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SYMMETRIC BASES 
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1. Introduction. In this paper properties of symmetric coordinate spaces 
and symmetric bases are investigated. Since a space which possesses a basis 
is essentially a space of sequences (12, p. 207), the interrelation of these two 
concepts naturally suggests itself. 

Section 2 is a summary of the terminology and methods employed, which 
fall into four categories: (1) set theoretical properties of coordinate spaces 
such as symmetry and dual spaces; (2) the notion of FK and BK space (12, 
p. 202; 13); (3) the theory of the Schauder basis in F-space applied to the 
case when @ (see § 2) is a basis for a coordinate space; (4) the concept of a 
sequential norm, which the author introduced in (7) to illustrate the under
lying unity of the first three ideas. 

In § 3 we examine a class of spaces which might be regarded as archetypal 
perfect symmetric spaces. We note that these spaces were introduced from a 
somewhat different viewpoint by W. L. C. Sargent in (8) and further studied 
by her in (9). 

Some properties of a perfect symmetric space are discussed in § 4. The 
chief result here is Theorem 4.5, which states that every perfect symmetric 
BK space can be given an equivalent norm having a certain form. 

In the final section we apply our work to a new proof of a result of wSinger 
(11) concerning symmetric bases. 

2. Preliminary observations. A coordinate space is a linear space, X, 
of scalar (real or complex) sequences with addition and scalar multiplication 
defined coordinatewise. We designate by ei the ith coordinate vector, i.e. the 
sequence with 1 in the ith place and 0's elsewhere. The set {el: i = 1, 2, . . .} 
is denoted by @. Unless we specify otherwise we assume that S Ç I . The 
sequence whose ith term is tt is written (tt) or merely t. 

The following concepts are of long standing (6; 5, p. 427). 

Definition 2.1. For X a coordinate space: 
(a) Xa, the a-dual of X, is 

|3>:]C 1**3̂ 1 < °° f°r e a c n x £ Xç . 
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(b) X8, the P-dual of X, is 

\y.^ Xiji converges for each x £ I r . 

(c) X is perfect if X<*« = X. 
(d) X is balanced (or normal) if x £ X implies that (at Xi) £ X for each 

a 6 m, the space of all bounded sequences. 
(e) X is symmetric if x G X implies that xT £ X for each permutation w 

on the non-negative integers where (xty = (x^)) . 
The results summarized in the following proposition are widely known (3; 

5; 6). 

PROPOSITION 2.2. (a) Xa is balanced and perfect for every coordinate space X. 
(b) If X is symmetric, Xa is symmetric. 
(c) If X is perfect and symmetric, then X = Rœ, the space of all finite se

quences, or X = s, the space of all sequences or ll C X C m. 

Definition 2.3. The symmetric dual, X°', of a coordinate space X is 

i « 
l ^ ' - S \ytx^{i)\ < °° f° r e a c n # £ X and each permutation -w on the 

positive integers \ . 

PROPOSITION 2.4. If X w symmetric, Xa = Xa. 

Proof. For 7r a permutation on the positive integers, let XT = {xT: x £ X}. 
Then Xff = n { Z T

a : allx}, but if X is symmetric, X r = X for each T, so 
X- = X*. 

Definition 2.5. A coordinate space X is an FK space if X is an F-space 
(complete linear metric space) and the linear functionals defined hy ft{x) = xt 

are continuous. 
An FK space which is a Banach space is called a BK space (12, § 11.3). 

Definition 2.6. A sequential norm is a function, N, from 5 into R* which 
satisfies the following conditions: 

(1) N is an extended norm, i.e., 
(a) N(x + y) <N(x) + N(y), 
(b) N(ax) = \a\N(x) for each scalar a, 
(c) N(x) > 0, N(x) = 0 if and only if x = 0. 

(2) N(et) < °° for each i. 
(3) iV(x) = supw N(Pnx), where 

7?. 

.1 w x / j Xi ef. 
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If in addition TV satisfies 

(4) 0 < infn N(en) < sup„ N(en) < œ, 

TV is a proper sequential norm. 

For a coordinate space X on which a topology has been fixed we shall 
write X° for the closed linear span of 6 in X. 

The concept of a proper sequential norm (p.s.n.) was introduced and studied 
in (7). If TV is a p.s.n., the set SN of all x for which N(x) < °o is a BK space 
with norm N, and @ is a basis for SN° (7, Theorem 2.2). Conversely, if 
36= {xi, x2, . . .} is a basic sequence in a Banach space which is bounded in 
norm away from 0 and œ, we can find a p.s.n. TV such that £ is equivalent 
(1, 2) to the basic sequence (5 in SN; namely, let 

N(t) = sup„ Z*<-
Definition 2.7. The conjugate p.s.n. of a p.s.n. TV is the function from 5 

into R* given by 

N'(y) = sup^jsupra E « ^ f :N(x) < 1 

By (7, Theorem 3.2), TV' is a p.s.n. and the conjugate space of SN°, CSV)* 
is isometric to SN> under the correspondence of/ in (SN

0)* to (f(e1)) in SV, 
and 

oo 

/(#) = X) Xif(el) ^0Î* e a C n X m ^ V ° ' 

Definition 2.8. A p.s.n., TV, is balanced 

if N(x) = sup {N(at, Xi): \at\ < 1} for each x in 5. 

Definition 2.9. A p.s.n., TV, is symmetric if N(x) = N(x7r) for each permu
tation 7T on the positive integers. 

For TV a p.s.n. we have SN> = (SN
0)^ (7, Corollary 3.3) and if AT is a 

balanced p.s.n., then SN> — (SN°)a (7, proof of Theorem 4.5). 

PROPOSITION 2.10. (a) If {Na} is a family of p.s.n.1 s and there is a K > 0 
such that supa Na(et) < K for each i, then supa TV« is a p.s.n. 

(b) If each Na is balanced (symmetric) and supa Na is a p.s.n., then supa Na 

is balanced (symmetric). 

Proof, (a) Let TV = supa TVa By hypotheses sup* N(et) K K < œ and since 
A is a sup, inf t Nid) > 0. We shall verify condition (3) of Definition 2.6. 
The proof of the norm condition is analogous. 

TV(x) = supaNa(x) = supa supM Na(Pn x) 

= supre sup« Na(Pn x) = supn N(Pn x). 
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(b) The proof that TV is balanced (symmetric) if each Na is balanced (sym
metric) is also obtained by permuting sup operators. 

3. The first and second symmetric duals of a sequence. 

Definition 3.1. The symmetric dual of a sequence x is 

x = i ^ X \x*d) yÀ < °° f°r e a c n T\ • 

PROPOSITION 3.2. (a) y G xa if and only if x G y . 
(b) x is unbounded if and only if xa = Rœ. 
(c) x G Rœ if and only if x° = s. 
(d) x O 1 ^ R°° if and only if x* = m. 
(e) If x Ci m f^ c0, x0" = I1. 

Proof, (a) Obvious. 
(b) First note that xa is perfect and symmetric so that by 2.2(c) xa is 

either s, Rœ, or l1 Ç xa Ç w. For every x, î °° Ç x*7. If x is not bounded, then 
there is a y in I1 such that 2^=i \xtyi\ does not converge since (ll)a = m. 
This implies that xaQ. I1 properly, so xa = Rœ. U x £ mf xa ^ ma = I1, so if 
xa — JR°°, x is unbounded. 

(c) If x G i£œ, then Xe7 = 5 by (a) and (b). If xa = s, then x G y* for 
each y G 5 so by (a) x G i^°. 

(d) If x f / 1 ^ i£œ, we have xa <Z s properly, but xa Z) (Z1)* = w. Thus 
x0" = w. If xCT = w, then X X i |x*| converges since (1, 1, . . .) is in m. 

(e) If x G m ~ Co, there is a subsequence x' of x such that 

inf„ \x'n\ = e > 0. 

Then x0" Q xf<T Q I1 and x* ̂ ) m* = I1. 
In the following we shall derive the converse of (e). In view of Proposition 

3.2 we shall restrict our attention to the o--dual of a sequence x which is in 
Co but not in I1. 

Definition 3.3. The reduced form of a sequence x G c0 is the sequence 
x = (xi, X2> X 3 , . . .) in which Xi , X2, X3, . . . exhaust the non-zero values 
assumed by |xi|, |x2|, |x3|, . . . allowing repeated values and x\ > x2 > x3 > . . . . 

A sequence x is in reduced form if x = x. 
If x G ^o, then xa = xa so that whenever we consider the space xa we may 

assume x is in reduced form. 

THEOREM 3.4. Given a sequence x in c0 ~ I1 define 

Q(y) = sup^X) |xT(î-)3;?-|: 
7 = ] 

https://doi.org/10.4153/CJM-1967-077-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-077-9


832 WILLIAM RUCKLE 

then Q is a proper, balanced, symmetric, sequential norm, SQ = SQ° = x°, and 

CO 

(1) Q(y) =lLXiyi for y € c0, 

= °° for y £ Co. 

Proof. By hypothesis Q(y) = supT N^iy), where 

CO 

N*(y) = X l̂ (o y«l-
2 = 1 

Note that NT is an extended seminorm for each ir and has the property that 
Nv(y) = supn N7r(Pny). Thus Q is an extended seminorm and has the pro
perty that Qiy) = supn Q(Pny)> I t is obvious that Q is a norm and that 
Q{ei) = supw \xn\ for each i. Thus Q is a proper sequential norm. 

Next we shall verify the equality (1). If y (? c0, y* C I1 so that x (? y^ 
which implies that Q(y) = oo. If y Ç c0, then for each w there is a rearrange
ment ^0(i), 5)0(2), . . . , %{n) of 3)1, 5)2, . . . , % such that %{i) > |yT(i)| for i < w, 
for 7T a given permutation. Since x\ > x2 > . . . > xw and $1 > $2 > . . . > $n, 

w w n 

X £*5>* > X l**&(ol > X I^^Col-
1 = 1 Z = l t = l 

Therefore, 
CO 

T,*i$t>Q(y). 
i = l 

On the other hand, for each n there are permutations x and <j> such that 
1^(01 = y% and |x0(i)| = Xi for i < w. Given e > 0, let w be such that 

W co 

X ^3^ + € > X ^3^ 
*=1 1=1 

and let 7r and <£ correspond to this w. Then 

co n 

Q(y) > X ki3v-M*)i > X taco^col 
i = l i = l 

CO 

> X ^3^ + e-
i=i 

Therefore 
00 

z = l 

The validity of (1) implies that Q is balanced and symmetric, and that 
SQ = x* = xff. In order to show that SQ = SQ° we first prove the following 
lemma. 

LEMMA 3.5. If Q is a symmetric balanced sequential norm, SQ and SQ° are 
symmetric spaces. 
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Proof. Since Q is symmetric, it is obvious that SQ is symmetric. Since 

QyJLheiJ = QyËtieT-iwJ 

for each n and each 7r, e^-i^) is a basis for SQ° equivalent to (g so that ]Cjli ^ 0* 
converges implies that X X i ^ e^~m) converges. By the biorthogonality of the 
coefficient functional 

oo oo 

i=\ 1=1 

so that if / G SQ°, so is tT. Therefore, SQ° is symmetric. 
In view of Lemma 3.5 it suffices to prove that for each y £ SQl y Ç SQ°. 

By the definition of SQ°, y Ç SQ° if and only if 

oo 

limn Q{y - Pny) = l im„X xi3Wi = 0. 

We conclude the proof by showing that 
oo 

limn ]£*<#!+* = 0 

if 3> (: xff. Given e > 0, let N\ be such that 

£ &t$t<e/2. 
i=N i+l 

Then 
oo oo 

]C &t$n+i < X) ^ 3 ^ < e/2 for each n. 
i=Ni+l i=iVi+l 

Since limw yn = 0, let N2 be such that n > N2 implies that 

yn < e/ (zÈ&t) • 

U n> N2 

oo Ni oo 

A-/ X i $n+ i = ^ x i Jn+ i ~f" 2^t X i Jn+ i 
i=l i=l i=N i+l 

< (e/2S*')(S*7 + e/2 

Given x ^ c G ~ l 1 we denote by Qx the sequential norm denned in the 
previous theorem. If no ambiguity results, we shall simply write Q for Qx. 

THEOREM 3.6. For x € c0 ~ I1 

Q'x(y) = s u p ^ g ^ j / yÈ,*i) 
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Proof. By definition 

Q'(y) = sup^sup^X at y il Q(a) < 1 
V 2=1 
i n oo 

= SUp^SUp^X CLiJi'.Yj ât At < 1 
\ 2 = 1 2 = 1 

OO OO J 

X atji-.Y^, âi&i < If . 
i=i i=i J 

= sup 

The last equality holds since 

n 

X aiJi < X ^ ^ < X ât$i. 

If m is so large that yh y2, . . . , & are included in {|yi|, |y2|, . . . , |yw |}, let 
7T be any permutation such that yt = \yV(i)\ i < n. Let 6* = (sgn y^â^-i^. 
Then & = a and 

m  

X ^ 3 ^ > X br^y^t) 
2 = 1 7 r ( i ) < m 

> Z^ &*•(*) 3V(t) 
2<ft 

ft ft 

= X ^ |yT(*)| = X âi$i> 

Now 
n n—1 I i \ ft 

Xâi$i = X (#< - ^i+i)l X ^ j + 4 X 
w=l 2=1 \ i = l / ;=1 

A 
ft-1 

2 = 1 
X ^ / X^7 
J / = l ;= i -1 J = I 

X * i 

< sup» I Y^h X &i 

( n / n \ n 

X ji/ X * i ) X < ^ < 
i = l / 2 = 1 / 2 = 1 

ft / ft 

< SUpwX 3V X ^i 

w / f t ~l ft 

X^y X% X*i 
ft—1 z n ~j 

X (At — az+i) X &J + 4 X *J 
2 = 1 J = l ; = 1 J 

î = l / 2 = 1 

(2(a) = £d ,*«< 1. 
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On the other hand, if n is such that 

then let 

so that 

while 

n 

^Xibf = 1 

X) biji > sup„X) Si/ X) **• 
i=l z = l ' z = l 

In view of Theorems 5 and 7 we conclude that xa = SQ is the space n</> 
and x™ = 5 Q is the space m§ studied by W. L. C. Sargent in (8) and (9), 
where 

n 

<£« = X %i-

The norm given by Sargent for n<j> coincides with Q, but the norm she gave 
for m<t) does not necessarily coincide with Qf. 

The following proposition is Lemma 10 of (8) with a different proof. 

PROPOSITION 3.7. y* 3 xff if and only if 

n / n 

suprcX Si/ X *i < °°-
i = l ' i=l 

Proof. If 
n / n 

sup^X Ji/ Hxi< °°> 
i=l I i=\ 

then y G SQ> = x™. Thus ya 2 ^(r<rcr = x°. 
Il yff "D xa, then y G f C SQ/ so that 

n f n 

supnj^yt/ 1L,XÎ= Q'(y) < °°-

PROPOSITION 3.8. Xoaff 7e x™. (By xtf* we mean the closed linear span of ® 
in xa<T.) 

Proof. Define / on xaa by 
n I n 

f(y) = limw]T y J ]T xiy n = 1, 2, 
4=1 / i=l 

Then ||/|| < 1 and f(ei) = 0 for each i. Since fix) g xtf* although x £ x™. 
In view of the previous statement and Theorem 5.5 of (7) (see also (4, 

Lemmas 1 and 2)) we arrive at the following. 
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PROPOSITION 3.9. (a) There is a closed subspace of xa<r topologically isomor
phic to m. (b) There is a closed subspace of XQ™ topologically isomorphic to c0. 
(c) There is a closed subspace of x* topologically isomorhphc to I1, (d) The 
spaces xa, xa<J, and Xo™ are not reflexive. 

In connection with the above proposition see (9, Theorems 8 and 9). 

PROPOSITION 3.10. {converse of 3(e)). If x* = I1, x G m ~ c0. 

Proof. If x° = l1, x G y?° = m. If x G c0, 

n J ~\ n 

inf„X) Xi / n = limn-]>3 x{ = 0 
i=i i n i==i 

so that x* = (1, 1, 1, . . .)* = I1 by Proposition 3.7. 

4. Symmetric coordinate spaces. The following proposition is a gen
eralization of (8, Lemma 12d). 

PROPOSITION 4.1. If X is any perfect symmetric space, then 

X = U { * " : x G X] = U { s " : X" 3 X-} 

= njx*: x G X*}. 

Proo/. If x G Z , then x* 3 P , and if x* 3 X ' , then x™ Ç X™ = X so 
that x G X if and only if x™ Ç X and x G X if and only if x0" 2 X*. This 
yields the first two equalities. 

THEOREM 4.2. If X is a perfect symmetric BK space, there is a balanced, 
symmetric sequential norm N of the form 

N{x) = supttË*<4><(tt) 

for which SN = X. 

Proof. By 4.1, X = C\{y*: y e X*}. For each y G X*, ya 3 -ST so there is 
an my > 0 such that 

my Qy(x) < ||x||, x G X, 

where || || is the norm on X (12, p. 203). Note that 

CO ^ y ^ 

my Qy(x) = J2mvyiXi' 
i=i 

Let 
N = sup{myQy:y G X*}. 

Then iV is a balanced symmetric p.s.n. by 2.10 and N(x) < ||x|| for x G X 
so that SN 3 -X\ In order to apply 2.10 we observe that 

myQy(eù = myQy(ei) < ||^i|| for each i. 
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On the other hand, SN Ç xa for each x Ç X* so that 5^ £ X. Finally 

N(x) = sup^ X w2/ 3^ £<: y £ -X* r . 

5. Applications to symmetric bases. Recall the definition by Singer 
(10) that a basis {xn} of a Banach space X is symmetric if 

(SBX) 
1 w 

sup sup 

1<W<00 
i= l 1 

< oo 

for all x G X where P denotes the set of all permutations on the positive 
integers and {fn) is the sequence of continuous linear functional biorthogonal 
to {xn}. 

PROPOSITION 5.1. The basis % = xn of a Banach space X is symmetric if and 
only if Sx = SN° for N a balanced, symmetric p.s.n., where 

Sx = J t : 2^ tt x i converges in X ( . 

Proof. If 36 is symmetric, define 

n 

N(t) = SUp SUp X) <>iix<r(i 
TT€P IStKl II i= l 

l<rc<°° 

Then iV is a balanced, symmetric p.s.n. and by (SBi) S% Ç 5^. However, for 
t G «Sx, ̂ V(0 > 11 |̂|, so Sx is a closed subspace of SN (12, p. 203), which im
plies that Sx = SN°. 

If iV is a balanced, symmetric p.s.n. and SN° = S, then the norm || || defined 
on X by 

/ J *i %i\ N(t) 

yields the original topology on X and has the property indicated in (SBi). 
In (11), Singer proved that the following is equivalent to (SBi): 

(SB3) Every permutation {#,r(W)} of the basis {xn} is a basis of X equivalent 
to the basis {xn}. 

We shall offer an alternative proof of the equivalence of (SBi) and (SB3). 

THEOREM 5.2. (SBi) is equivalent to (SB3). 

Proof. (SBi) => (SB 3). Let £ = {xn\ be a basis for a Banach space X 
which satisfies (SBi). Define a new norm || ||' on X by 

\x\\ = sup sup 
TT€P |8»I<1 

l<w<oo 

Y^ àifi(x)XTr(i)\ 
i=l I 
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Then || ||' is equivalent to || || and 
n 

/ J "i X i\ 
i=l 

/ J *i %ir(i) 

for every n and every permutation T. Therefore, {xn} is an equivalent basis 
to JXTTU)} for every permutation ir. 

(SB3) => (SBi). If X satisfies (SB3), then S% is symmetric. To see this assume 
that t G S% and ir is any permutation on the positive integers. Then 2 3 ^ tiXt 

converges so that J ^ l i ^ #*-i(o converges necessarily to 2^1i k^) xt so that 

Since 36 is an unconditional basis for X, there is a balanced sequential norm 
such that SN° = 5$. In fact, define N(t) to be 

sup / j &i t i X i\ : \at\ < 1 

Since 5^° is symmetric, so is (SV0)0^ = SN. By Theorem 4.5 there is a balanced 
symmetric p.s.n. M such that SM = SN. Thus 5M° = 5^° = S%, which implies 
that ï satisfies (SBi) by Proposition 5.1. 

Added November 10, 1966. The author wishes to point out that many of the 
results in § 3 or generalizations thereof appear in the related work of D. J. H. 
Garling (14) of which he was unaware at the time of writing this paper. 
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