SYMMETRIC COORDINATE SPACES AND SYMMETRIC BASES

WILLIAM RUCKLE

1. Introduction. In this paper properties of symmetric coordinate spaces and symmetric bases are investigated. Since a space which possesses a basis is essentially a space of sequences (12, p. 207), the interrelation of these two concepts naturally suggests itself.

Section 2 is a summary of the terminology and methods employed, which fall into four categories: (1) set theoretical properties of coordinate spaces such as symmetry and dual spaces; (2) the notion of FK and BK space (12, p. 202; 13); (3) the theory of the Schauder basis in F-space applied to the case when § (see § 2) is a basis for a coordinate space; (4) the concept of a sequential norm, which the author introduced in (7) to illustrate the underlying unity of the first three ideas.

In § 3 we examine a class of spaces which might be regarded as archetypal perfect symmetric spaces. We note that these spaces were introduced from a somewhat different viewpoint by W. L. C. Sargent in (8) and further studied by her in (9).

Some properties of a perfect symmetric space are discussed in §4. The chief result here is Theorem 4.5 , which states that every perfect symmetric BK space can be given an equivalent norm having a certain form.

In the final section we apply our work to a new proof of a result of Singer (11) concerning symmetric bases.
2. Preliminary observations. A coordinate space is a linear space, X, of scalar (real or complex) sequences with addition and scalar multiplication defined coordinatewise. We designate by e^{i} the i th coordinate vector, i.e. the sequence with 1 in the i th place and 0 's elsewhere. The set $\left\{e^{i}: i=1,2, \ldots\right\}$ is denoted by \mathfrak{E}. Unless we specify otherwise we assume that $\mathfrak{E} \subseteq X$. The sequence whose i th term is t_{i} is written (t_{i}) or merely t.

The following concepts are of long standing (6;5, p. 427).
Definition 2.1. For X a coordinate space:
(a) X^{α}, the α-dual of X, is

$$
\left\{y: \sum_{i=1}^{\infty}\left|x_{i} y_{i}\right|<\infty \text { for each } x \in X\right\} .
$$

Received May 11, 1966.
(b) X^{β}, the β-dual of X, is

$$
\left\{y: \sum_{i=1}^{\infty} x_{i} y_{i} \text { converges for each } x \in X\right\}
$$

(c) X is perfect if $X^{\alpha \alpha}=X$.
(d) X is balanced (or normal) if $x \in X$ implies that $\left(a_{i} x_{i}\right) \in X$ for each $a \in m$, the space of all bounded sequences.
(e) X is symmetric if $x \in X$ implies that $x^{\pi} \in X$ for each permutation π on the non-negative integers where $\left(x_{i}\right)^{\pi}=\left(x_{\pi(i)}\right)$.

The results summarized in the following proposition are widely known (3; $5 ; 6)$.

Proposition 2.2. (a) X^{α} is balanced and perfect for every coordinate space X.
(b) If X is symmetric, X^{α} is symmetric.
(c) If X is perfect and symmetric, then $X=R^{\infty}$, the space of all finite sequences, or $X=s$, the space of all sequences or $l^{1} \subseteq X \subseteq m$.

Definition 2.3. The symmetric dual, X^{σ}, of a coordinate space X is
$\left\{y: \sum_{i=1}^{\infty}\left|y_{i} x_{\pi(i)}\right|<\infty\right.$ for each $x \in X$ and each permutation π on the positive integers $\}$.

Proposition 2.4. If X is symmetric, $X^{\sigma}=X^{\alpha}$.
Proof. For π a permutation on the positive integers, let $X_{\pi}=\left\{x^{\pi}: x \in X\right\}$. Then $X^{\sigma}=\bigcap\left\{X_{\pi}{ }^{\alpha}\right.$: all $\left.\pi\right\}$, but if X is symmetric, $X_{\pi}=X$ for each π, so $X^{\sigma}=X^{\alpha}$.

Definition 2.5. A coordinate space X is an FK space if X is an F-space (complete linear metric space) and the linear functionals defined by $f_{i}(x)=x_{i}$ are continuous.

An FK space which is a Banach space is called a BK space (12, § 11.3).
Definition 2.6. A sequential norm is a function, N, from s into R^{*} which satisfies the following conditions:
(1) N is an extended norm, i.e.,
(a) $N(x+y) \leqslant N(x)+N(y)$,
(b) $N(a x)=|a| N(x)$ for each scalar a,
(c) $N(x) \geqslant 0, N(x)=0$ if and only if $x=0$.
(2) $N\left(e_{i}\right)<\infty$ for each i.
(3) $N(x)=\sup _{n} N\left(P_{n} x\right)$, where

$$
P_{n} x=\sum_{i=1}^{n} x_{i} e_{i} .
$$

If in addition N satisfies
(4) $0<\inf _{n} N\left(e_{n}\right) \leqslant \sup _{n} N\left(e_{n}\right)<\infty$,
N is a proper sequential norm.
For a coordinate space X on which a topology has been fixed we shall write X^{0} for the closed linear span of \mathbb{E} in X.

The concept of a proper sequential norm (p.s.n.) was introduced and studied in (7). If N is a p.s.n., the set S_{N} of all x for which $N(x)<\infty$ is a BK space with norm N, and \mathbb{C} is a basis for $S_{N}{ }^{0}$ (7, Theorem 2.2). Conversely, if $\mathfrak{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ is a basic sequence in a Banach space which is bounded in norm away from 0 and ∞, we can find a p.s.n. N such that \mathfrak{X} is equivalent $(\mathbf{1}, \mathbf{2})$ to the basic sequence © in S_{N}; namely, let

$$
N(t)=\sup _{n}\left\|\sum_{i=1}^{n} t_{i} x_{i}\right\| .
$$

Definition 2.7. The conjugate p.s.n. of a p.s.n. N is the function from s into R^{*} given by

$$
N^{\prime}(y)=\sup \left\{\sup _{n}\left|\sum_{i=1}^{n} x_{i} y_{i}\right|: N(x) \leqslant 1\right\} .
$$

By (7, Theorem 3.2), N^{\prime} is a p.s.n. and the conjugate space of $S_{N^{0}}{ }^{0}\left(S_{N}{ }^{0}\right)^{*}$ is isometric to $S_{N^{\prime}}$ under the correspondence of f in $\left(S_{N}{ }^{0}\right)^{*}$ to $\left(f\left(e^{i}\right)\right)$ in $S_{N^{\prime}}$, and

$$
f(x)=\sum_{i=1}^{\infty} x_{i} f\left(e^{i}\right) \quad \text { for each } x \text { in } S_{N}{ }^{0}
$$

Definition 2.8. A p.s.n., N, is balanced

$$
\text { if } N(x)=\sup \left\{N\left(a_{i}, x_{i}\right):\left|a_{i}\right| \leqslant 1\right\} \quad \text { for each } x \text { in } s
$$

Definition 2.9. A p.s.n., N, is symmetric if $N(x)=N\left(x^{\pi}\right)$ for each permutation π on the positive integers.

For N a p.s.n. we have $S_{N^{\prime}}=\left(S_{N}{ }^{0}\right)^{\beta}$ (7, Corollary 3.3) and if N is a balanced p.s.n., then $S_{N^{\prime}}=\left(S_{N}{ }^{0}\right)^{\alpha}$ (7, proof of Theorem 4.5).

Proposition 2.10. (a) If $\left\{N_{\alpha}\right\}$ is a family of p.s.n.'s and there is a $K>0$ such that $\sup _{\alpha} N_{\alpha}\left(e_{i}\right)<K$ for each i, then $\sup _{\alpha} N_{\alpha}$ is a p.s.n.
(b) If each N_{α} is balanced (symmetric) and $\sup _{\alpha} N_{\alpha}$ is a p.s.n., then $\sup _{\alpha} N_{\alpha}$ is balanced (symmetric).

Proof. (a) Let $N=\sup _{\alpha} N_{\alpha}$ By hypotheses $\sup _{i} N\left(e_{i}\right) \leqslant K<\infty$ and since N is a sup, $\inf _{i} N\left(e_{i}\right)>0$. We shall verify condition (3) of Definition 2.6. The proof of the norm condition is analogous.

$$
\begin{aligned}
N(x) & =\sup _{\alpha} N_{\alpha}(x)=\sup _{\alpha} \sup _{n} N_{\alpha}\left(P_{n} x\right) \\
& =\sup _{n} \sup _{\alpha} N_{\alpha}\left(P_{n} x\right)=\sup _{n} N\left(P_{n} x\right)
\end{aligned}
$$

(b) The proof that N is balanced (symmetric) if each N_{α} is balanced (symmetric) is also obtained by permuting sup operators.

3. The first and second symmetric duals of a sequence.

Definition 3.1. The symmetric dual of a sequence x is

$$
x^{\sigma}=\left\{y: \sum_{i=1}^{\infty}\left|x_{\pi(i)} y_{i}\right|<\infty \text { for each } \pi\right\} .
$$

Proposition 3.2. (a) $y \in x^{\sigma}$ if and only if $x \in y^{\sigma}$.
(b) x is unbounded if and only if $x^{\sigma}=R^{\infty}$.
(c) $x \in R^{\infty}$ if and only if $x^{\sigma}=s$.
(d) $x \in l^{1} \sim R^{\infty}$ if and only if $x^{\sigma}=m$.
(e) If $x \in m \sim c_{0}, x^{\sigma}=l^{1}$.

Proof. (a) Obvious.
(b) First note that x^{σ} is perfect and symmetric so that by 2.2 (c) x^{σ} is either s, R^{∞}, or $l^{1} \subseteq x^{\sigma} \subseteq m$. For every $x, R^{\infty} \subseteq x^{\sigma}$. If x is not bounded, then there is a y in l^{1} such that $\sum_{c=1}^{\infty}\left|x_{i} y_{i}\right|$ does not converge since $\left(l^{1}\right)^{\alpha}=m$. This implies that $x^{\sigma} \subset l^{1}$ properly, so $x^{\sigma}=R^{\infty}$. If $x \in m, x^{\sigma} \supseteq m^{\sigma}=l^{1}$, so if $x^{\sigma}=R^{\infty}, x$ is unbounded.
(c) If $x \in R^{\infty}$, then $x^{\sigma}=s$ by (a) and (b). If $x^{\alpha}=s$, then $x \in y^{\sigma}$ for each $y \in s$ so by (a) $x \in R^{\infty}$.
(d) If $x \in l^{1} \sim R^{\infty}$, we have $x^{\sigma} \subset s$ properly, but $x^{\sigma} \supseteq\left(l^{1}\right)^{\sigma}=m$. Thus $x^{\sigma}=m$. If $x^{\sigma}=m$, then $\sum_{i=1}^{\infty}\left|x_{i}\right|$ converges since $(1,1, \ldots)$ is in m.
(e) If $x \in m \sim c_{0}$, there is a subsequence x^{\prime} of x such that

$$
\inf _{n}\left|x_{n}^{\prime}\right|=\epsilon>0
$$

Then $x^{\sigma} \subseteq x^{\prime \sigma} \subseteq l^{1}$ and $x^{\sigma} \supseteq m^{\sigma}=l^{1}$.
In the following we shall derive the converse of (e). In view of Proposition 3.2 we shall restrict our attention to the σ-dual of a sequence x which is in c_{0} but not in l.

Definition 3.3. The reduced form of a sequence $x \in c_{0}$ is the sequence $\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \ldots\right)$ in which $\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \ldots$ exhaust the non-zero values assumed by $\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots$ allowing repeated values and $\hat{x}_{1} \geqslant \hat{x}_{2} \geqslant \hat{x}_{3} \geqslant \ldots$.

A sequence x is in reduced form if $x=\hat{x}$.
If $x \in c_{0}$, then $x^{\sigma}=\hat{x}^{\sigma}$ so that whenever we consider the space x^{σ} we may assume x is in reduced form.

Theorem 3.4. Given a sequence x in $c_{0} \sim l^{1}$ define

$$
Q(y)=\sup _{\pi} \sum_{i=1}^{\infty}\left|x_{\pi(i)} y_{i}\right|:
$$

then Q is a proper, balanced, symmetric, sequential norm, $S_{Q}=S_{Q}{ }^{0}=x^{\sigma}$, and

$$
\begin{align*}
Q(y) & =\sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i} & & \text { for } y \in c_{0}, \tag{1}\\
& =\infty & & \text { for } y \notin c_{0} .
\end{align*}
$$

Proof. By hypothesis $Q(y)=\sup _{\pi} N_{\pi}(y)$, where

$$
N_{\pi}(y)=\sum_{i=1}^{\infty}\left|x_{\pi(i)} y_{i}\right|
$$

Note that N_{π} is an extended seminorm for each π and has the property that $N_{\pi}(y)=\sup _{n} N_{\pi}\left(P_{n} y\right)$. Thus Q is an extended seminorm and has the property that $Q(y)=\sup _{n} Q\left(P_{n} y\right)$. It is obvious that Q is a norm and that $Q\left(e_{i}\right)=\sup _{n}\left|x_{n}\right|$ for each i. Thus Q is a proper sequential norm.

Next we shall verify the equality (1). If $y \notin c_{0}, y^{\sigma} \subset l^{1}$ so that $x \notin y^{\sigma}$, which implies that $Q(y)=\infty$. If $y \in c_{0}$, then for each n there is a rearrangement $\hat{y}_{\phi(1)}, \hat{y}_{\phi(2)}, \ldots, \hat{y}_{\phi(n)}$ of $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{n}$ such that $\hat{y}_{\phi(i)} \geqslant\left|y_{\pi(i)}\right|$ for $i \leqslant n$, for π a given permutation. Since $\hat{x}_{1} \geqslant \hat{x}_{2} \geqslant \ldots \geqslant \hat{x}_{n}$ and $\hat{y}_{1} \geqslant \hat{y}_{2} \geqslant \ldots \geqslant \hat{y}_{n}$,

$$
\sum_{i=1}^{n} \hat{x}_{i} \hat{y}_{i} \geqslant \sum_{i=1}^{n}\left|x_{i} \hat{y}_{\phi(i)}\right| \geqslant \sum_{i=1}^{n}\left|x_{i} y_{\pi(i)}\right| .
$$

Therefore,

$$
\sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i} \geqslant Q(y)
$$

On the other hand, for each n there are permutations π and ϕ such that $\left|y_{\pi(i)}\right|=\hat{y}_{i}$ and $\left|x_{\phi(i)}\right|=\hat{x}_{i}$ for $i \leqslant n$. Given $\epsilon>0$, let n be such that

$$
\sum_{i=1}^{n} \hat{x}_{i} \hat{y}_{i}+\epsilon>\sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i}
$$

and let π and ϕ correspond to this n. Then

$$
\begin{aligned}
Q(y) & \geqslant \sum_{i=1}^{\infty}\left|x_{i} y_{\phi^{-1} \pi(i)}\right| \geqslant \sum_{i=1}^{n}\left|x_{\phi(i)} y_{\pi(i)}\right| \\
& \geqslant \sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i}+\epsilon
\end{aligned}
$$

Therefore

$$
Q(y) \geqslant \sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i} .
$$

The validity of (1) implies that Q is balanced and symmetric, and that $S_{Q}=\hat{x}^{\sigma}=x^{\sigma}$. In order to show that $S_{Q}=S_{Q}{ }^{0}$ we first prove the following lemma.

Lemma 3.5. If Q is a symmetric balanced sequential norm, S_{Q} and $S_{Q}{ }^{0}$ are symmetric spaces.

Proof. Since Q is symmetric, it is obvious that S_{Q} is symmetric. Since

$$
Q\left(\sum_{i=1}^{n} t_{i} e_{i}\right)=Q\left(\sum_{i=1}^{n} t_{i} e_{\pi^{-1}(i)}\right)
$$

for each n and each $\pi, e_{\pi-1(i)}$ is a basis for $S_{Q}{ }^{0}$ equivalent to \mathbb{E} so that $\sum_{i=1}^{\infty} t_{i} e_{i}$ converges implies that $\sum_{i=1}^{\infty} t_{i} e_{\pi^{-1}(i)}$ converges. By the biorthogonality of the coefficient functionals

$$
\sum_{i=1}^{\infty} t_{i} e_{\pi^{-1}(i)}=\sum_{i=1}^{\infty} t_{\pi(i)} e_{i},
$$

so that if $t \in S_{Q}{ }^{0}$, so is t^{π}. Therefore, $S_{Q}{ }^{0}$ is symmetric.
In view of Lemma 3.5 it suffices to prove that for each $y \in S_{Q}, \hat{y} \in S_{Q}{ }^{0}$. By the definition of $S_{Q}{ }^{0}, \hat{y} \in S_{Q}{ }^{0}$ if and only if

$$
\lim _{n} Q\left(\hat{y}-P_{n} \hat{y}\right)=\lim _{n} \sum_{i=n}^{\infty} \hat{x}_{i} \hat{y}_{n+1}=0
$$

We conclude the proof by showing that

$$
\lim _{n} \sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{n+i}=0
$$

if $y \in x^{\sigma}$. Given $\epsilon>0$, let N_{1} be such that

$$
\sum_{i=N_{1}+1}^{\infty} \hat{x}_{i} \hat{y}_{i}<\epsilon / 2
$$

Then

$$
\sum_{i=N_{1}+1}^{\infty} \hat{x}_{i} \hat{y}_{n+i}<\sum_{i=N_{1}+1}^{\infty} \hat{x}_{i} \hat{y}_{i}<\epsilon / 2 \quad \text { for each } n
$$

Since $\lim _{n} \hat{y}_{n}=0$, let N_{2} be such that $n \geqslant N_{2}$ implies that

$$
y_{n}<\epsilon /\left(2 \sum_{i=1}^{N_{1}} \hat{x}_{i}\right) .
$$

If $n \geqslant N_{2}$

$$
\begin{aligned}
\sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{n+i} & =\sum_{i=1}^{N_{1}} \hat{x}_{i} \hat{y}_{n+i}+\sum_{i=N_{1}+1}^{\infty} \hat{x}_{i} \hat{y}_{n+i} \\
& \leqslant\left(\epsilon / 2 \sum_{i=1}^{N_{1}} \hat{x}_{i}\right)\left(\sum_{i=1}^{N_{1}} \hat{x}_{i}\right)+\epsilon / 2=\epsilon
\end{aligned}
$$

Given $x \in c_{0} \sim l^{1}$ we denote by Q_{x} the sequential norm defined in the previous theorem. If no ambiguity results, we shall simply write Q for Q_{x}.

Theorem 3.6. For $x \in c_{0} \sim l^{1}$

$$
Q^{\prime}{ }_{x}(y)=\sup _{n}\left(\sum_{i=1}^{n} \hat{y}_{i}\right) /\left(\sum_{i=1}^{n} \hat{x}_{i}\right) .
$$

Proof. By definition

$$
\begin{aligned}
Q^{\prime}(y) & =\sup \left\{\sup _{n} \sum_{i=1}^{n} a_{i} y_{i}: Q(a) \leqslant 1\right\} \\
& =\sup \left\{\sup _{n} \sum_{i=1}^{n} a_{i} y_{i}: \sum_{i=1}^{\infty} \hat{a}_{i} \hat{x}_{i} \leqslant 1\right\} \\
& =\sup \left\{\sum_{i=1}^{\infty} \hat{a}_{i} \hat{y}_{i}: \sum_{i=1}^{\infty} \hat{a}_{i} \hat{x}_{i} \leqslant 1\right\} .
\end{aligned}
$$

The last equality holds since

$$
\left|\sum_{i=1}^{n} a_{i} y_{i}\right| \leqslant \sum_{i=1}^{n} \hat{a}_{i} \hat{y}_{i} \leqslant \sum_{i=1}^{\infty} \hat{a}_{i} \hat{y}_{i} .
$$

If m is so large that $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{n}$ are included in $\left\{\left|y_{1}\right|,\left|y_{2}\right|, \ldots,\left|y_{m}\right|\right\}$, let π be any permutation such that $\hat{y}_{i}=\left|y_{\pi(i)}\right| i \leqslant n$. Let $b_{i}=\left(\operatorname{sgn} y_{i}\right) \hat{a}_{\pi^{-1}(i)}$. Then $\hat{b}=\hat{a}$ and

$$
\begin{aligned}
\sum_{i=1}^{m} b_{i} y_{i} & \geqslant \sum_{\pi(i) \leqslant m} b_{\pi(i)} y_{\pi(i)} \\
& \geqslant \sum_{i \leqslant n} b_{\pi(i)} y_{\pi(i)} \\
& =\sum_{i=1}^{n} \hat{a}_{i}\left|y_{\pi(i)}\right|=\sum_{i=1}^{n} \hat{a}_{i} \hat{y}_{i} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\sum_{n=1}^{n} \hat{a}_{i} \hat{y}_{i} & =\sum_{i=1}^{n-1}\left(\hat{a}_{i}-\hat{a}_{i+1}\right)\left(\sum_{j=1}^{i} \hat{y}_{j}\right)+\hat{a}_{n} \sum_{j=1}^{n} \hat{y}_{j} \\
= & {\left[\sum_{i=1}^{n-1}\left(\hat{a}_{i}-\hat{a}_{i+1}\right)\right]\left[\sum_{j=1}^{i} \hat{y}_{j} / \sum_{j=1}^{i} \hat{x}_{j}\right] \sum_{j=1}^{i} \hat{x}_{j} } \\
& +\hat{a}_{n}\left[\sum_{j=1}^{n} \hat{y}_{j} / \sum_{j=1}^{n} \hat{x}_{j}\right] \sum_{j=1}^{n} \hat{x}_{j} \\
\leqslant & \sup _{n}\left(\sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}\right)\left[\sum_{i=1}^{n-1}\left(\hat{a}_{i}-\hat{a}_{i+1}\right) \sum_{j=1}^{i} \hat{x}_{j}+\hat{a}_{n} \sum_{j=1}^{n} \hat{x}_{j}\right] \\
= & \sup _{n}\left(\sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}\right) \sum_{i=1}^{n} \hat{a}_{i} \hat{x}_{i} \\
\leqslant & \sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}
\end{aligned}
$$

if

$$
Q(a)=\sum_{i=1}^{\infty} \hat{a}_{i} \hat{x}_{i} \leqslant 1 .
$$

On the other hand, if n is such that

$$
\sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}>\sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}-\epsilon
$$

then let

$$
b_{i}=1 / \sum_{i=1}^{n} \hat{x}_{i}
$$

so that

$$
\sum_{i=1}^{n} \hat{x}_{i} b_{i}=1
$$

while

$$
\sum_{i=1}^{n} \hat{b}_{i} \hat{y}_{i}>\sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i} .
$$

In view of Theorems 5 and 7 we conclude that $x^{\sigma}=S_{Q}$ is the space $n \phi$ and $x^{\sigma \sigma}=S_{Q}$ is the space $m \phi$ studied by W. L. C. Sargent in (8) and (9), where

$$
\phi_{n}=\sum_{i=1}^{n} \hat{x}_{i} .
$$

The norm given by Sargent for $n \phi$ coincides with Q, but the norm she gave for $m \phi$ does not necessarily coincide with Q^{\prime}.

The following proposition is Lemma 10 of (8) with a different proof.
Proposition 3.7. $y^{\sigma} \supseteq x^{\sigma}$ if and only if

$$
\sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}<\infty .
$$

Proof. If

$$
\sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}<\infty,
$$

then $y \in S_{Q^{\prime}}=x^{\sigma \sigma}$. Thus $y^{\sigma} \supseteq x^{\sigma \sigma \sigma}=x^{\sigma}$.
If $y^{\sigma} \supseteq x^{\sigma}$, then $y \in y^{\sigma \sigma} \subseteq S_{Q^{\prime}}$ so that

$$
\sup _{n} \sum_{i=1}^{n} \hat{y}_{i} / \sum_{i=1}^{n} \hat{x}_{i}=Q^{\prime}(y)<\infty .
$$

Proposition 3.8. $x_{0}{ }^{\sigma \sigma} \neq x^{\sigma \sigma}$. (By $x_{0}{ }^{\sigma \sigma}$ we mean the closed linear span of \mathbb{E} in $x^{\sigma \sigma}$.)

Proof. Define f on $x^{\sigma \sigma}$ by

$$
f(y)=\lim _{n} \sum_{i=1}^{n} y_{i} / \sum_{i=1}^{n} \hat{x}_{i}, \quad n=1,2, \ldots
$$

Then $\|f\| \leqslant 1$ and $f\left(e_{1}\right)=0$ for each i. Since $f(\hat{x}) \notin x_{0}{ }^{\sigma \sigma}$ although $\hat{x} \in x^{\sigma \sigma}$.
In view of the previous statement and Theorem 5.5 of (7) (see also (4, Lemmas 1 and 2)) we arrive at the following.

Proposition 3.9. (a) There is a closed subspace of $x^{\sigma \sigma}$ topologically isomorphic to m . (b) There is a closed subspace of $x_{0}{ }^{\sigma \sigma}$ topologically isomorphic to c_{0}. (c) There is a closed subspace of x^{σ} topologically isomorhphc to l^{1}. (d) The spaces $x^{\sigma}, x^{\sigma \sigma}$, and $x_{0}{ }^{\sigma \sigma}$ are not reflexive.

In connection with the above proposition see (9 , Theorems 8 and 9).
Proposition 3.10. (converse of $3(\mathrm{e})$). If $x^{\sigma}=l^{1}, x \in m \sim c_{0}$.
Proof. If $x^{\sigma}=l^{1}, x \in x^{\sigma \sigma}=m$. If $x \in c_{0}$,

$$
\inf _{n} \sum_{i=1}^{n} \hat{x}_{i} / \mathrm{n}=\lim _{n} \frac{1}{n} \sum_{i=1}^{n} \hat{x}_{i}=0
$$

so that $x^{\sigma}=(1,1,1, \ldots)^{\sigma}=l^{1}$ by Proposition 3.7.
4. Symmetric coordinate spaces. The following proposition is a generalization of (8, Lemma 12d).

Proposition 4.1. If X is any perfect symmetric space, then

$$
\begin{aligned}
X & =\bigcup\left\{x^{\sigma \sigma}: x \in X\right\}=\bigcup\left\{x^{\sigma \sigma}: X^{\sigma} \supseteq X^{\sigma}\right\} \\
& =\bigcap\left\{x^{\sigma}: x \in X^{\sigma}\right\} .
\end{aligned}
$$

Proof. If $x \in X$, then $x^{\sigma} \supseteq X^{\sigma}$, and if $x^{\sigma} \supseteq X^{\sigma}$, then $x^{\sigma \sigma} \subseteq X^{\sigma \sigma}=X$ so that $x \in X$ if and only if $x^{\sigma \sigma} \subseteq X$ and $x \in X$ if and only if $x^{\sigma} \supseteq X^{\sigma}$. This yields the first two equalities.

Theorem 4.2. If X is a perfect symmetric BK space, there is a balanced, symmetric sequential norm N of the form

$$
N(x)=\sup _{\alpha} \sum_{i=1}^{\infty} \hat{x}_{i} \hat{y}_{i}^{(\alpha)}
$$

for which $S_{N}=X$.
Proof. By 4.1, $X=\bigcap\left\{y^{\sigma}: y \in X^{\sigma}\right\}$. For each $y \in X^{\sigma}, y^{\sigma} \supseteq X$ so there is an $m_{y}>0$ such that

$$
m_{y} Q_{y}(x) \leqslant\|x\|, \quad x \in X
$$

where || || is the norm on X (12, p. 203). Note that

$$
m_{y} Q_{y}(x)=\sum_{i=1}^{\infty} \widehat{m_{y} y_{i}} \hat{x}_{i} .
$$

Let

$$
N=\sup \left\{m_{y} Q_{y}: y \in X^{\sigma}\right\} .
$$

Then N is a balanced symmetric p.s.n. by 2.10 and $N(x) \leqslant\|x\|$ for $x \in X$ so that $S_{N} \supseteq X$. In order to apply 2.10 we observe that

$$
m_{y} Q_{y}\left(e_{i}\right)=m_{y} Q_{y}\left(e_{1}\right) \leqslant\left\|e_{1}\right\| \quad \text { for each } i
$$

On the other hand, $S_{N} \subseteq x^{\sigma}$ for each $x \in X^{\sigma}$ so that $S_{N} \subseteq X$. Finally

$$
N(x)=\sup \left\{\sum_{i=1}^{\infty} \widehat{m_{y} y_{i}} \hat{x}_{i}: y \in X^{\sigma}\right\} .
$$

5. Applications to symmetric bases. Recall the definition by Singer (10) that a basis $\left\{x_{n}\right\}$ of a Banach space X is symmetric if

$$
\begin{equation*}
\sup _{\substack{\pi \in P}} \sup _{\substack{\left|\delta_{i}\right|<1 \\ 1 \leqslant n<\infty}}\left\|\sum_{i=1}^{n} \delta_{i} f_{i}(x) x_{\pi(i)}\right\|<\infty \tag{1}
\end{equation*}
$$

for all $x \in X$ where P denotes the set of all permutations on the positive integers and $\left\{f_{n}\right\}$ is the sequence of continuous linear functionals biorthogonal to $\left\{x_{n}\right\}$.

Proposition 5.1. The basis $\mathfrak{X}=x_{n}$ of a Banach space X is symmetric if and only if $S_{\mathfrak{X}}=S_{N^{0}}{ }^{0}$ for N a balanced, symmetric p.s.n., where

$$
S_{\mathfrak{X}}=\left\{t: \sum_{i=1}^{\infty} t_{i} x_{i} \text { converges in } X\right\} .
$$

Proof. If \mathfrak{X} is symmetric, define

$$
N(t)=\sup _{\substack{\pi \in P}} \sup _{\substack{\mid \delta i d \leq 1 \\ 1 \leqslant n<\infty}}\left\|\sum_{i=1}^{n} \delta_{i} t x_{\sigma(i)}\right\| .
$$

Then N is a balanced, symmetric p.s.n. and by $\left(\mathrm{SB}_{1}\right) S_{\mathfrak{X}} \subseteq S_{N}$. However, for $t \in S_{\mathfrak{X}}, N(t) \geqslant\|t\|$, so $S_{\mathfrak{X}}$ is a closed subspace of S_{N} (12, p. 203), which implies that $S_{\mathfrak{X}}=S_{N}{ }^{0}$.

If N is a balanced, symmetric p.s.n. and $S_{N}{ }^{0}=S$, then the norm \|\| defined on X by

$$
\left\|\sum_{i=1}^{\infty} t_{i} x_{i}\right\|=N(t)
$$

yields the original topology on X and has the property indicated in $\left(\mathrm{SB}_{1}\right)$.
In (11), Singer proved that the following is equivalent to $\left(\mathrm{SB}_{1}\right)$:
$\left(\mathrm{SB}_{3}\right)$ Every permutation $\left\{x_{\pi(n)}\right\}$ of the basis $\left\{x_{n}\right\}$ is a basis of X equivalent to the basis $\left\{x_{n}\right\}$.
We shall offer an alternative proof of the equivalence of $\left(\mathrm{SB}_{1}\right)$ and $\left(\mathrm{SB}_{3}\right)$.
Theorem 5.2. $\left(\mathrm{SB}_{1}\right)$ is equivalent to $\left(\mathrm{SB}_{3}\right)$.
Proof. $\left(\mathrm{SB}_{1}\right) \Rightarrow\left(S B_{3}\right)$. Let $\mathfrak{X}=\left\{x_{n}\right\}$ be a basis for a Banach space X which satisfies $\left(\mathrm{SB}_{1}\right)$. Define a new norm $\left\|\|^{\prime}\right.$ on X by

$$
\|x\|\left\|^{\prime}=\sup _{\pi \in P} \sup _{\substack{\delta_{i} \mid \leq 1 \\ 1 \leqslant n<\infty}}\right\| \sum_{i=1}^{n} \delta_{i} f_{i}(x) x_{\pi(i)} \| .
$$

Then $\left\|\left\|\|^{\prime}\right.\right.$ is equivalent to $\left.\|\right\|$ and

$$
\left\|\sum_{i=1}^{n} t_{i} x_{i}\right\|^{\prime}=\left\|\sum_{i=1}^{n} t_{i} x_{\pi(i)}\right\|^{\prime}
$$

for every n and every permutation π. Therefore, $\left\{x_{n}\right\}$ is an equivalent basis to $\left\{x_{\pi(n)}\right\}$ for every permutation π.
$\left(\mathrm{SB}_{3}\right) \Rightarrow\left(\mathrm{SB}_{1}\right)$. If \mathfrak{X} satisfies $\left(\mathrm{SB}_{3}\right)$, then $S_{\mathfrak{X}}$ is symmetric. To see this assume that $t \in S_{\mathfrak{X}}$ and π is any permutation on the positive integers. Then $\sum_{i=1}^{\infty} t_{i} x_{i}$ converges so that $\sum_{i=1}^{\infty} t_{i} x_{\pi^{-1}(i)}$ converges necessarily to $\sum_{i=1}^{\infty} t_{\pi(i)} x_{i}$ so that $t_{\pi} \in S_{\mathfrak{x}}$.

Since \mathfrak{X} is an unconditional basis for X, there is a balanced sequential norm such that $S_{N}{ }^{0}=S_{\mathfrak{x}}$. In fact, define $N(t)$ to be

$$
\sup \left\{\left\|\sum_{i=1}^{\infty} a_{i} t_{i} x_{i}\right\|:\left|a_{i}\right| \leqslant 1\right\} .
$$

Since $S_{N}{ }^{0}$ is symmetric, so is $\left(S_{N}{ }^{0}\right)^{\alpha \alpha}=S_{N}$. By Theorem 4.5 there is a balanced symmetric p.s.n. M such that $S_{M}=S_{N}$. Thus $S_{M}{ }^{0}=S_{N}{ }^{0}=S_{\mathfrak{X}}$, which implies that \mathfrak{X} satisfies $\left(\mathrm{SB}_{1}\right)$ by Proposition 5.1.

Added November 10, 1966. The author wishes to point out that many of the results in § 3 or generalizations thereof appear in the related work of D. J. H. Garling (14) of which he was unaware at the time of writing this paper.

References

1. M. G. Arsove, Similar bases and isomorphisms in Fréchet spaces, Math. Ann., 135 (1958), 283-293.
2. C. Bassaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164.
3. R. G. Cooke, Infinite matrices and sequence spaces (Macmillan, 1950).
4. R. C. James, Bases and reflexivity in Banach spaces, Ann. of Math., 52 (1950), 518-527.
5. G. Köthe, Topologische lineare Räume, Vol. 1 (Berlin, 1960).
6. G. Köthe and O. Toeplitz, Lineare Räume mit unendlicher vielen Koordinaten und Ringe unendlicher Matrizen, J. für Math., 171 (1934), 193-226.
7. W. Ruckle, On the construction of sequence spaces that have Schauder bases, Can. J. Math., 18 (1966), 1281-1293.
8. W. L. C. Sargent, Some sequence spaces related to the l^{p} spaces, J. London Math. Soc., 35 (1960), 161-171.
9. -On sectionally bounded BK-spaces, Math. Z., 83 (1964), 57-66.
10. I. Singer, On Banach spaces with symmetric basis, Rev. Math. Pures Appl., 7 (1961), 159-166 (in Russian).
11. - Some characterizations of symmetric bases, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys., 10 (1962), 185-192.
12. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
13. K. Zeller, Abschnittskonvergenz in FK Raumen, Math. Z., 55 (1952), 55-70.
14. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc., (3), 16 (1966), 85-105.

Lehigh University,
Bethlehem, Pennsylvania

