SYMMETRIC COORDINATE SPACES AND SYMMETRIC BASES

WILLIAM RUCKLE

1. Introduction. In this paper properties of symmetric coordinate spaces and symmetric bases are investigated. Since a space which possesses a basis is essentially a space of sequences (12, p. 207), the interrelation of these two concepts naturally suggests itself.

Section 2 is a summary of the terminology and methods employed, which fall into four categories: (1) set theoretical properties of coordinate spaces such as symmetry and dual spaces; (2) the notion of FK and BK space (12, p. 202; 13); (3) the theory of the Schauder basis in F-space applied to the case when \mathfrak{E} (see § 2) is a basis for a coordinate space; (4) the concept of a sequential norm, which the author introduced in (7) to illustrate the underlying unity of the first three ideas.

In § 3 we examine a class of spaces which might be regarded as archetypal perfect symmetric spaces. We note that these spaces were introduced from a somewhat different viewpoint by W. L. C. Sargent in (8) and further studied by her in (9).

Some properties of a perfect symmetric space are discussed in § 4. The chief result here is Theorem 4.5, which states that every perfect symmetric BK space can be given an equivalent norm having a certain form.

In the final section we apply our work to a new proof of a result of Singer (11) concerning symmetric bases.

2. Preliminary observations. A coordinate space is a linear space, X, of scalar (real or complex) sequences with addition and scalar multiplication defined coordinatewise. We designate by e^i the *i*th coordinate vector, i.e. the sequence with 1 in the *i*th place and 0's elsewhere. The set $\{e^i: i = 1, 2, \ldots\}$ is denoted by \mathfrak{E} . Unless we specify otherwise we assume that $\mathfrak{E} \subseteq X$. The sequence whose *i*th term is t_i is written (t_i) or merely t.

The following concepts are of long standing (6; 5, p. 427).

Definition 2.1. For X a coordinate space: (a) X^{α} , the α -dual of X, is

$$\left\{y:\sum_{i=1}^{\infty} |x_i y_i| < \infty \text{ for each } x \in X
ight\}.$$

Received May 11, 1966.

(b) X^{β} , the β -dual of X, is

$$\left\{y:\sum_{i=1}^{\infty} x_i y_i \text{ converges for each } x \in X\right\}.$$

(c) X is perfect if $X^{\alpha\alpha} = X$.

(d) X is balanced (or normal) if $x \in X$ implies that $(a_i x_i) \in X$ for each $a \in m$, the space of all bounded sequences.

(e) X is symmetric if $x \in X$ implies that $x^{\pi} \in X$ for each permutation π on the non-negative integers where $(x_i)^{\pi} = (x_{\pi(i)})$.

The results summarized in the following proposition are widely known (3; 5; 6).

PROPOSITION 2.2. (a) X^{α} is balanced and perfect for every coordinate space X. (b) If X is symmetric, X^{α} is symmetric.

(c) If X is perfect and symmetric, then $X = R^{\infty}$, the space of all finite sequences, or X = s, the space of all sequences or $l^1 \subseteq X \subseteq m$.

Definition 2.3. The symmetric dual, X^{σ} , of a coordinate space X is

 $\left\{y:\sum_{i=1}^{\infty}|y_{i}x_{\pi(i)}|<\infty ext{ for each }x\in X ext{ and each permutation }\pi ext{ on the }
ight.$

positive integers .

PROPOSITION 2.4. If X is symmetric, $X^{\sigma} = X^{\alpha}$.

Proof. For π a permutation on the positive integers, let $X_{\pi} = \{x^{\pi}: x \in X\}$. Then $X^{\sigma} = \bigcap \{X_{\pi}^{\alpha}: \text{ all } \pi\}$, but if X is symmetric, $X_{\pi} = X$ for each π , so $X^{\sigma} = X^{\alpha}$.

Definition 2.5. A coordinate space X is an FK space if X is an F-space (complete linear metric space) and the linear functionals defined by $f_i(x) = x_i$ are continuous.

An FK space which is a Banach space is called a BK space (12, § 11.3).

Definition 2.6. A sequential norm is a function, N, from s into R^* which satisfies the following conditions:

- (1) N is an extended norm, i.e.,
 - (a) $N(x + y) \le N(x) + N(y)$,
 - (b) N(ax) = |a|N(x) for each scalar a,
 - (c) $N(x) \ge 0$, N(x) = 0 if and only if x = 0.
- (2) $N(e_i) < \infty$ for each *i*.
- (3) $N(x) = \sup_n N(P_n x)$, where

$$P_n x = \sum_{i=1}^n x_i e_i.$$

If in addition N satisfies

(4) $0 < \inf_n N(e_n) \leq \sup_n N(e_n) < \infty$,

N is a proper sequential norm.

For a coordinate space X on which a topology has been fixed we shall write X^0 for the closed linear span of \mathfrak{E} in X.

The concept of a proper sequential norm (p.s.n.) was introduced and studied in (7). If N is a p.s.n., the set S_N of all x for which $N(x) < \infty$ is a BK space with norm N, and \mathfrak{E} is a basis for S_N^0 (7, Theorem 2.2). Conversely, if $\mathfrak{X} = \{x_1, x_2, \ldots\}$ is a basic sequence in a Banach space which is bounded in norm away from 0 and ∞ , we can find a p.s.n. N such that \mathfrak{X} is equivalent (1, 2) to the basic sequence \mathfrak{E} in S_N ; namely, let

$$N(t) = \sup_{n} \left\| \sum_{i=1}^{n} t_{i} x_{i} \right\|.$$

Definition 2.7. The conjugate p.s.n. of a p.s.n. N is the function from s into R^* given by

$$N'(y) = \sup \left\{ \sup_{n} \left| \sum_{i=1}^{n} x_i y_i \right| : N(x) \leqslant 1 \right\}.$$

By (7, Theorem 3.2), N' is a p.s.n. and the conjugate space of S_N^0 , $(S_N^0)^*$ is isometric to $S_{N'}$ under the correspondence of f in $(S_N^0)^*$ to $(f(e^i))$ in $S_{N'}$, and

$$f(x) = \sum_{i=1}^{\infty} x_i f(e^i) \quad \text{for each } x \text{ in } S_N^0.$$

Definition 2.8. A p.s.n., N, is balanced

if $N(x) = \sup \{N(a_i, x_i) : |a_i| \le 1\}$ for each x in s.

Definition 2.9. A p.s.n., N, is symmetric if $N(x) = N(x^{\pi})$ for each permutation π on the positive integers.

For N a p.s.n. we have $S_{N'} = (S_N^0)^{\beta}$ (7, Corollary 3.3) and if N is a balanced p.s.n., then $S_{N'} = (S_N^0)^{\alpha}$ (7, proof of Theorem 4.5).

PROPOSITION 2.10. (a) If $\{N_{\alpha}\}$ is a family of p.s.n.'s and there is a K > 0 such that $\sup_{\alpha} N_{\alpha}(e_i) < K$ for each i, then $\sup_{\alpha} N_{\alpha}$ is a p.s.n.

(b) If each N_{α} is balanced (symmetric) and $\sup_{\alpha} N_{\alpha}$ is a p.s.n., then $\sup_{\alpha} N_{\alpha}$ is balanced (symmetric).

Proof. (a) Let $N = \sup_{\alpha} N_{\alpha}$ By hypotheses $\sup_{i} N(e_{i}) \leq K < \infty$ and since N is a sup, $\inf_{i} N(e_{i}) > 0$. We shall verify condition (3) of Definition 2.6. The proof of the norm condition is analogous.

$$N(x) = \sup_{\alpha} N_{\alpha}(x) = \sup_{\alpha} \sup_{n} N_{\alpha}(P_{n} x)$$

= sup_n sup_{\alpha} N_{\alpha}(P_n x) = sup_n N(P_n x).

(b) The proof that N is balanced (symmetric) if each N_{α} is balanced (symmetric) is also obtained by permuting sup operators.

3. The first and second symmetric duals of a sequence.

Definition 3.1. The symmetric dual of a sequence x is

$$x^{\sigma} = \left\{ y \colon \sum_{i=1}^{\infty} |x_{\pi(i)} y_i| < \infty \text{ for each } \pi \right\}.$$

PROPOSITION 3.2. (a) $y \in x^{\sigma}$ if and only if $x \in y^{\sigma}$. (b) x is unbounded if and only if $x^{\sigma} = R^{\infty}$. (c) $x \in R^{\infty}$ if and only if $x^{\sigma} = s$. (d) $x \in l^{1} \sim R^{\infty}$ if and only if $x^{\sigma} = m$. (e) If $x \in m \sim c_{0}$, $x^{\sigma} = l^{1}$.

Proof. (a) Obvious.

(b) First note that x^{σ} is perfect and symmetric so that by 2.2(c) x^{σ} is either s, R^{∞} , or $l^{1} \subseteq x^{\sigma} \subseteq m$. For every x, $R^{\infty} \subseteq x^{\sigma}$. If x is not bounded, then there is a y in l^{1} such that $\sum_{c=1}^{\infty} |x_{i} y_{i}|$ does not converge since $(l^{1})^{\alpha} = m$. This implies that $x^{\sigma} \subset l^{1}$ properly, so $x^{\sigma} = R^{\infty}$. If $x \in m$, $x^{\sigma} \supseteq m^{\sigma} = l^{1}$, so if $x^{\sigma} = R^{\infty}$, x is unbounded.

(c) If $x \in R^{\infty}$, then $x^{\sigma} = s$ by (a) and (b). If $x^{\sigma} = s$, then $x \in y^{\sigma}$ for each $y \in s$ so by (a) $x \in R^{\infty}$.

(d) If $x \in l^1 \sim R^{\infty}$, we have $x^{\sigma} \subset s$ properly, but $x^{\sigma} \supseteq (l^1)^{\sigma} = m$. Thus $x^{\sigma} = m$. If $x^{\sigma} = m$, then $\sum_{i=1}^{\infty} |x_i|$ converges since $(1, 1, \ldots)$ is in m.

(e) If $x \in m \sim c_0$, there is a subsequence x' of x such that

$$\inf_n |x'_n| = \epsilon > 0$$

Then $x^{\sigma} \subseteq x'^{\sigma} \subseteq l^1$ and $x^{\sigma} \supseteq m^{\sigma} = l^1$.

In the following we shall derive the converse of (e). In view of Proposition 3.2 we shall restrict our attention to the σ -dual of a sequence x which is in c_0 but not in l^1 .

Definition 3.3. The reduced form of a sequence $x \in c_0$ is the sequence $\hat{x} = (\hat{x}_1, \hat{x}_2, \hat{x}_3, \ldots)$ in which $\hat{x}_1, \hat{x}_2, \hat{x}_3, \ldots$ exhaust the non-zero values assumed by $|x_1|, |x_2|, |x_3|, \ldots$ allowing repeated values and $\hat{x}_1 \ge \hat{x}_2 \ge \hat{x}_3 \ge \ldots$. A sequence x is in reduced form if $x = \hat{x}$.

If $x \in c_0$, then $x^{\sigma} = \hat{x}^{\sigma}$ so that whenever we consider the space x^{σ} we may assume x is in reduced form.

THEOREM 3.4. Given a sequence x in $c_0 \sim l^1$ define

$$Q(y) = \sup_{\pi} \sum_{i=1}^{\infty} |x_{\pi(i)} y_i|;$$

WILLIAM RUCKLE

then Q is a proper, balanced, symmetric, sequential norm, $S_Q = S_Q^0 = x^{\sigma}$, and

(1)
$$Q(y) = \sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i \quad \text{for } y \in c_0,$$
$$= \infty \quad \text{for } y \notin c_0.$$

Proof. By hypothesis $Q(y) = \sup_{\pi} N_{\pi}(y)$, where

$$N_{\pi}(y) = \sum_{i=1}^{\infty} |x_{\pi(i)} y_i|.$$

Note that N_{π} is an extended seminorm for each π and has the property that $N_{\pi}(y) = \sup_{n} N_{\pi}(P_{n} y)$. Thus Q is an extended seminorm and has the property that $Q(y) = \sup_{n} Q(P_{n} y)$. It is obvious that Q is a norm and that $Q(e_{i}) = \sup_{n} |x_{n}|$ for each i. Thus Q is a proper sequential norm.

Next we shall verify the equality (1). If $y \notin c_0$, $y^{\sigma} \subset l^1$ so that $x \notin y^{\sigma}$, which implies that $Q(y) = \infty$. If $y \in c_0$, then for each *n* there is a rearrangement $\hat{y}_{\phi(1)}, \hat{y}_{\phi(2)}, \ldots, \hat{y}_{\phi(n)}$ of $\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n$ such that $\hat{y}_{\phi(i)} \ge |y_{\pi(i)}|$ for $i \le n$, for π a given permutation. Since $\hat{x}_1 \ge \hat{x}_2 \ge \ldots \ge \hat{x}_n$ and $\hat{y}_1 \ge \hat{y}_2 \ge \ldots \ge \hat{y}_n$,

$$\sum_{i=1}^n \hat{x}_i \hat{y}_i \geqslant \sum_{i=1}^n |x_i \hat{y}_{\phi(i)}| \geqslant \sum_{i=1}^n |x_i y_{\pi(i)}|.$$

Therefore,

$$\sum_{i=1}^{\infty} \hat{x}_i \, \hat{y}_i \geqslant Q(y).$$

On the other hand, for each *n* there are permutations π and ϕ such that $|y_{\pi(i)}| = \hat{y}_i$ and $|x_{\phi(i)}| = \hat{x}_i$ for $i \leq n$. Given $\epsilon > 0$, let *n* be such that

$$\sum_{i=1}^n \hat{x}_i \, \hat{y}_i + \epsilon > \sum_{i=1}^\infty \hat{x}_i \, \hat{y}_i,$$

and let π and ϕ correspond to this *n*. Then

$$Q(y) \geqslant \sum_{i=1}^{\infty} |x_i y_{\phi^{-1}\pi(i)}| \geqslant \sum_{i=1}^{n} |x_{\phi(i)} y_{\pi(i)}|$$
$$\geqslant \sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i + \epsilon.$$

Therefore

$$Q(y) \geqslant \sum_{i=1}^{\infty} \hat{x}_i \, \hat{y}_i.$$

The validity of (1) implies that Q is balanced and symmetric, and that $S_Q = \hat{x}^{\sigma} = x^{\sigma}$. In order to show that $S_Q = S_Q^0$ we first prove the following lemma.

LEMMA 3.5. If Q is a symmetric balanced sequential norm, S_Q and S_Q^0 are symmetric spaces.

https://doi.org/10.4153/CJM-1967-077-9 Published online by Cambridge University Press

Proof. Since Q is symmetric, it is obvious that S_Q is symmetric. Since

$$Q\left(\sum_{i=1}^{n} t_{i} e_{i}\right) = Q\left(\sum_{i=1}^{n} t_{i} e_{\pi^{-1}(i)}\right)$$

for each *n* and each π , $e_{\pi^{-1}(i)}$ is a basis for S_Q^0 equivalent to \mathfrak{E} so that $\sum_{i=1}^{\infty} t_i e_i$ converges implies that $\sum_{i=1}^{\infty} t_i e_{\pi^{-1}(i)}$ converges. By the biorthogonality of the coefficient functionals

$$\sum_{i=1}^{\infty} t_i e_{\pi^{-1}(i)} = \sum_{i=1}^{\infty} t_{\pi(i)} e_i,$$

so that if $t \in S_Q^0$, so is t^{π} . Therefore, S_Q^0 is symmetric.

In view of Lemma 3.5 it suffices to prove that for each $y \in S_q$, $\mathfrak{F} \in S_q^0$. By the definition of S_q^0 , $\mathfrak{F} \in S_q^0$ if and only if

$$\lim_{n} Q(\hat{y} - P_{n} \hat{y}) = \lim_{n \to \infty} \hat{x}_{i} \hat{y}_{n+1} = 0.$$

We conclude the proof by showing that

$$\lim_{n}\sum_{i=1}^{\infty}\hat{x}_{i}\hat{y}_{n+i}=0$$

if $y \in x^{\sigma}$. Given $\epsilon > 0$, let N_1 be such that

$$\sum_{i=N_1+1}^{\infty} \hat{x}_i \, \hat{y}_i < \epsilon/2$$

Then

$$\sum_{i=N_1+1}^{\infty} \hat{x}_i \, \hat{y}_{n+i} < \sum_{i=N_1+1}^{\infty} \hat{x}_i \, \hat{y}_i < \epsilon/2 \qquad \text{for each } n.$$

Since $\lim_n \hat{y}_n = 0$, let N_2 be such that $n \ge N_2$ implies that

$$y_n < \epsilon \left/ \left(2 \sum_{i=1}^{N_1} \hat{x}_i \right) \right.$$

If $n \ge N_2$

$$\sum_{i=1}^{\infty} \hat{x}_i \, \hat{y}_{n+i} = \sum_{i=1}^{N_1} \hat{x}_i \, \hat{y}_{n+i} + \sum_{i=N_1+1}^{\infty} \hat{x}_i \, \hat{y}_{n+i}$$
$$\leqslant \left(\epsilon \middle/ 2\sum_{i=1}^{N_1} \hat{x}_i\right) \left(\sum_{i=1}^{N_1} \hat{x}_i\right) + \epsilon/2 = \epsilon.$$

Given $x \in c_0 \sim l^1$ we denote by Q_x the sequential norm defined in the previous theorem. If no ambiguity results, we shall simply write Q for Q_x .

Theorem 3.6. For $x \in c_0 \sim l^1$

$$Q'_x(y) = \sup_n \left(\sum_{i=1}^n \hat{y}_i\right) / \left(\sum_{i=1}^n \hat{x}_i\right).$$

Proof. By definition

$$Q'(\mathbf{y}) = \sup\left\{\sup_{n}\sum_{i=1}^{n}a_{i}y_{i}: Q(a) \leqslant 1\right\}$$
$$= \sup\left\{\sup_{n}\sum_{i=1}^{n}a_{i}y_{i}:\sum_{i=1}^{\infty}\hat{a}_{i}\hat{x}_{i} \leqslant 1\right\}$$
$$= \sup\left\{\sum_{i=1}^{\infty}\hat{a}_{i}\hat{y}_{i}:\sum_{i=1}^{\infty}\hat{a}_{i}\hat{x}_{i} \leqslant 1\right\}.$$

The last equality holds since

$$\left|\sum_{i=1}^n a_i y_i\right| \leqslant \sum_{i=1}^n \hat{a}_i \hat{y}_i \leqslant \sum_{i=1}^\infty \hat{a}_i \hat{y}_i.$$

If *m* is so large that $\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n$ are included in $\{|y_1|, |y_2|, \ldots, |y_m|\}$, let π be any permutation such that $\hat{y}_i = |y_{\pi(i)}| \ i \leq n$. Let $b_i = (\operatorname{sgn} y_i) \hat{a}_{\pi^{-1}(i)}$. Then $\hat{b} = \hat{a}$ and

$$\sum_{i=1}^{m} b_i y_i \geqslant \sum_{\pi(i) \leqslant m} b_{\pi(i)} y_{\pi(i)}$$
$$\geqslant \sum_{i \leqslant n} b_{\pi(i)} y_{\pi(i)}$$
$$= \sum_{i=1}^{n} \hat{a}_i |y_{\pi(i)}| = \sum_{i=1}^{n} \hat{a}_i \hat{y}_i.$$

Now

$$\begin{split} \sum_{n=1}^{n} \hat{a}_{i} \, \hat{y}_{i} &= \sum_{i=1}^{n-1} \left(\hat{a}_{i} - \hat{a}_{i+1} \right) \left(\sum_{j=1}^{i} \hat{y}_{j} \right) + \hat{a}_{n} \sum_{j=1}^{n} \hat{y}_{j} \\ &= \left[\sum_{i=1}^{n-1} \left(\hat{a}_{i} - \hat{a}_{i+1} \right) \right] \left[\sum_{j=1}^{i} \hat{y}_{j} \middle/ \sum_{j=1}^{i} \hat{x}_{j} \right] \sum_{j=1}^{i} \hat{x}_{j} \\ &+ \hat{a}_{n} \left[\sum_{j=1}^{n} \hat{y}_{j} \middle/ \sum_{j=1}^{n} \hat{x}_{j} \right] \sum_{j=1}^{n} \hat{x}_{j} \\ &\leq \sup_{n} \left(\sum_{i=1}^{n} \hat{y}_{i} \middle/ \sum_{i=1}^{n} \hat{x}_{i} \right) \left[\sum_{i=1}^{n-1} \left(\hat{a}_{i} - \hat{a}_{i+1} \right) \sum_{j=1}^{i} \hat{x}_{j} + \hat{a}_{n} \sum_{j=1}^{n} \hat{x}_{j} \right] \\ &= \sup_{n} \left(\sum_{i=1}^{n} \hat{y}_{i} \middle/ \sum_{i=1}^{n} \hat{x}_{i} \right) \sum_{i=1}^{n} \hat{a}_{i} \hat{x}_{i} \\ &\leqslant \sup_{n} \sum_{i=1}^{n} \hat{y}_{i} \middle/ \sum_{i=1}^{n} \hat{x}_{i} \end{split}$$

 $Q(a) = \sum_{i=1}^{\infty} \hat{a}_i \, \hat{x}_i \leqslant 1.$

if

On the other hand, if n is such that

$$\sum_{i=1}^{n} \hat{\mathcal{Y}}_{i} / \sum_{i=1}^{n} \hat{x}_{i} > \sup_{n} \sum_{i=1}^{n} \hat{\mathcal{Y}}_{i} / \sum_{i=1}^{n} \hat{x}_{i} - \epsilon,$$

then let

 $b_i = 1 \bigg/ \sum_{i=1}^n \hat{x}_i$

so that

$$\sum_{i=1}^{n} \hat{x}_{i} b_{i} = 1$$

while

$$\sum_{i=1}^{n} \hat{b}_{i} \hat{\mathcal{Y}}_{i} > \sup_{n} \sum_{i=1}^{n} \hat{\mathcal{Y}}_{i} / \sum_{i=1}^{n} \hat{x}_{i}.$$

In view of Theorems 5 and 7 we conclude that $x^{\sigma} = S_Q$ is the space $n\phi$ and $x^{\sigma\sigma} = S_Q$ is the space $m\phi$ studied by W. L. C. Sargent in (8) and (9), where

$$\phi_n = \sum_{i=1}^n \hat{x}_i.$$

The norm given by Sargent for $n\phi$ coincides with Q, but the norm she gave for $m\phi$ does not necessarily coincide with Q'.

The following proposition is Lemma 10 of (8) with a different proof.

PROPOSITION 3.7. $y^{\sigma} \supseteq x^{\sigma}$ if and only if

$$\sup_{n}\sum_{i=1}^{n}\hat{\mathcal{Y}}_{i} / \sum_{i=1}^{n}\hat{x}_{i} < \infty.$$

Proof. If

$$\sup_n \sum_{i=1}^n \hat{\mathcal{Y}}_i / \sum_{i=1}^n \hat{x}_i < \infty$$

then $y \in S_{Q'} = x^{\sigma\sigma}$. Thus $y^{\sigma} \supseteq x^{\sigma\sigma\sigma} = x^{\sigma}$. If $y^{\sigma} \supseteq x^{\sigma}$, then $y \in y^{\sigma\sigma} \subseteq S_{Q'}$ so that

$$\sup_n \sum_{i=1}^n \mathfrak{G}_i / \sum_{i=1}^n \hat{x}_i = Q'(y) < \infty.$$

PROPOSITION 3.8. $x_0^{\sigma\sigma} \neq x^{\sigma\sigma}$. (By $x_0^{\sigma\sigma}$ we mean the closed linear span of \mathfrak{E} in $x^{\sigma\sigma}$.)

Proof. Define f on $x^{\sigma\sigma}$ by

$$f(y) = \lim_{n \to \infty} \sum_{i=1}^{n} y_i / \sum_{i=1}^{n} \hat{x}_i, \quad n = 1, 2, \dots$$

Then $||f|| \leq 1$ and $f(e_1) = 0$ for each *i*. Since $f(\hat{x}) \notin x_0^{\sigma\sigma}$ although $\hat{x} \in x^{\sigma\sigma}$.

In view of the previous statement and Theorem 5.5 of (7) (see also (4, Lemmas 1 and 2)) we arrive at the following.

WILLIAM RUCKLE

PROPOSITION 3.9. (a) There is a closed subspace of $x^{\sigma\sigma}$ topologically isomorphic to m. (b) There is a closed subspace of $x^{\sigma\sigma}$ topologically isomorphic to c_0 . (c) There is a closed subspace of x^{σ} topologically isomorphic to l^1 . (d) The spaces x^{σ} , $x^{\sigma\sigma}$, and $x^{\sigma\sigma}$ are not reflexive.

In connection with the above proposition see (9, Theorems 8 and 9).

PROPOSITION 3.10. (converse of 3(e)). If $x^{\sigma} = l^1$, $x \in m \sim c_0$.

Proof. If $x^{\sigma} = l^1$, $x \in x^{\sigma\sigma} = m$. If $x \in c_0$,

$$\inf_{n}\sum_{i=1}^{n}\hat{x}_{i}/n = \lim_{n}\frac{1}{n}\sum_{i=1}^{n}\hat{x}_{i} = 0$$

so that $x^{\sigma} = (1, 1, 1, ...)^{\sigma} = l^{1}$ by Proposition 3.7.

4. Symmetric coordinate spaces. The following proposition is a generalization of (8, Lemma 12d).

PROPOSITION 4.1. If X is any perfect symmetric space, then

$$X = \bigcup \{ x^{\sigma\sigma} \colon x \in X \} = \bigcup \{ x^{\sigma\sigma} \colon X^{\sigma} \supseteq X^{\sigma} \}$$
$$= \bigcap \{ x^{\sigma} \colon x \in X^{\sigma} \}.$$

Proof. If $x \in X$, then $x^{\sigma} \supseteq X^{\sigma}$, and if $x^{\sigma} \supseteq X^{\sigma}$, then $x^{\sigma\sigma} \subseteq X^{\sigma\sigma} = X$ so that $x \in X$ if and only if $x^{\sigma\sigma} \subseteq X$ and $x \in X$ if and only if $x^{\sigma} \supseteq X^{\sigma}$. This yields the first two equalities.

THEOREM 4.2. If X is a perfect symmetric BK space, there is a balanced, symmetric sequential norm N of the form

$$N(x) = \sup_{\alpha} \sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i^{(\alpha)}$$

for which $S_N = X$.

Proof. By 4.1, $X = \bigcap \{y^{\sigma} : y \in X^{\sigma}\}$. For each $y \in X^{\sigma}$, $y^{\sigma} \supseteq X$ so there is an $m_y > 0$ such that

$$m_y Q_y(x) \leqslant ||x||, \qquad x \in X,$$

where || || is the norm on X (12, p. 203). Note that

$$m_y Q_y(x) = \sum_{i=1}^{\infty} \widehat{m_y y_i} \hat{x}_i.$$

Let

$$N = \sup\{m_y \, Q_y \colon y \in X^{\sigma}\}.$$

Then N is a balanced symmetric p.s.n. by 2.10 and $N(x) \leq ||x||$ for $x \in X$ so that $S_N \supseteq X$. In order to apply 2.10 we observe that

$$m_y Q_y(e_i) = m_y Q_y(e_1) \leq ||e_1||$$
 for each *i*.

https://doi.org/10.4153/CJM-1967-077-9 Published online by Cambridge University Press

On the other hand, $S_N \subseteq x^{\sigma}$ for each $x \in X^{\sigma}$ so that $S_N \subseteq X$. Finally

$$N(x) = \sup \left\{ \sum_{i=1}^{\infty} \widehat{m_y y_i} \, \hat{x}_i \colon y \in X^{\sigma} \right\}.$$

5. Applications to symmetric bases. Recall the definition by Singer (10) that a basis $\{x_n\}$ of a Banach space X is symmetric if

(SB₁)
$$\sup_{\pi \in P} \sup_{\substack{i \in I \\ 1 \leq n < \infty}} \left\| \sum_{i=1}^{n} \delta_{i} f_{i}(x) x_{\pi(i)} \right\| < \infty$$

for all $x \in X$ where P denotes the set of all permutations on the positive integers and $\{f_n\}$ is the sequence of continuous linear functionals biorthogonal to $\{x_n\}$.

PROPOSITION 5.1. The basis $\mathfrak{X} = x_n$ of a Banach space X is symmetric if and only if $S_{\mathfrak{X}} = S_N^0$ for N a balanced, symmetric p.s.n., where

$$S_{\mathfrak{X}} = \left\{ t : \sum_{i=1}^{\infty} t_i x_i \text{ converges in } X \right\}.$$

Proof. If \mathfrak{X} is symmetric, define

$$N(t) = \sup_{\pi \in P} \sup_{\substack{|\delta_i| \leq 1 \\ 1 \leq n < \infty}} \left\| \sum_{i=1}^n \delta_i t x_{\sigma(i)} \right\|$$

Then N is a balanced, symmetric p.s.n. and by (SB₁) $S_{\mathfrak{X}} \subseteq S_N$. However, for $t \in S_{\mathfrak{X}}$, $N(t) \ge ||t||$, so $S_{\mathfrak{X}}$ is a closed subspace of S_N (12, p. 203), which implies that $S_{\mathfrak{X}} = S_N^0$.

If N is a balanced, symmetric p.s.n. and $S_N^0 = S$, then the norm || || defined on X by

$$\left\|\sum_{i=1}^{\infty}t_{i}x_{i}\right\| = N(t)$$

yields the original topology on X and has the property indicated in (SB_1) .

In (11), Singer proved that the following is equivalent to (SB_1) :

(SB₃) Every permutation $\{x_{\pi(n)}\}$ of the basis $\{x_n\}$ is a basis of X equivalent to the basis $\{x_n\}$.

We shall offer an alternative proof of the equivalence of (SB_1) and (SB_3) .

THEOREM 5.2. (SB_1) is equivalent to (SB_3) .

Proof. $(SB_1) \Rightarrow (SB_3)$. Let $\mathfrak{X} = \{x_n\}$ be a basis for a Banach space X which satisfies (SB_1) . Define a new norm || ||' on X by

$$||x||' = \sup_{\pi \in P} \sup_{\substack{i \, \delta_i \, | \, \delta_i \\ 1 \leq n < \infty}} \left\| \sum_{i=1}^n \delta_i f_i(x) x_{\pi(i)} \right\|.$$

Then || ||' is equivalent to || || and

$$\left\|\sum_{i=1}^{n} t_{i} x_{i}\right|' = \left\|\sum_{i=1}^{n} t_{i} x_{\pi(i)}\right\|'$$

for every *n* and every permutation π . Therefore, $\{x_n\}$ is an equivalent basis to $\{x_{\pi(n)}\}$ for every permutation π .

 $(SB_3) \Rightarrow (SB_1)$. If \mathfrak{X} satisfies (SB_3) , then $S_{\mathfrak{X}}$ is symmetric. To see this assume that $t \in S_{\mathfrak{X}}$ and π is any permutation on the positive integers. Then $\sum_{i=1}^{\infty} t_i x_i$ converges so that $\sum_{i=1}^{\infty} t_i x_{\pi^{-1}(i)}$ converges necessarily to $\sum_{i=1}^{\infty} t_{\pi(i)} x_i$ so that $t_{\pi} \in S_{\mathfrak{X}}$.

Since \mathfrak{X} is an unconditional basis for X, there is a balanced sequential norm such that $S_N^0 = S_{\mathfrak{X}}$. In fact, define N(t) to be

$$\sup\left\{\left\|\sum_{i=1}^{\infty}a_{i}t_{i}x_{i}\right\|:\left|a_{i}\right|\leqslant1\right\}.$$

Since S_N^0 is symmetric, so is $(S_N^0)^{\alpha\alpha} = S_N$. By Theorem 4.5 there is a balanced symmetric p.s.n. M such that $S_M = S_N$. Thus $S_M^0 = S_N^0 = S_{\mathfrak{X}}$, which implies that \mathfrak{X} satisfies (SB₁) by Proposition 5.1.

Added November 10, 1966. The author wishes to point out that many of the results in § 3 or generalizations thereof appear in the related work of D. J. H. Garling (14) of which he was unaware at the time of writing this paper.

References

- M. G. Arsove, Similar bases and isomorphisms in Fréchet spaces, Math. Ann., 135 (1958), 283-293.
- 2. C. Bassaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151–164.
- 3. R. G. Cooke, Infinite matrices and sequence spaces (Macmillan, 1950).
- 4. R. C. James, Bases and reflexivity in Banach spaces, Ann. of Math., 52 (1950), 518-527.
- 5. G. Köthe, Topologische lineare Räume, Vol. 1 (Berlin, 1960).
- 6. G. Köthe and O. Toeplitz, Lineare Räume mit unendlicher vielen Koordinaten und Ringe unendlicher Matrizen, J. für Math., 171 (1934), 193–226.
- 7. W. Ruckle, On the construction of sequence spaces that have Schauder bases, Can. J. Math., 18 (1966), 1281–1293.
- 8. W. L. C. Sargent, Some sequence spaces related to the l^p spaces, J. London Math. Soc., 35 (1960), 161–171.
- 9. —— On sectionally bounded BK-spaces, Math. Z., 83 (1964), 57-66.
- I. Singer, On Banach spaces with symmetric basis, Rev. Math. Pures Appl., 7 (1961), 159–166 (in Russian).
- Some characterizations of symmetric bases, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys., 10 (1962), 185–192.
- 12. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
- 13. K. Zeller, Abschnittskonvergenz in FK Raumen, Math. Z., 55 (1952), 55-70.
- D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc., (3), 16 (1966), 85–105.

Lehigh University, Bethlehem, Pennsylvania