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A cavitation bubble expanding and collapsing near a rigid boundary develops a directed
jet flow towards the boundary. In the case of a perforated plate, some of the jet flow passes
through the plate and thus the bubble acts as a pump transporting liquid from one side
of the plate to the opposite side. The transport is rather complex, is time dependent and
varies with the geometric parameters of the bubble and the connecting channel. Therefore,
we first model the transport of liquid through a perforated rigid plate for a large range of
parameters and then compare some regimes with experiments using single laser-induced
bubbles. The simulations are based on a Volume-of-Fluid solver in OpenFOAM and
account for surface tension, compressibility and viscosity. The resulting flux and generated
velocity in the channel obtained in the simulations are discussed with regards to the
dependence of the channel geometry, liquid viscosity and stand-off distance of the bubble
to the plate. In general, high flow rates are achieved for long cylindrical channels that have
a similar width as the jet produced by the collapsing bubble. At low stand-off distances
combined with thick plates, an annular inflow creates a fast and thin jet, also called needle
jet, which is approximately a magnitude faster and significantly thinner than the usually
encountered microjet. In contrast, for thin plates and small stand-off distances, liquid is
pumped in the opposite direction via a reverse jet.

Key words: bubble dynamics, cavitation, jets

1. Introduction

After Silberrad (1912) reported propeller erosion on the ships ‘Lusitania’ and
‘Mauretania’, Rayleigh (1917) proposed cavitation as the likely cause for the damage.
The model named after him describes a collapsing spherical, empty cavity. He found
that such a collapse creates high pressures in the liquid that may be responsible for the
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damage observed on the steel propellers. Improved spherical bubble models for example
by Hickling & Plesset (1963) and later on Keller & Miksis (1980) include the pressure
of non-condensable gas inside the bubble, liquid viscosity, surface tension and the energy
loss from acoustic radiation. Boundaries that violate the spherical symmetry of the flow
are not accounted for in these models. Early experimental investigations to understand the
origin of erosion studied the effect of boundaries and geometries that break the spherical
symmetry. For example, Shutler & Mesler (1965) studied the dynamics and collapse of
a non-spherical spark-generated bubble near rigid plates, Benjamin & Ellis (1966) used
an evacuated free fall device, and Lauterborn & Bolle (1975) introduced laser-induced
cavitation bubbles to increase control on location and timing of the bubble. They all
observed directed liquid flows or jets that form during the shrinkage of the bubble. Blake
& Gibson (1987) developed a boundary element method to simulate the inviscid flow
which helped to understand the mechanism of jet creation and the movement of the
bubble towards the rigid boundary. Very good agreement between the experimental and
the simulated bubble dynamics was found, see also Best & Kucera (1992).

As we know that an infinitely extended rigid boundary induces a jet towards the
boundary, one may expect that a narrow diameter through-hole embedded in the boundary
may not much alter the jetting dynamics. As a result, some of the liquid volume of the
jet may be accelerated through the perforated boundary. This cavitation based liquid
pump was first suggested by Khoo, Klaseboer & Hung (2005) in a numerical work using
the boundary integral method to simulate a bubble near a plate with a small diameter
through-hole. This was followed by experiments from Lew, Klaseboer & Khoo (2007)
and later Karri et al. (2012b), who used a spark-generated bubble with a radius of several
millimetres demonstrating the pumping mechanism. Dijkink & Ohl (2008) down-scaled
the technique for microfluidic application using considerably smaller, laser-generated
bubbles.

Karri et al. (2011) revealed that in the presence of a gaseous domain on the opposite
side of the perforated plate, the bubble dynamics results in high-speed liquid jetting into
the gas. The jet fragments into a spray of many smaller droplets. Initially, they used a
lithotripter to create a bubble with Rmax ≈ 250 μm, and later a spark discharge for a bubble
with Rmax ≈ 6 mm (see Karri et al. 2012a). Further investigations of such jets and sprays
were performed by Gonzalez-Avila, Song & Ohl (2015) and Kannan, Balusamy & Karri
(2015) using a spark-generated bubble very close to a plate with a hole, with Rmax = 1 and
8 mm, respectively.

Wang et al. (2013) experimentally studied the dynamics of a spark-generated cavitation
bubble with length scales of millimetres near a thin perforated plate. Numerical
investigations were performed by Dawoodian, Dadvand & Nematollahi (2015) using the
boundary element method to simulate a bubble in a tube near a thin plate with a hole.
Continuous pumping of the liquid has been demonstrated by Cao, Liu & Qu (2017) with
periodically created cavitation bubbles just above a channel of radius rc = 2.5 μm. The
particular shape of the plate has an effect on the bubble and therefore on the pumping as
demonstrated by Cui et al. (2013), who conducted cavitation experiments with relatively
large bubbles on top of a curved perforated plate. The experiments were later simulated by
Moloudi et al. (2019) based on the boundary element method and, for certain parameters,
revealed a pronounced jet in the opposite direction. However, the simulations stopped
once the jet pierced the bubble and the resulting fluid transport past that instant was not
obtained.

While there is strong experimental support for the pumping effect of bubbles near
through-holes, there is a considerable lack in numerical simulations that include the jetting
dynamics through the hole and the following bubble dynamics, and that study the influence
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Pumping by cavitation

of various geometrical parameters of the hole as well as viscosity. These aspects are
addressed in the present work, which also accounts for surface tension and compressibility
of the liquid and the gas.

We start with a description of the governing flow equations and continue with the
implementation in a Volume-of-Fluid (VoF) solver in § 3. Selected simulation results are
compared to experiments. Therefore, we describe a suitable experimental setup in § 4 that
can reveal not only the bubble dynamics but also the liquid transport. The results section
starts with a detailed description of the pumping mechanism (§ 5.1). Then, the influence
of various parameters on the pumping effectiveness are revealed and discussed in § 5.2.
We then take a closer look at two particular flow phenomena in § 6, namely the so-called
needle jet and the reverse jet using and comparing simulations with experiments, before
we discuss and summarise the results.

2. Governing equations

The simulation model describes two immiscible, compressible, viscous fluids, i.e. water
and a non-condensable gas, and accounts for their surface tension. Mass and heat transfer
across the fluid–fluid interface are neglected. The initial process of cavitation nucleation,
e.g. from a laser or a spark discharge, is ignored. Instead we start the fluid mechanics
model with a small gas bubble at a high pressure at time t = 0.

The fluids satisfy the continuity equation (2.1) and the law of conservation of
momentum (2.2) of Newtonian fluids,

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ
Du
Dt

= ρf − ∇p + μ

(
�u + 1

3
∇(∇ · u)

)
. (2.2)

Here, the physical quantities are density ρ, time t, velocity u, volume acceleration f (e.g.
gravity) and the dynamic viscosity μ. A liquid viscosity ofμ = 1 mPa s and a gas viscosity
of μ = 0.0184 mPa s are used, as well as a surface tension of σ = 70 mN m−1. For both
components, the Tait equation is used as an equation of state:

p = ( p0 + B)
(
ρ

ρ0

)γ
− B, (2.3)

where the constants are p0 = 101 325 Pa, B = 303.6 MPa, ρ0 = 998.21 kg m−3, and
γ = 7.15 for the liquid (water) and p0 = 10 320 Pa, B = 0, ρ0 = 1 kg m−3, and γ = 1.33
for the gas. With B = 0, the equation of state (2.3) describes the adiabatic change of state
of an ideal gas.

The Rayleigh collapse time is the idealised time it takes for an empty cavity under the
action of a constant external pressure to shrink to zero size. Lord Rayleigh solved the
energy equation for an inviscid, incompressible fluid initially at rest once a portion of the
liquid was instantaneously removed (see Rayleigh 1917). He obtained an equation for the
bubble radius as a function of time that could be integrated to obtain the Rayleigh collapse
time

τ ≈ 0.91468 Rmax

√
ρ

p0
. (2.4)

This Rayleigh collapse time is approximately τ = 46 μs for typical bubbles of Rmax =
0.5 mm. The spherical bubble dynamics obtained from the VoF solver can be compared to
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the Keller–Miksis model (Keller & Miksis 1980):

RR̈
(

1 − Ṙ
c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
+ 4νṘ

R
+ 2σ
ρR

+ p0 − pg

ρ

(
1 + Ṙ

c

)
− Rṗg

ρc
= 0, (2.5)

which is a solution to the Navier–Stokes equation and accounts for compressibility in the
limit of linear acoustic waves.

3. Numerical implementation

3.1. Numerical solver
For the simulations, a modified version of the VoF solver COMPRESSIBLEINTERFOAM
from the open-source framework OpenFOAM 4.0 (2016) is used. It models two
compressible, non-isothermal, immiscible fluids using a phase-fraction based interface
capturing scheme. The solutions are obtained in 250 000 to 370 000 computational cells,
each of which is assigned its respective flow equations. The solver solves for the five fields
pressure p, non-gravitational pressure prgh = p − ρ g · r, velocity u, temperature T and
phase fraction α, which is a non-dimensional scalar field ranging between 0 and 1 that
specifies the relative volume amount of a cell occupied by one of the fluids. In this case,
α = 1 means that a cell is fully occupied by water and α = 0 means it is fully occupied by
gas. Since gravitational effects are neglected, g is chosen to be 0 and thus prgh = p.

The solver is derived from CAVBUBBLEFOAM by Koch et al. (2016) and Zeng et al.
(2018), which itself was a modification of the original COMPRESSIBLEINTERFOAM.
CAVBUBBLEFOAM updates the compressibility field in every time step and neglects
non-isothermal effects by removing the temperature equation. This simplification has been
used successfully for cavitation bubble simulations by Zeng et al. (2018).

In each time step, the equations for α, ρ, u and p are solved. In the following,
the notation α1 := α, α2 := 1 − α is used. Since phase transitions are ignored, each
component satisfies the continuity equation separately (2.1), i.e.

∂(αjρj)

∂t
+ ∇ · (αjρjφ) = 0, (3.1)

where φ denotes the interpolation of u at the cell faces since u is only defined at the centre
of each cell and j = 1, 2 represents the two fluid components. By using the definition of
the compressibility, dρj = ψj dp, (3.1) yields

∂α1

∂t
+ ∇ · (α1φ)+ α1

ρ1
ψ1

Dp
Dt

+ ∇ · (α1α2φr) = 0. (3.2)

The last term on the left-hand side was added to counteract the smearing of the fluid–fluid
interface due to numerical diffusion. The vector φr is defined as

φr = cα
∑

i

|φi|
|Ai|

∇α1,i

|∇α1,i| , (3.3)

with the parameter cα ≤ 1 and the cell face vector Ai. Solving (3.2) yields an updated
α1 for the new time t. The partial derivatives are discretised using low order discretisation
schemes like the Euler scheme for temporal and the upwind scheme for spatial derivatives.
Numerical errors of this solution may result in α1 being slightly below 1 within the bulk of
the liquid. Once such a cell is exposed to a low pressure, we wrongly observe the creation
of new gas regions. We overcome this problem by a correction of αi, i.e. cells with a value
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Figure 1. Simulation geometry (not to scale) of a single bubble in the vicinity of a plate with thickness l
including bubble radius R and stand-off distance d. The plate is perforated by a channel of radius rc.

of αi > 0.9999 are clamped to αi = 1. This threshold value was chosen to remove the
wrongly created gas regions without significantly affecting the main bubble dynamics.

Next the Navier–Stokes equation (2.2) is solved to update the velocity field u. Since
gravitational effects are neglected, the volume force term disappears (f = 0). The pressure
field is computed iteratively, using the pressure-implicit method with splitting of operators
(PISO) scheme. For that, the Navier–Stokes equation (2.2) is written as

Mu = −∇p, (3.4)

where M is a known tensor. Now the diagonal elements of M are defined as A and another
quantity H = (M − A)u is defined. Then, (3.4) can be written as

∇(−A−1∇p) = A−1H − ∇ · u. (3.5)

This is solved to update the pressure field p and from there, the velocity and density
fields are corrected. Discretisation errors cause the bubble mass, which is calculated
from m = ∑cells

i α2,i ρ2,i Vi, to fluctuate. To counteract this, the density is corrected as
ρ′

2,i = (m0/m) ρ2,i to keep the bubble mass constant, where m0 is the initial bubble mass
calculated at t = 0, as seen in Koch et al. (2016).

The updated u and ρ are used to correct p, and are then corrected once again. Finally,
the density field ρ is updated using ρ = α1ρ1 + α2ρ2, and the new compressibility fields
ψ1 and ψ2 are obtained from

ψj = 1
γj( p + Bj)

. (3.6)

3.2. Geometry
The geometry of interest is axisymmetric. It consists of two cylindrical reservoirs (each
with a height of 5 mm and a radius of 5 mm) connected via a thin channel with a common
axis of symmetry, as shown in figure 1. Both orifices of the channel are filleted (with a
radius of curvature of 25 μm) to avoid numerical instabilities from sharp edges. Because of
the symmetry, only half of the geometry shown in figure 1 is calculated in the simulation.
The flow equations are solved in the x–y-plane, where the y-axis is the rotational axis of the
system. This results in an effectively two-dimensional simulation, which greatly reduces
the cost of computation.

Within the OpenFOAM framework, the geometry is reduced to a thin wedge that is
thinnest at the y-axis and is only divided into cells along the x- and y-directions.
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5 mm

5 
m

m

l

rc

Figure 2. Computational mesh of the channel geometry with rc = 50 μm and l = 1 mm. An unstructured
mesh is used far from the bubble and at the filleted channel orifices. Close to the bubble and in the channel, a
structured mesh is used.

The geometry is discretised into a square mesh, as seen in figure 2, which close to the
location of the bubble is resolved with a cell width of 2.5 μm. Outside of this region of
interest, an unstructured mesh is used, where the cell size increases with distance from the
bubble to approximately 100 μm width at the outer boundary of the geometry.

3.3. Initial conditions
The simulations are started with a small spherical bubble seed on the axis of symmetry
with 50 μm radius. The bubble interior is assigned α = 0 while the bubble exterior is
assigned α = 1. The field α is then smoothed by solving the Poisson equation,

α′ − 4 × 10−11�α′ = α, (3.7)

where α′ denotes the replacement of the initial field α. This smoothing procedure
reduces Rayleigh–Taylor instabilities during the early stage of rapid bubble expansion.
The parameter is chosen to provide minimum smoothing but a numerically stable bubble
surface during the early expansion phase.

The pressure field is set as p = α p0 + (1 − α) pg with the atmospheric pressure p0 and
the initial gas pressure pg. Here, pg is chosen such that the density of the gas is equal to the
liquid density, ρg = ρl. Using this and the Tait equation (2.3) for the gas, a gas pressure
of pg = 16.88 kBar is obtained. This is based on the assumption that for a laser generated
bubble, the energy deposition by the laser pulse is much faster than the bubble expansion,
so that the liquid seed vapourises almost instantaneously, before the bubble seed expands
significantly. Initially, the velocity field is zero in the entire fluid domain.

The simulations were carried out as parallel processes using four CPU cores of an AMD
Ryzen Threadripper 1900X at 3.8 GHz each with 64 GB of RAM. The time needed to run
a simulation is roughly proportional to the square of the number of cells computed. For
this work, the time taken ranged between 21 and 51 h to simulate 200 μs of the bubble
dynamics after bubble initiation.
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3.4. Boundary conditions
In the following, the directions x, y and z in the simulation results are considered
synonymous with right, up and front, respectively. The leftmost boundary is imposed with
the SYMMETRYPLANE boundary condition for all fields. Similarly, the boundary condition
WEDGE is used for the front and back planes of the geometry. The fluid boundaries of the
two large fluid regions located at the top, bottom and right in figure 2 represent an infinitely
large fluid domain; therefore, their boundary conditions are p = 10 1325 Pa, ∇ui = 0 and
∇α = 0. The remaining boundary is the one separating the two fluid domains, which also
bounds the channel that connects them. This is a rigid wall with a no-slip boundary
condition, u = 0 and ∇p = 0. There we also impose a boundary condition of α = 1.
This can be justified to some extent by the experiments of Reuter & Kaiser (2019), who
found that a bubble collapsing very close to a wall in water does not touch the wall but is
separated from it via a thin liquid film during its first collapse. Their experiments covered
the stand-off distances 0.47 < γ < 1.07, γ = d/Rmax here denoting the dimensionless
stand-off parameter with the maximum bubble radius Rmax and the distance between the
bubble centre and the wall d. In the present work, we assume this separation of the gas and
the wall for the full range of γ values studied. Whether this assumption holds true in an
experimental setting may depend on the wettability and structure of the surface. If in such
a setting the bubble came into contact with the wall, the contact angle would be expected
to play a minor role on the bubble dynamics. Thus, we would still expect the formation of
the main jet causing the pumping effect.

4. Experimental setup

The experiments use a laser-induced bubble in front of a perforated boundary. A schematic
representation of the setup is shown in figure 3. It consists of a glass tank with dimensions
55 mm × 55 mm × 65 mm filled with deionised water. A microscope objective (Mitutoyo
× 50 Plan Apochromat Objective, 436–656 nm, 0.55 NA, 13 mm WD) is sealed water-tight
and incorporated into the bottom of the tank. This objective focuses a Nd:YAG laser
pulse (Litron Nano SG-100-2; λ = 532 nm; FWHM = 6 ns, pulse energy ≈ 5 mJ) into
the water to seed the bubble. A smaller L-shaped cuvette that accommodates a plate with
a micro-perforation is submerged into the glass tank connected to a motorised three-axis
stage. The plate is made out of a flexible polymeric material used for printed circuit boards
(supplier: PCBWay). It has dimensions of 16 mm × 12 mm × 170 μm. The perforation
is a cylindrical drilled hole of 195 μm in diameter (measured with a light microscope).
The bubble is produced axially in front of the perforation which is confirmed by a
high-speed camera with a perpendicular view on the plate surface (Photron FASTCAM
MINI AX200). To avoid the generation of spurious bubbles on the plate, which can happen
as the laser energy is not entirely absorbed in the plasma, the laser is focused in parallel
to the plate. This implies a partial blocking of the focusing cone that is dependent on the
stand-off distance. To assure constant maximum bubble size over all stand-off distances,
half of the laser beam is blocked at the input aperture side of the objective.

To visualise the pumping effect of the bubble, the L-shaped cuvette is filled with an
aqueous 3 wt% NaCl solution which results in optical Schlieren at the mixing interface.
Schlieren high-speed imaging is implemented to visualise the transport of two nearly
identical liquids. For that, the water tank is illuminated by a collimated pulsed laser beam
(Ekspla FemtoLux 3; λ = 515 nm; 1 MHz) parallel to the plate. After passing the tank, the
light gets focused by an objective where the undeflected part is blocked by a knife edge and
the deflected light is directed into a second high-speed camera (Shimadzu Hyper Vision
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Camera 1

Glass tank

Pulsed laser

Light guide

H2OH2O
+NaCl

gBeam expander

Microscope objective

(b)(a)

Figure 3. Schematic experimental setup (not to scale): (a) optical path for bubble generation as well as
Schlieren imaging through the glass tank; (b) cuvette with a perforated plate in side view submerged in the
glass tank and position of bubble generation.

HPV-X2; camera 1 in figure 3, operated at 500 000 frames per second; shutter opening
time 1 μs; effective exposure time 0.3 ps; 7.8 μm pixel−1). The imaging is also sensitive
to density changes in the liquid from shock waves which are emitted during the creation
and the collapse of the bubble and reflected at the boundaries.

5. Results

We start by demonstrating the effect of the presence of the channel in the rigid boundary
on the bubble dynamics via simulations.

5.1. Jetting through the perforated boundary
Figure 4 compares the axisymmetric fluid dynamics of a bubble expanding and collapsing
close to a rigid wall with an identical bubble close to a perforated wall. The bubble is
seeded at a stand-off distance of 500 μm and reaches a maximum radius of approximately
475 μm. This gives a dimensionless stand-off distance of γ = 1.05. The cylindrical
channel has a radius of 50 μm and a length of 1 mm, which is the same as the thickness
of the wall separating the two fluid domains. In both cases, the bubble expands and then
collapses, creating a jet towards the wall. As a result, the bubble re-expands as a torus
close to the wall.

There are small but noticeable differences between the bubble dynamics in the two
geometries. In the case with the hole, during the shrinking phase, a small indentation
on the lower side of the bubble develops, which is not present in the continuous wall
case. This feature is caused by the axial inflow from the opposing fluid domain through
the channel and onto the lower bubble wall. The flow deforming the bubble is driven by
the pressure difference during the shrinking phase of the bubble, i.e. the low pressure in
the bubble and the atmospheric pressure far from the bubble below the boundary.

Overall, both bubbles form a jet starting from the wall-distant pole of the bubble.
After this jet has pierced the lower bubble wall, in the continuous wall case, we find a
stagnation point at the wall on the axis of symmetry. Further outside, a radially spreading
flow along the continuous wall is formed. In contrast, in the perforated wall case, the
stagnation point flow is lost and the liquid flows through the hole in the boundary. Viscous
stresses oppose the flow through the boundary and some of the jet flow still feeds into the
radially spreading flow along the wall. Overall, we find that for these particular chosen
parameters, a rather small effect of the perforation on the familiar bubble shape or timing
of the bubble dynamics during expansion and collapse is observed, albeit there is a fluid
transport occurring through the plate.
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80
u (m s–1)

604020

200 µm

49 µs 94 µs 98 µs 106 µs

0

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 4. Simulations of a cavitation bubble close to a rigid boundary with stand-off parameter γ = 1.05,
comparison of the flow dynamics for a boundary without (a–d) and with a channel below the bubble (e–h). The
left side of each frame shows the bubble gas in red and water in blue, the right side shows the velocity field in
the liquid.

To quantify this pumping effect of the bubble, the liquid flow velocity uy through
the channel outlet, i.e. on the plate surface facing away from the bubble, is measured
(just above the rounded edge, see figure 1) and averaged over the channel cross-section
as uy = (1/πr2

c )
∫ rc

0 α1uy(r) · ey · 2πr dr. The result is plotted in figure 5(a). Here, a
positive sign of uy indicates a flow from the bottom water reservoir to the top and a
negative sign, a flow in the downward direction. The red line in figure 5 depicts the
volume equivalent bubble radius R to help the reader to link the bubble dynamics to
the channel flow. Figure 5(a) shows that during bubble expansion, the liquid is initially
accelerated downwards to approximately uy = −10 m s−1 before the velocity reduces to
approximately 0 at the time of maximum bubble expansion (t = 50 μs). Then, rather
symmetrically, the liquid is transported in the opposite direction and slowly accelerated
during bubble shrinkage. Just prior to the collapse, a rapid acceleration sets in, reverting
the flow direction and accelerating it to approximately uy = −18 m s−1 at t = 105 μs. At
this time, the jet has developed and pushes the liquid through the channel. Examining the
bubble dynamics between t = 100 μs and t = 200 μs, we find a second oscillation cycle
of the bubble with a reduced equivalent bubble radius. We want to remind the reader
that the bubble is not spherical but has now transformed into a toroidal shape. While the
fluid velocity uy is rather symmetrical for most of the expansion and shrinkage of the first
bubble oscillation, i.e. downward during bubble expansion and upward during shrinkage,
we see a different feature during the second oscillation cycle. Here the velocity uy remains
negative for most of the second oscillation cycle and the flow reverses only shortly before
the second collapse. As a consequence, we can expect that a net downward flow occurs
during this part of the bubble oscillation. This expectation is confirmed in figure 5(b). It
plots the liquid volume V transported through the channel as a function of time, which
is calculated as V(t) = πr2

c
∫ t

0 uy(t′) dt′. Again, a negative sign stands for a net liquid
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Figure 5. (a) Velocity uy at channel exit (near the solid surface facing away from the bubble) and (b) liquid
volume V(t) transported through the channel, each overlaid with the bubble radius R to show the correlation
between the bubble dynamics and the flow through the channel.

transport downwards through the channel. Figure 5(b) shows a roughly symmetrical flow
during the first oscillation period as discussed above, pumping liquid downwards during
bubble expansion and upwards during bubble shrinkage. The cumulative volume flow V
remains negative for this entire oscillation cycle. Upon bubble collapse, the developed
jet creates a strong downward flow through the channel, which lasts until the maximum
expansion of the second bubble oscillation cycle and reaches up to 7 nL at 170 μs, before
the flow is reversed and the net amount of pumped liquid is slightly reduced. It is
instructive to compare the pumped liquid with the maximum bubble volume, which is
approximately 500 nL, and with the volume of the channel, which is approximately 8 nL.

5.2. Variation of parameters
The present fluid transport problem is rich in the choice of parameters, e.g. the geometry
of the channel (length l, radius rc, shape), the stand-off distance d of the bubble and the
properties of the liquid, to name a few. In this section, we vary some of these parameters
individually and document their effect on the pumped liquid through the channel. The flow
behaviour in the channel in tandem with the evolution of the bubble radius R observed in
figure 5 happens in a similar fashion in all the following cases studied, meaning that the
first bubble collapse is accompanied by the formation of a microjet towards the perforated
plate and a sudden acceleration to a high magnitude negative flow velocity uy in the
channel.

5.2.1. Variation of the channel length
The three channel lengths, l = 200 μm (= 0.42 Rmax), l = 400 μm and l = 1000 μm
(= 2.11Rmax), are studied. The main difference caused by this change is the viscous
flow resistance of the channel flow. As a result, for shorter channels, we observe higher
flow velocities uy (see figure 6(a) at t = 110 μs), yet the duration of the flow driven by
the liquid jet is also shorter. This is because after the first collapse, the inertia of the
liquid jet transports gaseous fragments of the bubble along and through the channel.
Once the bubble content reaches the lower end of the channel (where the liquid flow
is measured), the liquid flow rate abruptly diminishes, which happens at approximately
t = 110 μs for l = 200 μm and t = 120 μs for l = 400 μm. Also, for shorter channels, a
stronger backflow towards the collapsing bubble is created (approximately t = 150 μs),
which affects and reduces the net flow further. This is due to the second bubble collapse,
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Figure 6. Study of the liquid transport as a function of the length of the channel l for rc = 112.5 μm, d =
500 μm, Rmax = 475 μm: (a) velocity uy(t) at channel exit; (b) liquid volume V(t) transported through the
channel and (c) transported liquid volume normalised by the channel volume Vn(t).

when the channel begins to fill with liquid from the bottom again. During the third
expansion (starting at approximately t = 180 μs), the liquid is pushed downwards through
the channel again. For l = 200 μm, similar amounts of liquid are being moved up and
down through the channel, creating a roughly periodic pattern in the volume transport
curve V(t) in figure 6(b). The bubble dynamics for short channels is discussed in greater
detail during the comparison with the experiments, see § 6.2. Since the transported liquid
volume V increases with increasing channel length l, one may suspect that the transported
volume scales with the channel volume (∼ l). Therefore, we plotted the transported liquid
volume normalised by the channel volume, Vn(t), in figure 6(c). This reveals that V(t) does
not scale with the channel length l and relatively smaller liquid volumes are pumped for
longer channels.

5.2.2. Variation of the channel radius
Next the radius of the channel rc is varied between 25 μm (or 0.05 Rmax) and 200 μm (or
0.42 Rmax). Figure 7(a) shows that for thinner channels, the liquid jet causes a higher
velocity uy, yet for a shorter duration compared to the wider channels (see 100 μs ≤ t ≤
150 μs). Similar to § 5.2.1, the faster decay in fluid velocity can be attributed to the stronger
viscous drag in the thinner channels. For wider channels, an increasingly larger part of
the bubble moves into the channel after collapse. In the case of rc = 200 μm, the bubble
collapses downwards after the second expansion, entirely entering the channel. This stands
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Figure 7. Study of the liquid transport as a function of the radius of the channel rc for l = 1000 μm, d =
500 μm, Rmax = 475 μm: (a) velocity uy(t) at channel exit; (b) liquid volume V(t) transported through the
channel and (c) transported liquid volume normalised by the channel volume Vn(t).

in contrast to the previous cases, where the second bubble collapse is directed towards
the axis of symmetry. The larger cross-sections allow a much larger liquid flux to pass
through them compared to thinner channels (see figure 7b). If the flow velocity uy is almost
unaffected by the channel width, which it is at least until the bubble collapse, we expect the
transported volume V to scale with the channel volume (∼ r2

c ). This is indeed supported
by figure 7(c), where the normalised transported liquid volume Vn during the first bubble
oscillation is approximately the same for each rc. Yet, after jetting, Vn is affected by the
channel radius rc and reaches the largest magnitude value for rc = 50 μm.

5.2.3. Variation of the channel shape
The channel shape is varied by fixing the radius at the upper end of the channel at rc,upper =
50 μm and changing the radius at the lower end to rc,lower = 25 μm to obtain a narrowing
channel, and rc,lower = 100 μm for a widening channel. The ends are connected via a
straight line, creating channels of a truncated cone geometry. Figure 8(d) schematically
depicts these three channel shapes. In the narrowing channel, a higher absolute pumping
velocity is reached, as seen in figure 8(a). For the widening channel, a higher amount
of fluid is transported through them (while the channel volume also increases), as seen
in figure 8(b), but there is also a stronger backflow that acts against the net amount of
fluid pumped downwards through the channel, see figure 8(b) at 150 μs ≤ t ≤ 200 μs.
Plotting the transported liquid volume divided by the respective channel volumes, Vn,
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Figure 8. Study of the liquid transport as a function of the shape of the channel for rc,upper = 50 μm, l =
1000 μm, d = 500 μm, Rmax = 475 μm: (a) velocity uy(t) at channel exit; (b) liquid volume V(t) transported
through the channel; (c) transported liquid volume normalised by the channel volume Vn(t) and (d) schematic
of channel shapes used.

reveals that the cylindrical channel transports the largest absolute volume over the first
200 μs (see figure 8c).

5.2.4. Variation of the liquid viscosity
Next we increase the viscosity of the liquid from that of water (μ = 1 mPa s) by 1 and
2 orders of magnitude, respectively, while keeping the gas viscosity constant. Figure 9
summarises the results and reveals the expected drastic decrease of the absolute pumping
velocity uy and pumped volume V , as well as a stronger damping of the flow in the channel.
Interestingly, the backflow towards the bubble is strongly reduced for μ = 100 mPa s. This
can be attributed to the strong viscous damping of the microjet. Unlike in the cases with
lower viscosity, the jet drags no bubble gas into the channel that would create a backflow
during the collapse later. The viscous damping also causes the bubble to have a 37 %
larger collapse time during its first oscillation and reach a 42 % smaller rebound volume
upon its second expansion than in the case of μ = 1 mPa s. In Appendix B, we estimate
the total pumped volume as a function of the viscosity (B5) assuming a dissipating
Hagen–Poiseuille flow. From that consideration, neglecting the effect of viscosity on the
jetting, the pumped volume can be considered to be proportional to r4

c and μ−1.
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Figure 9. Study of the liquid transport as a function of the liquid viscosity μ for rc = 50 μm, l = 1000 μm,
d = 500 μm, Rmax = 475 μm: (a) velocity uy(t) at channel exit and (b) liquid volume V(t) transported through
the channel.

5.2.5. Variation of the stand-off distance
Increasing the stand-off distance of the bubble seed from d = −50 μm (γ = −0.11) up
to d = 750 μm (γ = 1.58) reveals a general trend that the velocity uy and the amount of
liquid pumped V decreases with the distance (see figure 10a). For the smallest distances d,
considerably higher velocities of up to uy = −55 m s−1 at d = −50 μm are achieved, yet
these distances also result in a stronger backflow during the second bubble oscillation
period. This can be partly attributed to the bubble expanding into the channel after
jet formation, pushing liquid down through it and dragging liquid up again during the
subsequent collapse. Overall, the highest pumped volume through the channel V is
achieved for the smallest distances d (see figure 10b). For large distances, i.e. d = 750 μm,
a net pumped volume of nearly zero is observed just prior to the first bubble collapse.
This behaviour is expected for an inviscid, spherically oscillating bubble that does not
translate, i.e. one that can only be fulfilled for large stand-off distances. Interestingly,
the decrease in peak velocity and pumped volume up to the second collapse is not a
monotonic function of d but contains a local maximum around d = 500 μm (γ = 1.05,
see figure 10a at t = 105 μs and 10b at t = 170 μs). The bubble dynamics changes
significantly as a function of the stand-off distance d. As the bubble is generated closer to
the boundary, it becomes more deformed from a spherical shape until it obtains an almost
hemispherical shape at maximum expansion with a small protrusion reaching into the
perforation in the boundary. In the case of d = 100 μm, no pronounced jetting is visible,
instead an annular flow develops in the late stage of an almost hemispherical collapse.
This flow interacting with the late microjet from above compete and mitigate jetting.
For d = 0, the bubble develops a considerably thinner jet that, due to its higher speed,
pulls along gas from the bubble into and through the channel during bubble re-expansion.
This change in jetting behaviour is discussed in greater detail in the following section.
Figure 10(c) shows that for d < 0, the velocity peak is reached at a later time, which can
be linked to the bubble expanding further into the channel. There, the gas phase collapses
only after a few microseconds after the collapse of the main bubble (see figure 11 at
103.0 μs).
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Figure 10. Study of the liquid transport as a function of the stand-off distance d for rc = 50 μm, l = 1000 μm,
Rmax = 475 μm: (a) velocity uy(t) at channel exit; (b) liquid volume V(t) transported through the channel and
(c) velocity uy(t) at channel exit after jetting for d = −50 . . . 100 μm.
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Figure 11. Simulation of cavitation bubble dynamics in the perforation of a rigid plate in the plane of the
upper wall of the plate (γ = 0). The left side of each frame shows the bubble gas in red and water in blue, the
right side shows the velocity field in the liquid.
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6. Selected pumping regimes

After studying the pumping effect and the influence of parameters thereon in the preceding
sections, we now examine the effect of the channel on the bubble dynamics for two distinct
regimes in greater detail.

6.1. Needle jet regime: small stand-off distance and long channel
Figure 4 reveals that for γ ≈ 1, the shape of the bubble near a plane, unperforated
boundary is rather similar to the shape observed near one which is perforated with a long
and slender hole (l = 1 mm, rc = 50 μm). When the bubble is generated very close to an
unperforated boundary, the jetting behaviour of the bubble transitions from the commonly
known rather wide jets to a considerably thinner and faster jet, termed fast, thin jet (see
Lechner et al. 2020) or needle jet (see Reuter & Ohl 2021) that can reach a velocity with an
order of magnitude of 1000 m s−1, as revealed in simulations and experiments. We want to
address the question whether this needle jet may also occur at a perforated boundary. With
a hole in the boundary, the bubble can be initiated even closer and even within the channel,
offering the possibility to probe negative stand-off distances. Figure 11 shows a bubble
initiated on the boundary (γ = 0), where the bubble penetrates into the perforation during
expansion. There, the upper part of the bubble obtains an approximately hemispherical
shape and the lower takes on that of a cylinder filling the cross-section of the hole. As
it starts to collapse, a circular kink forms at the upper part of the bubble (t = 100.0 μs).
As the bubble shrinks, the kink remains roughly at the same distance from the wall, yet
it converges in diameter (see t = 102.0 μs and t = 102.2 μs in figure 11). This has been
connected with a wall-parallel radially convergent inflow focusing on the axis of symmetry
(Lechner et al. 2020). Upon impact, this focused flow is responsible for the acceleration of
liquid in the shape of a needle to high speeds along the axis of symmetry (see t = 102.3 μs,
t = 102.5 μs and t = 103.0 μs in figure 11). Please note that in addition to the prominent
downward needle-like jet flow, in the perforation, a flow upwards is also created that
competes against the spherically convergent main flow. The very thin downwards jet
pierces the bubble with a velocity of 367 m s−1, whereas the commonly known jet flow
of a bubble at larger stand-off distances does not exceed approximately 100 m s−1. It is
important to note that the velocity of the fast jet is strongly dependent on the grid size,
as reported by Lechner et al. (2020), and thus may here be underestimated. The present
observation shown in figure 11 resembles the bubble dynamics reported by Lechner et al.
(2020) and confirms that a needle jet can occur in the presence of a perforated boundary
too.

The emergence of the needle jet phenomenon with decreasing γ is easily revealed by
plotting the maximum of the absolute velocity of the entire liquid domain, uj, and the
radius of the jet rj in figure 12(a,b). Following the curves from large γ -values to smaller γ
in figure 12(a), the velocity of the liquid jet uj decreases slowly at first from approximately
100 m s−1 and then sharply rises to values of several 100 m s−1, showing the lowest value
at γ = 0.3.

The radius of the jet rj is defined as the radius of the widest column along the axis
of symmetry that is entirely filled with liquid after the jet has pierced the bubble (see
figure 12b). This jet radius rj reveals a maximum at γ = 0.5 but sharply drops to a very
low value for γ � 0.2. Here, the jet becomes so thin that it is not fully resolved in the
present simulations and splits into small droplets without fully penetrating the bubble.
Then, a jet radius of rj = 0 is plotted in figure 12(b).
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Figure 12. Study of the transition between jet and needle jet as a function of the normalised stand-off
parameter γ : (a) jet velocity uj(γ ); (b) jet radius rj(γ ) and (c) maximum flow velocity at the channel exit
uy(γ ).

The velocity produced at the lower end of the channel uy (see figure 12c) shows a
pronounced rise for γ < 0.5; however, it is not as abrupt as during the formation of the
needle jet. Judging from these results, the needle jet occurs at γ � 0.2, while the standard
jet occurs at γ � 0.5, with a transition region between γ = 0.2 and γ = 0.5, where no
needle jet occurs, but the jetting behaviour changes.

6.2. Reverse jet regime: small stand-off distance and short channel
Next we investigate the bubble dynamics close to a short channel (l = 170 μm). We chose
this regime because in the experiments, both sides of the plate can be captured by a single
camera in the case of a thin plate. A second motivation was the report of a jet directed
away from the wall by Cui et al. (2013) that formed only near thin perforated plates
which is also absent for unperforated walls. In this regime, we provide two comparisons
between the simulated flow and the experiment in figure 13 with a stand-off distance
of d = 108 μm and figure 14 with d = 202 μm. In these figures, on the left and on the
right, the simulated bubble and the experiment are depicted, respectively. We present not
only the shape but also the transported liquid using a digital ink map in the simulations
to visualise the net fluid transport from the unsteady flow field of cavitation bubbles as
introduced by Reuter et al. (2017). This passive tracer field of different colours is advected
with the simulated flow field. Initially, the liquid in the upper reservoir is coloured black
and that in the lower with a bright grey. Additionally, the liquid in the perforation is
coloured continuously from the top to the bottom from black to red to yellow to bright
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Figure 13. Comparison between simulation (left) and experiment (right) of a cavitation bubble of maximum
radius Rmax ≈ 460 μm at distance d = 108 μm from a perforated wall, l = 170 μm, rc = 97.5 μm. Bubble is
shown in red, ink map of the liquid above the channel in black, liquid below the channel in white.

500 µm

14 µs4 µs 30 µs 40 µs 50 µs14 µs4 µs 50 µs30 µs 40 µs

84 µs58 µs 92 µs 110 µs 138 µs88 µs58 µs 172 µs96 µs 120 µs

Figure 14. Comparison between simulation (left) and experiment (right) of a cavitation bubble of maximum
radius Rmax ≈ 460 μm at distance d = 202 μm from a perforated wall, l = 170 μm, rc = 97.5 μm. Bubble is
shown in red, ink map of the liquid above the channel in black, liquid below the channel in bright grey.

grey at the bottom. Adding the ink map, we can not only depict the bubble shape but also
the origin of liquid at a later stage during the pumping. For example, the black blob in the
lower reservoir in the simulation part of figure 13(a) is liquid that has been pumped from
the upper into the lower reservoir.
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Figure 15. Study of the liquid transport as a function of the stand-off distance d for rc = 97.5 μm, l = 170 μm,
Rmax = 475 μm: (a) velocity uy(t) at channel exit and (b) liquid volume V(t) transported through the channel.

The experiment uses the higher index of refraction of the aqueous NaCl solution to
visualise liquid transport via Schlieren imaging. This allows for contrasted high-speed
recordings in regions of liquid entrainment. Note that due to the optical configuration, the
liquid leaving the channel at the lower side can only be observed once it has propagated
approximately 310 μm downwards into the bulk.

We start the discussion with the simulated bubble dynamics for a rather small stand-off
distance of d = 108 μm (γ = 0.23), as shown in figure 13. In this regime, in the case of an
unperforated boundary, a needle jet is observed (see § 6.1) as well as when the boundary
is perforated with a long channel. However, in the presence of a short channel, different
dynamics is observed. During early bubble expansion (t = 3 μs), some of the liquid from
the upper reservoir is pushed through the hole into the lower reservoir. This liquid is visible
as a small black and coloured blob below the boundary. During the later expansion of the
bubble (t = 21 μs), a small part of the bubble invades through the hole into the lower
reservoir. The two parts of the bubble are now exposed to different flow fields. While the
upper mostly hemispherical part of the bubble continuously expands to a maximum size
at t = 43 μs, the lower part pinches off from the main bubble near the exit of the hole.
The stagnation pressure from this pinch-off drives a liquid jet back through the hole into
the upper part of the bubble (see t = 61 μs in figure 13). This reverse jet then impacts at
the apex of the upper bubble and eventually injects liquid from the lower reservoir into
the upper one at t = 79 μs. A careful inspection reveals that the upper hemispherically
shaped bubble develops a kink approximately 100 μm from the surface, starting from t =
73 μs. The location of the kink converges towards the axis of symmetry at t = 79 μs. Yet,
the reverse jet prevents a further convergence of this annular flow towards the axis of
symmetry. The main bubble collapses at t = 94 μs, while the pinched-off bubble in the
lower reservoir already collapses at approximately t = 73 μs. The pinch-off (t = 43 μs) of
the bubble protruding through the plate creates a complex mixing flow below with vortices
and bubble fragments transported deeper into the lower reservoir. Overall, we find a good
agreement between experiments and simulations. It is important to note that the bubble in
the simulations collapses earlier than in the experiments. While we have no definite proof,
a likely explanation is the elastic deformation of the boundary seen in the experiments and
not accounted for in the simulation.

A comparison for a larger stand-off distance of d = 202 μm is shown in figure 14 (γ =
0.44). This results in a decreased invasion of the bubble into the lower reservoir during
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the bubble expansion as compared to that in figure 13. Consequently, a smaller part of the
protuberant bubble is pinched off below the wall in the range of 30 μs < t < 40 μs. As a
consequence, the reverse jet forms a thinner tip that partly breaks up into small droplets
at t = 50 μs. The vortex flow created upon pinch-off below the wall is more pronounced,
which is likely due to a weaker disturbance of the flow by oscillating gas fragments as
compared to figure 13.

Further simulations using the same geometry as in figures 13 and 14 reveal the
dependence of the pumping behaviour on the stand-off distance d in figure 15. The
backflow is clearly visible in the channel velocity uy as a positive spike occurring prior
to the bubble collapse at t ≈ 100 μs in figure 15(a). This stronger backflow is mostly due
to the rather small channel length (see also figure 6). The highest amount of pumped liquid
can be achieved at d = 300 μm or γ = 0.63 (see figure 15b), which is in contrast to the
γ -dependence of the amount of pumped liquid for a longer channel reported in figure 10.

7. Discussion and conclusion

The simulations and experiments in this work present the flow through a perforation in a
thin rigid plate produced by a cavitation bubble collapsing in front of the perforated plate.
The effect of several geometric and liquid parameters are studied and overall reveal clear
trends on the transport of liquid from the bubble side to the opposite plate side, i.e. the
pumping of liquid. A longer channel increases the flow resistance and as a result reduces
the liquid exchange between the two fluid domains, i.e. not only the pumping of fluid but
also the backflow. For increasingly longer channels, the flow increasingly resembles that
of a bubble close to an unperforated wall. Mixing of fluids rather than pumping can be
achieved with shorter channels. If a part of the bubble penetrates through the perforation
during bubble expansion, that part collapses earlier than the main body of the bubble,
resulting in an early jetting flow from the lower fluid domain (see figure 6). We have
termed the flow as reverse jet and confirmed it in experiments (see figures 13 and 14).
The experiments use a Schlieren technique to reveal the mixing of rather similar liquids,
i.e. water and an aqueous NaCl solution. While for the mixing of two liquids it may find
applications, for the unidirectional pumping it should be reduced. This can be done by
increasing the channel length such that the bubble does not expand beyond the lower end
of the channel.

A straight cylindrical channel results in larger amounts of liquid being pumped as
compared to simple sloped channels. Yet we expect that others geometries such that
of a Tesla valve (see Forster et al. 1995) may reduce the backflow and increase the
pumped volume. An optimisation of the geometry is open for future studies. Even without
conducting a study, an optimal value of the channel width rc for the highest amount of
pumped liquid is to be expected, since for the extreme cases of rc → 0 and rc → ∞, no
liquid pumping will occur, i.e. non-perforated wall and spherical bubble collapse with
an absence of jetting, respectively. This has been confirmed and narrowed down in the
present study. For the regular jet, the jet radius rj is in the range of 0.1 . . . 0.5Rmax (see
figure 12). Figure 7 shows that for rc = 50 μm (≈ 0.1Rmax), overall, the highest flow
velocities through the channel are reached and the amount of liquid pumped relative to
the channel volume reaches a maximum. Thus an optimum in pumping is achieved when
the channel radius is similar to the jet radius. Varying the stand-off distance d of the
bubble near a long channel (l = 1 mm) reveals two distinct regimes of strong pumping
behaviour: one being around γ = 1, featuring the typical jet, the other at very small
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Figure 16. Regime map showing the parameter space of the standard jet, the reverse jet and the needle jet
with a dependence on the normalised stand-off distance γ and the normalised channel length l∗ = l/Rmax. The
dashed lines show γ = 1 − l∗ and γ = 0.25.

stand-off distances, where the needle jet is observed. This is very similar to the continuous
rigid boundary for sufficiently small stand-off distances.

Since the occurrence of the three regimes reverse jet, needle jet and standard jet (jetting
without the former two particular jets) depends foremost on the stand-off distance d and
the channel length l, we summarise this in the regime map in figure 16. It shows the type
of jet formation as a function of the normalised stand-off distance γ and the normalised
channel length l∗ = l/Rmax and is collected from simulations and experiments. The reverse
jet occurs once a part of the expanding bubble reaches the lower end of the channel.
A rough criterion for that to occur is Rmax � d + l ⇔ l∗ � 1 − γ , the dashed diagonal
line shows l∗ = 1 − γ . Thus, as this line is approached from the standard jet regime, an
increasingly stronger backflow occurs. The transition region between the standard jet and
the reverse jet spans nearly the entire regime map shown in figure 16. Only for the case
l∗ = 2.11, γ = 1.58 (data point at the top right of figure 16), the bubble is seeded so far
away from the boundary that we cannot detect an effect of the channel on the bubble
shape, i.e. the indentation in the lower bubble wall as seen in figure 4(e–h) is not formed.
The needle jet is only found for γ � 0.25 and sufficiently long channels. This region is
indicated with the horizontal line in figure 16). For very short channels, the reverse jet and
not the needle jet occurs. This is caused by the fact that the reverse jet develops earlier
than the main collapse and therefore prevents the annular flow focusing necessary for the
needle jet formation. Thus for small l∗, the reverse jet region takes over even if γ � 0.25.
The simulations presented in this work are limited by the assumption of axisymmetry.
This causes noticeable differences compared to the experiments once fragmentation of
bubbles or droplets occur. In the simulation, this yields torus-like structures that are
unstable in reality (see Reuter & Mettin 2016). Another important limitation is the lack
of a phase transition model, which prevents an accurate prediction of the condensation of
water vapour present in real cavitation bubbles. Instead, the simulated bubble contains
an non-condensable gas that cushions further bubble oscillations. This affects the
rebound but also the development of non-axisymmetric instabilities that grow with time.
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Therefore, we only show the first 200 μs of bubble dynamics, which includes the first and
second bubble collapse only. However, this may have important contributions during the
later bubble dynamics. The axisymmetric simulations reveal that not only the first but also
successive collapses transport considerable amounts of liquid through the channel. With
asymmetries and instabilities as well as energy losses due to condensation influencing the
fluid dynamics in reality, we expect less liquid transport than predicted in the simulations.

While understanding the pumping mechanism of viscous liquids was the initial goal,
the work could be extended to use the flow below the boundary. This flow affects the
strength of the bubble collapse as some of the kinetic energy is used for the transport in
the micro-channels. For example, a perforated plate with through-holes that are filled with
an immiscible and sufficiently viscous liquid may dissipate some of the kinetic energy
and therefore reduce the energy available that is focused during the near boundary bubble
collapse. This may reduce cavitation erosion, as was discussed already for perforated plates
containing gas (see Gonzalez-Avila et al. 2020). Also, we speculate that emulsification
of liquids in an ultrasonic bath where two liquids are separated by a perforated plate
could benefit from the here found reverse jet. Another point of interest is the jet and spray
produced by the bubble if the domain on the opposite side of the perforated wall is filled
with a gas instead of a liquid. Potential applications include needleless micro-injections
via a fast liquid jet in air and jet-based printing.

Supplementary material and movies. Videos of the numerical and experimental results as well as the code
of the numerical solver CAVBUBBLEFOAM and an example simulation case can be found as supplementary
material to this article.

Supplementary material and movies are available at https://doi.org/10.1017/jfm.2022.480.
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Appendix A. Verification of the simulations

Figure 17(a) shows a comparison between the Volume-of-Fluid simulation of a freely
oscillating (unbound) bubble and the prediction of the Keller–Miksis equation with equal
maximum bubble radius Rmax = 470 μm. It was done for a geometry of dimensions
100 mm × 50 mm, which is tenfold larger than what was used for the rest of this work
to avoid shock wave reflections at the outer boundaries of the simulation geometry. It
shows excellent agreement for the first oscillation period. Since the collapse of the bubble
in the VoF simulation is not perfectly spherical due to asphericities in the geometry and the
mesh grid, its second oscillation period shows a weaker expansion than the Keller–Miksis
equation predicts.

A mesh resolution dependence study is shown in figure 17(b), using the case of a bubble
near a perforated plate with the same geometric parameters as in figure 4(e–h). The grid
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Figure 17. (a) Comparison between a VoF simulation of a cavitation bubble far from any boundaries in a large
geometry (100 mm × 50 mm) and a solution of the Keller–Miksis equation for a radially oscillating bubble with
equal maximum bubble radius Rmax and (b) grid dependence study for the case of a bubble near a perforated
boundary for l = 1000 μm, rc = 50 μm, d = 500 μm.

resolution at the outer boundary of the geometry was kept constant, while the region
including the bubble and the channel were discretised using square cells with a width of 10,
5 and 2.5 μm. A cell width of 2.5 μm was used in the rest of this work. For a better direct
comparison between different cell sizes, a cylindrical bubble is seeded without interface
smearing, and the seed size is kept constant at a radius of 10 μm and a height of 20 μm. For
finer meshes, the bubble reaches a slightly larger maximum radius and exhibits a sharper
liquid–gas interface. The interface of the thin liquid film that forms between the bubble
and the wall after the first collapse is sharper with a finer mesh.

Appendix B. Estimation of the pumped volume

Here we aim to estimate the pumped volume in dependence of the liquid viscosity μ and
the channel radius rc in general form including later times than the simulation covers,
i.e. t > 200 μs. We neglect the driving force associated with the bubble dynamics. The
laminar volumetric flow rate V̇ in a cylindrical channel is given via the Hagen–Poiseuille
equation (Pfitzner 1976):

V̇ = πr4
c�p

8μl
. (B1)

The pressure drop�p is in equilibrium with the viscous forces acting upon the fluid in the
channel. If the flow driving force taken away, viscosity decelerates the flowing liquid via

�p = −F
A

= −ρAlu̇
A

= −ρlV̈
πr2

c
, (B2)

turning (B1) into a differential equation for the flow rate V̇:

V̇ = −r2
cρ

8μ
V̈. (B3)

Equation (B3) is solved by

V̇(t) = exp
(

− 8μ
r2

cρ
t
)

V̇0. (B4)
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Integrating (B4) from t = 0 to t = ∞ gives the total pumped volume:

V = r2
cρ

8μ
V̇0 = πr4

cρ

8μ
u0. (B5)
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