which the maximum in (14) is attained.

Since i, < n < j, also it follows thatj, — 4, = | v—n | . Consequently
$5,<>% < !
0 oo (Jo—n |+

<1+ 2zn-3 2)z:e
We now assume (4) and set

= 1/(Ay1—N). ' (18)
Defining 3, as in (14), we have ).‘an <o by (15). Let c,be a sequence

of positive numbers tending to infinity so slowly that
Ze,8, <. (17)
0

Now let 4, < |2z| <4,,,, n=0, 1, 2, ..., be the sequence of
intervals in which a single term ;2% remains the maximum term.
k will depend on n and increases with n, but we need not express this

~ dependence in our notation. From (17) we have H (1 4 2¢,8)2< 0,

and hence there exist arbltrarlly large values of n such that
,,+,/A,,>(1+2c,,5k)2. (18)
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We understand by n such a value and by & the associated integer.
Since a; 2% is the maximum term for 4, < |z | <4,,,, we have

la, | S |a| 4™~ % (v<k)
la,} S | ap | dpyy B ™) (v>k). (19)
Using these inequalities with r = | 2z | = (4, 4,,,,) %, we have
lay | 7 S | @ | 5 (/A ) H0 =2
S fap | el 4+ 2¢,8) =% M) (v< k), (20)
[a, | ™ = | ar | Pe(l + 2¢,8,) —® — %) (v> k).

But by the definition of 5, and the inequality of the harmonic and
arithmetic means,

1
o = ) kE—oy)—1
k_()‘u+1—)‘v+)‘u+2")‘u+1+ +/\Ic_AL-— ( )
. (21)
1 k—v (k—v)t
g(k—u)*()\k—/\;)—hk—)‘v (U<k).
Consequently
(1 4+ 26, 72) ~ % ~A) 25 ¢ -k —olf (v < k). (22)

From this and a similar inequality when v >k, it follows from (20)
that as n—> o0 (and 80 k> 0,7 —> 0, ¢, —> o)

k=1 @« )

2 la, | +Za, | M=0(]ag]|r™). (23)

0 k1
From this follow first the second and then evidently the first state-
ment of (3).

@

3. Proof of Theorem 2. Now suppose that X 1/(X,,; — A,)
0

diverges. We choose the coefficients a, by the following rules.
ag=1, an=an+1An—(A“_l"'1)’ (24)

where
n—1 €y
4,= T (1-{-/\"__/\

v=0

) A=l A=(14) (29)

v—1
and ¢, is a a sequence of positive numbers tending to zero and such
that Ze,/(A, .1 — A,) diverges.

Evi'dently A,-> o and f(2) =Z a,z’sis an integral function.
. 0

Since
Y o X% G S TN
nt el Sl 9
= (20)

n+1
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the maximum term u(r) is a,r’» for

4, =7 4,41 (27)
Clearly

M@ry=Za,™>a, ™ +a,, ,r'n+1 (28)
0

Now for 4, <r < A, , we have

Ay 1T +1 =< r >"n+l_"n >< 4, )xn+1—ln
il T = ("
a, r°n An+1 An+l

(29)

- -
€ n 41 n)
1 > >e ",

=(1+A

n+1"/\n

and it follows that M (r) > (2 — ) u (r) for all sufficiently large r.

This proves the first inequality of (6). To establish the second
we argue as follows. With 4, <r< A4, ., and z=re 41" n) we
have, for n sufficiently large,

| fR | S M@)—a,r*n—a, et r14 (arin —a,  rinel) (30)
=M (r) —2a, M+ 1S M (1) — (2 — €) u (7).
If p(r) =1 M (r), it follows that m (r) < (3 + ) M (r).
If p(r) <} M (r) we argue differently. We use the relations

P S LR =g | (feenlza0=Saten, @1
KU 0

which lead to

)2 B ot Ba, v (1 () - a, 7 )
0 0

(32)
Z (2P + Do, {f (1) — 1 ()
and
{m(r)}2 = {Ma(n)}2 = P4M (1)} (33)
4. Proof of Theorem 3.
Suppose now that
5 1 ®, (34)

n=0 Anis— M =
where & is a positive integer greater than unity.

Defining 8, as in (14) with ¢, = (3,4 — A,)~! and choosing ¢, > 0
so thatc,-> + o and Z¢,§, < o ,and again taking 4, < |z | < 4,4,
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to be the sequence of intervals in which a single term, say a, 2% , is the
maximum term, we must have arbitrarily large values of » such that
A, 1]A4, > (1 + 2¢.8,)2, that is condition (18). With such values of »
and associated k we still have (19) and (20), but we can no longer
expect such a good result as (21) or its consequences (22) and (23).
Forr = (4,4,,,)! and v “ near” to k we can only say

| a, | rv < | ay | r (k—h<v<k+h). (35)
For values of v which are not ‘“ too near *” k we can give an analogue
of (21) valid for k—ph<v =k — (p— 1)k, p=23,...,in
1 1 1 1
3 ;<~ e i ~—————)~—
R R T LSRR W Yo Tz M -1/ (ph)
(p—1)° 1 pt
= : = o3
= N — A —p - 1n (PR)? 4ht (A — Q)
(k — o)}
> 0
= 4RE (A, — A)
Consequently

(1 4 26, 8) ~% =4y < e~ o —vhan

From this and the similar inequalities with v> % + & we have, as
n —> o , the result

h a0
S la v+ = la|rv=o0(]a | ™), (36)
0 k+h

and consequently with (35) we deduce
lim M (r)/u (r) < (25 — 1)
or
fim ()M (1) Z 1/(2h ~ 1),
which constitutes the first part of Theorem 3.
Now suppose that for some integer - > 1

® 1
I -5 =ow.
ne=0 An-;»h - An
Then evidently one of the series
> 1 (k=0,1, ..., h —1) (37)

n =0 >\11}14-h+k - )‘nh+k
must diverge. There will be no loss of generality in supposing that the
series with & = 0 diverges. We now, as in the proof of Theorem 2,
define the series

[*(z) =Za, 2, A =un (38)

]
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with the properties that

(i) p*(r)=a,r*n () a, 1= (1 — € a, ™n ,
(39)

*

ford, <r< 4, ., n > n (e),

where p” (7) is the maximum term of f*(z) and A4 is defined from the
sequence A, as A, is defined from A, in (25). Let us now define

f(z) =Za,z? by the conditions
0

Gy = @, Qg =y A b =200 (k=1,2, ...,k ~1). (40)
Then evidently for 4, = r< 4, , we shall have
g TP 0k Z Wy A TR +1 2 0 2 gy T bR (41)
and u (r) for the function f (z) will be a,;, r*=, so that
M) =f)>h+1—ulr) r>r@l  (42)

We approximate m (r) by using

o

tm (PR < (Mo (r)) =Zar*h . (43)
C
Clearly

{M (r)}t = gaf ¥ 4 gl a, ™ {M (r) — a,r™}
0 0
(44)
=AM, (N} + (M (1)) — (h+1— &) {M ()},
from which '
m(r) S My(r) < (h+ 1— &)= M (r) - (45)

follows.
This does not quite complete the proof of Theorem 3 since

{h+1—¢-1and (b + 1—¢)~ %, although arbitrarily small, are not
zero. However we should only have to choose A’ to be a subsequence

of 2, such that the interval /\;g A )\;+1 contains a number of A,
increasing with A; but that T (A, —A )~ ' diverges. It does not
seem necessary to enumerate the details.

5. Proof of Theorem 4.
Given an increasing sequence of integers A, let us first try to

w0
construct an integral function X ¢, 2’ with positive coefficients such

<
that each term is in turn the maximum term and greatly exceeds in
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value the rest of the series. More precisely let § >0 be a small
prescribed number and let us choose the ¢, in such a way that for a
certain increasing sequence A, of positive numbers the following
conditions hold for all N. For z = Ay we require that

Cy 12 ¥ +1=238cya’y

(a6)
Cy 12\ —1 = 8¢y axtn.
In this case we shall have, for n > N and z = 4,
Cnyr i+l =3¢, aMn (47)
and consequently, for x = 4y < 4,
Cnp1 @M+l < 8¢ 2t . (48)
Soforx =4y, p>0,
CN op BN +2 X 8P cy 2V
(49)
5 Cp Tn = N cyziv.
N1 —1-3
Similarly, for x = A,
N1 5
2 ot £ Cy TN, (50)
0 1—-396
We must now consider whether our conditions are possible.
(46) requires that
CN-;-I = SCN/A§N+1_}\N
(51)

1N+1—)‘N.
N+1

Cy = SCN+1 A
Eliminating ¢y and ¢y, ;, we see that
Ay i1/Ay=8"20r+1-2) = KVGxy1-2yy  (K>1). (52

This defines the sequence 4, if we take 4, = 1, and shows that it is
increasing. With ¢, =1 the sequence ¢, is also defined, for the two

conditions of (46) are now equivalent. The function X ¢, 2%, will be
1

an integral function if 4, tends to infinity. Since

1ogA,,=1ogK{ LIRS SIS S

. (53
PR LD Yy e 9%

this condition requires the divergence of X 1/(A. .1 — A,).
~ 1
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The property of domination by single terms expressed by (49)
and (50) will be carried over to the integral function X a, 2*» if we
0
can assert that
2 a,n/c, (54)
0
is an integral function. If we make the hypothesis that X a; z*» is of

finite order then | @, | < A,~?*n for sufficiently large » and some
positive a. To ensure that (54) does define an integral function we
shall require to prove that for arbitrary ¢ > 0 and sufficiently large n.

>\, ” ¢n, (55)
This is equivalent to log ¢, > — e A, log A,
and since
n—1
loge,=nlogd — X (A ,.1—A)log 4, (56)
y=0
this will follow from
log 4, = o (log A,) (87)
or
i 1
S L a9

Now if we assume that E a,2*n/c, is an integral function it will

follow that for sufficiently ]arge values of 2, say z = R, the maximum
term of this function will occur with » = N arbitrarily large. We
shall have

| an | RMfc, < | ay | R*v/cy.

| @, | R*n Cn

| ay | R éc_zv

| an | (Bdx)n . (Ay)'

| ax | (RAyY Y™ cy(Ax)
Thus the dominance expressed by (49) and (50) of a single term for
2 ¢, 2*» holds also for the function X a, z2* with | 2 | = R4y. Since 8
may be chosen arbitrarily small Theorem 4 is proved for functions
of finite order. If X a,a’» is assumed to be of zero order we only

require that ¢, > A, **» for some positive A, and this clearly follows
from (13).
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