
NORMAL COMPLETIONS OF SMALL CATEGORIES 

J. F. KENNISON 

1. Introduction. In (3), Isbell proposed a stronger definition for the term 
"complete category" and obtained many nice theorems for the resulting 
notion of a completion. In particular, he showed (3, Theorem 3.20) that 
completions of small categories satisfy a strong normality condition. 

In this paper we shall always use the term "complete" in the weaker sense 
of Freyd (1). (In (3), Isbell used the term "small-complete" for this weaker 
notion.) We shall prove that the completions, in the sense of Freyd, of small 
categories also enjoy the same normality condition, provided they admit at 
least one bicategory structure. (The complete categories in the sense of Isbell 
always admit bicategory structures; see the remark following Proposition 2.4.) 

In what follows, we let s/ C 38 mean that se is a full subcategory of 28. 
Moreover, if se Ç 38, thens/ = 38 means that each object of 38 is equivalent 
to an object in s/. The terms "inf-complete" and "sup-complete" shall be 
used in place of Freyd's terms "left-complete" and "right-complete". We 
prefer the suggestive "inf" and "sup" terminology given by Lambek in (6), 
because of the useful analogy with lattices. Following (6), an infimum (or inf) 
is a generalized inverse limit (i.e., a left root in Freyd's nomenclature). 
Supremum (or sup) is defined dually. 

Definition. A complete category ^ is a completion of the small category 
s/ if stf Çk^ and there exists no proper intermediate complete category 
(i.e.,s/ <^38 C <^ and ^ complete imply 38 = ^ ) . 

^ is a normal completion of the small category J^/ if it is a completion which 
has no proper intermediate inf-complete or sup-complete categories. 

(In this paper we shall not consider completions of large categories.) 
We note that "bicategory structure" is defined in (2, p. 573). Our main 

result is the following theorem. 

THEOREM 1.1. Lets/ be a small full subcategory of the complete category ^ . 
If *$ admits a bicategory structure (I, P), then there exists a normal completion 
JV of S/ such that se <^J/ Ç <%. 

The embedding ofs/ into^V preserves all infimums and supremums {of small 
diagrams) that might exist in se. The embedding of JV into *£ is retractable via 
a functor from *$ onto^V. 

Finally, every normal completion of a small category is well-powered and 
co-well-powered, and therefore is complete in the sense of Isbell. 
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We should mention that the above theorem was proved in (3) for a less 
general case. 

We feel that some of our preliminary results are of individual interest. In 
particular, Corollary 2.2 resolves a question raised in (3; 4). Proposition 2.6 
yields useful smallness conditions which generalize a smallness result used 
in (5). 

2. Pre l iminar ies . 

Notation. We shall let M^, or simply M, denote the class of all mono-
morphisms of cif. The class of epimorphisms shall be denoted by E<$, or simply 
E. The extremal monomorphisms shall be denoted by M<g* or M*. By definition, 
/ G M* if and only if / G M a n d / = gh with g G E imply g is an equivalence. 
E^ or E* shall denote the dually defined class of extremal epimorphisms. 

If 7 is any class of monomorphisms, then we define an I-Sub object to be a 
subobject which is representable by a monomorphism in I. The category ^ 
is I-well-powered if every object has no more than a set of 7-subobjects. The 
dual terms P-Quotient and P-co-well-powered, for ? C £ , have the obvious 
definitions. 

lis/ is a full subcategory of ^, then Prod s/ shall denote the full sub­
category of all products IL4 t for which A t G s/ for all i. We use Sub s/ for 
the full subcategory of all objects which are (representatives of) subobjects 
of objects in sf. The terms 7 - S u b ( j / ) (for I Q M), C o p r o d ( j / ) , 
P-Quot(s/ ) (for P C £ ) and Quots/ are defined analogously. 

The category ^ is factorable if each morphism f of ^ can be factored as 
f = me for m G M and e G E. 

PROPOSITION 2.1. Let të have pullbacks (see 1, p. 40, for definition). Consider 
the following diagram, where bf = ga, f G E%, and g (z M are given: 

Then there exists a morphism r such that rf = a and gr = b. 

Proof. Let g and b be morphisms such that bg = gb is a pullback diagram. 
Then there exists h such that gh = / and bh = a. However, it can be shown 
that g G Af as g G M and ôg = g5 form a pullback diagram. Thus, g is an 
equivalence as gh = f G -£#. Choose r = 5(g) -1. 

COROLLARY 2.2. If *€ has pullbacks, then E* is composition-closed. 

https://doi.org/10.4153/CJM-1969-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-019-6


198 J. F. KENNISON 

Proof. Let bf be a given composition with b G E* and / G E*. Assume that 
bf = ga with g G ikf. Then there exists r such that b = gr which implies that 
g is an equivalence. 

COROLLARY 2.3. Let *$ have pullbacks. Letf = me andf = më be two factori­
zations of f with m, m G M and e, ë G E*. Then there exists an equivalence h such 
that e = hë and m = mn. 

The proof is straightforward. 

The following type of proposition is well known and can, in effect, be found 
in (4). 

PROPOSITION 2.4. Let *$ be complete. Then (ikf, £ # ) is a bicategory structure 
on ^ if ^ is either E% -co-well-powered or well-powered. 

Proof (sketch). In view of the previous results, it suffices to show that each 
morphism / of *$ factors as / = me, where m G M and e G E*. (For then ^ 
is factorable and the corollaries to Proposition 2.1 apply.) If ^ is E*-co-well-
powered and / is given, it suffices to choose e to be the largest extremal epi-
morphism through which / factors (e turns out to be a supremum). Thus, / 
factors as / = me and m must be a monic, for if mg = mh, then / factors 
through ce, where c is the coequalizer (or difference cokernel) of g and h. A 
similar argument applies if *$ is well-powered. 

Remark. The same argument shows that if *$ is complete in the sense of 
Isbell, then (M, E#) and (Af#, E) are bicategory structures on ctf. 

PROPOSITION 2.5. Lets/ C 38 C <$ be given, where ^ has arbitrary products. 
Assume that 38 — /-Sub(Prod *$/), where I is a class of monomorphisms such 
that hg G I implies g G I. Then each B G 38 is an I-subobject of a product, YlAai 

via g: B —> TLAa, where g G / , Aa G stf for all a, and where the projections 
of B onto the Ads are distinct {i.e., pag = ppg implies a = ($). 

Proof. Let B G 38 be given. By our hypothesis, there is a m a p / : B —> IL4 u 

where / G I and A t G se for all i. Define an equivalence relation by i ~ j 
if and only if ptf = pjf and let a vary over the resulting set of equivalence 
classes. Define Aa so that Aa = A t for i G a and g: B —> IL4 a so that pag — p%f 
for i G a. Let h: IL4 a —> IL4 t be defined so that pth = pa, where a is the 
equivalence class containing i. Then g G I since hg = / G / and g has the 
required properties. 

PROPOSITION 2.6. Let *& have pullbacks and arbitrary products and let 
s/ Ci *& be a small subcategory. Then: 

(1) Let 38 = Sub (Prod <$/). Each X G *& then has only a set of extremal 
quotients in 38 ; 

(2) Let *€ also have pushouts (see 1, pp. 41-42 for definition) and let 
38 = M# -Sub (Prod s/). Each X G ^ then has only a set of quotients in 38; 

(3) Let {I, P) be a bicategory structure on *& and let 38 = /-Sub (Prod s/). 
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Then each X G *$ has only a set of P-Quotients in 31, and Se is a reflective 
subcategory of &\ 

Proof. (1) Let e: X —> B be an extremal epimorphism, where 5 ^ . 
By using Proposition 2.5 (with 2" = ikf), we can find m:B—>HAa with 
m G M, Aa G s/ for all a. and such that pam = p$m implies <x = (3. I t follows 
that patrie = p$me implies a = 13. We claim that the quotient object of X 
represented by e is uniquely determined by the set {pame\ of maps from X 
to members of se. For, assume that ë: X —» B is another extremal epimorphism 
for which there exists a monomorphism m: B —>YLAi whose projections, 
pifn, are distinct, and such that the sets {pame} and {piinë} coincide. Then 
{Âf} must be a one-to-one re-indexing of {Ay}. 

Thus, HAy is equivalent to IIÂ*, and there is no loss of generality in 
assuming that IL47 = IIA* and painë = pame. Then inë — me, and therefore 
e is equivalent to ë by Corollary 2.3. 

The proof of (2) is by the same type of argument, using the dual of Corollary 
2.3. 

As for (3), the above argument shows that each I f ? has only a set of 
P-Quotients in £§. (It is easily shown that hg G I implies that g G / so that 
Proposition 2.5 applies.) To show reflectivity, let X G ^ be given and let 
ea: X —> Ba be a representative set of all P-Quotients of X for which ea G P 
and Ba G «â?. Let e: X —» ILE>a be determined by the equations £ae = ea for 
all a. Factor e = eie0, where e\ G J and eo G P . A well-known type of argument 
shows that e0 is a reflection map reflecting X into ^ ; cf. (5, 2.3 and 3.1). 

PROPOSITION 2.7. Let sz? C ^ and assume that ^ = Af#-Sub(Prod J / ) . 

Z7ze?z /&£re is wo proper reflective subcategory of *$ which contains se. 

Proof. Assume that 38 is reflective and that J / Ç J Ç ^ . Let I G ^ 
be given. There exists m: X —» B such that m G M* and 5 G Prod(J3/) . 
Let e: X —» X reflect X into ^ . Then there exists fiX—^B with fe = m 
since J3 G ̂  (as Prod se C ^ ) . It suffices to show that e is epic, and hence 
an equivalence (as m G M*) which shows that 3$ = fé\ To show that e £ E, 
let ge = fee, where g, h: X —> Y. Let n: F - ^ Z Ç Prod J^/ Ç ^ be a mono­
morphism. Then nge = n/z£. This implies that ng = nh as e is a reflection map 
and Z G ̂ . However, n £ M, and hence g = h. 

PROPOSITION 2.8. Let ^ be sup-complete and let s/ C ^ fre s z ^ ^a / 
^ = M* -Sub Prod J^. PAew the embedding of seinto ^ preserves all supremums 
of small diagrams. 

Proof. Let I be a small category and let T: I —* A be a diagram such that 
A = Sup T exists (in j / ) . Thus, A G s/ and there exists at: T(i) —» 4̂ which 
form a natural transformation from T to the constant functor A such that 
the requirements for a supremum are met. 

Regarding T as a diagram in ^ , let X G ^ together with c*: r ( i ) —> X 
be the supremum of T in &. By the properties of supremums, there exists 
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/ : X —> A with fct = at for all i. We claim that / is epic. To prove / G E, 
assume that g/ = A/, where g,/: 4̂ —> Â. Since fé7 = Sub (Prod s/), it suffices 
to consider only the case for which Â £ S$. Then h = g since Âa* = /z/c* = gat 

for all i and since A is a supremum of T for the ca t ego ry^ . 
Since I ^ = M*-Sub (Prod JaO, there exists m: X -> UAa with m £ M* 

and Aa 6 ^ for all a. For each fixed a, determine ga: A —» ^4a so that £«&* = 
pamCi for all i. These maps determine a map g for which pag = ga for all a. 
Clearly, m = gf which implies t h a t / is an equivalence as m G M*. The propo­
sition now follows immediately. 

3. Proof of Theorem 1.1. We now assume that s/ and ^ satisfy the 
hypotheses of Theorem 1.1. In what follows, we shall say that 38 is an inter­
mediate category if s/ Ç 38 Ç Cf. I t is convenient to first consider a special 
case. 

Special case. Consider the case in which 

^ = Sub (Prod s/) = E*-Quot(Coprod s/). 

In this case, e is an epimorphism of *£ if and only if fe = ge implies f = g 
for a l l / and g with codomain in se. (The proof uses the fact that each 1 ^ 
can be represented as a subobject of a product of objects in s/.) I t follows 
that if 38 is an intermediate category, then a morphism of 38 is epic in 38 
if and only if it io epic in ^ . A similar statement holds for monomorphisms. 
I t then follows that an extremal epimorphism (or extremal monomorphism) 
of ^ is still extremal in any intermediate category. Moreover, by the dual of 
(2) of Proposition 2.6, *£ is well-powered. Hence, any intermediate category 
is well-powered, since there are no new monomorphisms. By Proposition 2.4, 
(M*, E) and (M, E*) are both bicategory structures on *&. 

We claim thatc^K = M* -Sub (Prod stf) is the desired normal completion. 
JV is well-powered and, by Proposition 2.6, JV is also co-well-powered and 
reflective in *&. Therefore, JV is complete. 

If stf Ç 38 Q^V and if 38 is inf-complete, then by the dual of Proposition 
2.8, the embedding of 38 in ^ is inf-preserving. Since 38 is well-powered, 
inf-complete, and has a small cogenerating family (viz., ^/)y it follows by 
Freyd's special adjoint functor theorem as stated by Lambek (6, Proposition 
7.1) that 38 is reflective in *€. Hence, 38 is reflective mJV\ this implies that 
38 = <J/ by Proposition 2.7 which shows that ^V has no proper reflective 
subcategory containing s/. 

Finally, assume thatJ3/ CI 38 ÇljV&nà that 38 is sup-complete. By the dual 
of the above argument, 38 is coreflective m.JV\ hence 38 is inf-complete. Thus, 
the above argument shows that 38 — ^Y. Thus, JV is a normal completion 
olst. 

General case. Let (J, P) be a bicategory structure on cif. By Proposition 2.6, 
cé>' = /-Sub (Prod s/) is reflective in f̂, hence is complete. Moreover, 
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the restriction of (/, P) to (€l is clearly a bicategory structure on c£! so we 
may as well assume that *$ = cé'. Then *€ is P-co-well-powered, and hence 
E* -co-well-powered as £# C P (consider (I,P) factorizations of members 
of Ef). 

By the dual considerations, we may as well assume that 

eg = P-Quot(Coprod s/), 

and hence that *$ is /-well-powered, and thus M*-well-powered. By Propo­
sition 2.4 we have that (7kf#, E) and (M, E$) are bicategory structures on fé\ 

Moreover, as mentioned in the above case, we have that all monomorphisms 
of intermediate categories are monic in *#. Thus, an extremal epimorphism 
of *& is still extremal in all intermediate categories. Hence, by repeating the 
above argument for the bicategory structure (M, E#) instead of (I,P), we 
may as well assume that *& = M -Sub (Prod s/) and that 

^ = £#-Quot(Coprod s/). 

This is precisely the special case. 
The other parts of the theorem follow easily. For example, the embedding 

of se mtoJV preserves supremums and infimums in view of Proposition 2.8 
and its dual. The category ^f can be retracted ontoJV via a composition of 
several reflective and coreflective functors. 

The category JV that we constructed is clearly well-powered and co-well-
powered. This is true whenever ^ is a normal completion of s/. For in this 
case, *& = Sub (Prod s/) since Sub (Prod s/) is inf-complete. Thus, *$ is 
E*-co-well-powered, and hence has a bicategory structure, (M, E*). It follows 
that ^ = JV is well-powered and co-well-powered. 
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