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On the jets produced by drops impacting a deep
liquid pool and by bursting bubbles
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Here we provide a unified theoretical description of two different physical situations in
which liquid jets are expelled out of the bulk of a liquid as a consequence of the capillary
collapse of a void. We demonstrate that the velocity field giving rise to the emergence of
these jets can be calculated as the flow generated by a line of sinks with a length and an
intensity that can be expressed in terms of the initial cavity radius and the wavelength
and velocity of the capillary waves propagating along the cavity walls. The predicted
jet speeds, which are expressed through algebraic equations, are in good quantitative
agreement with those obtained from experiments and from the simulations of bubbles
bursting on a free surface or after the implosion of the crater formed when a drop impacts
a liquid pool.
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1. Introduction

The iconic and quite familiar image in figure 1 of a drop falling on a liquid pool and
producing a vertical jet from which a droplet is emitted upwards synthesises in a visual and
straightforward way the beauty and complexity of liquid flows, a fact which could explain
its widespread use in artistic photography or advertising campaigns to evoke freshness,
stimulating flavours, and so on (Michon, Josserand & Séon 2017). It will become clear
in what follows that the liquid jets produced in this way originate in a similar manner to
those emitted after the bursting of a bubble, a process that has received much attention
in the recent literature (Duchemin et al. 2002; Ghabache et al. 2014; Gañán Calvo 2017;
Brasz et al. 2018; Deike et al. 2018; Gordillo & Rodríguez-Rodríguez 2018; Lai, Eggers &
Deike 2018; Gordillo & Rodríguez-Rodríguez 2019; Berny et al. 2020) because it plays a

† Email address for correspondence: jgordill@us.es

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 916 A37-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jgordill@us.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.207&domain=pdf
https://doi.org/10.1017/jfm.2021.207


F. J. Blanco–Rodríguez and J. M. Gordillo

(a) (b) (c) (d ) (e)

Figure 1. Sequence of images showing the impact of a water drop of radius Rd falling on a deep liquid
pool with a velocity V such that We = ρV2Rd/σ � 90, Fr = V2/(gRd) = 565, with g, ρ and σ being the
gravitational acceleration, the density and the interfacial tension coefficient, respectively, at different instants
of time T , with T = 0 the instant the drop touches the surface: (a) t = TV/Rd � −2.3 (b) TV/Rd � 41,
(c) TV/Rd � 46, (d) TV/Rd � 57, (e) TV/Rd � 68.7. The value of We has been calculated using the material
properties of water. In this experiment, the thin jet initially observed in (c) breaks into tiny droplets and widens
with time.

key role in the production of the sea spray aerosol (MacIntyre 1972; Bigg & Leck 2008;
Veron 2015; Wang et al. 2017; Blanco-Rodríguez & Gordillo 2020) and in the dispersion
of contaminants and bacteria (Walls, Bird & Bourouiba 2014). Recently, it has been also
pointed out that the drops emitted from the tip of the jets ejected by the collapse of bubbles
might be used in technological applications related with the design of novel printing
devices (Castrejón-Pita, Castrejón-Pita & Martin 2012; Basaran, Gao & Bhat 2013; Ismail
et al. 2018).

Indeed, the high-speed jets formed after the bursting of bubbles (MacIntyre 1972;
Duchemin et al. 2002; Ghabache et al. 2014) or after a drop impacts a free surface
(Prosperetti, Crum & Pumphrey 1989; Prosperetti & Oguz 1993; Rein 1996; Ray, Biswas &
Sharma 2015; Michon et al. 2017; Thoroddsen et al. 2018; Yang, Tian & Thoroddsen 2020)
share a common feature since they both emerge as a consequence of the axial convergence
of the capillary waves that propagate along the collapsing cavity walls. Moreover, the
largest jet velocities measured in each of these physical situations are quite similar: ∼ 50 m
s−1 in the case of the collapse of Faraday waves (Zeff et al. 2000) or when a drop impacts a
deep liquid pool (Thoroddsen et al. 2018; Yang et al. 2020), whereas in the case of bubble
bursting jets, Blanco-Rodríguez & Gordillo (2020) have reported maximum velocities of
� σ/μ, with σ and μ respectively indicating the interfacial tension coefficient and the
liquid viscosity, which, in the case of water properties, imply maximum jet speeds of
∼ 70 m s−1.

It is the main purpose of this contribution to provide conclusive evidence showing
that the velocities of the high-speed, thin jets produced following the bursting of a
bubble or after the impact of a drop on a deep liquid pool can be quantified using
a common theoretical framework, which has already been put forward in Gordillo &
Rodríguez-Rodríguez (2019), where the flow field is represented as the one produced by a
line of sinks. Moreover, the flow rate per unit length and also the length of the line of sinks
will be expressed as a function of the initial radius of the crater from which the jet emerges
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On the jets produced by the capillary collapse of cavities
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Figure 2. (a) Sequence of events following the bursting of a bubble at a free interface for Oh = 0.012. The
retraction of the rim causes capillary waves of wavelength λ∗ ∝ Oh1/2 (Gordillo & Rodríguez-Rodríguez 2019)
that propagate along the cavity walls and which, when reaching the base of the void, trigger the formation of a
fast jet of an initial velocity Vjet and an initial radius Rjet. The impact of a drop shown in (b), with Fr = 600,
We = 90 and Mo = Mow, reveals a similar jet ejection process to that depicted in (a), with the main difference
being that the dimensionless radius of the cavity is rc � 0.5Fr1/4 (Prosperetti & Oguz 1993; Jain et al. 2019);
see (2.4). Figure (b) also shows that, in contrast with the case of bubble bursting jets, λ∗ ≈ 1.

and of the wavelength and velocity of the capillary waves travelling along the cavity walls.
The integrals expressing the vertical velocity field can be solved analytically, providing
algebraic expressions for the jet velocities as a function of the control parameters of each
of the two physical situations at hand. The theoretical velocity fields, as well as the initial
jet velocities, will be shown to be in quantitative agreement with both the numerical results
and experimental measurements.

The paper is structured as follows: in § 2 the ejections of the jets produced after
the bursting of a bubble or after the impact of a drop on a liquid pool are simulated
numerically. The velocity fields computed in § 2 are compared with the theoretical
predictions in §§ 3 and 4 for the cases of bubble bursting jets and of drops impacting a
deep liquid pool, respectively. The main results are summarised in § 5.

2. Numerical simulations

The numerical results in figure 2, which illustrate the generation and propagation of the
capillary waves that give rise to the emergence of the jets produced by the bursting of a
bubble or by the impact of a drop falling on a deep pool, have been obtained, as well as
the rest of numerical results shown in this contribution, using the open-source package
GERRIS (Popinet 2003, 2009) assuming that the surrounding gaseous atmosphere is air
with a density and a dynamic viscosity of 1.2 kg m−3 and 1.8 × 10−5 Pa · s, respectively.

From now on, dimensionless variables will be written using lower-case letters to
differentiate them from their dimensional counterparts, written in capitals, and ρ, μ and
σ will denote the liquid density, viscosity and interfacial tension coefficient, respectively.
Moreover, the acronyms BB and DP will be used in what follows to indicate variables or
results that correspond either to the bursting of a bubble or to the impact of a drop on a
liquid pool.

Furthermore, the numerical results that correspond to the bursting of a bubble with a
radius Rb = (3Vb/(4π))1/3, with Vb indicating the bubble volume, will be presented in
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terms of dimensionless variables defined using Rb, the capillary velocity
√

σ/(ρRb) and
the capillary pressure σ/Rb as the characteristic values of length, velocity and pressure,
respectively – see figure 2(a). This physical situation is characterised by two dimensionless
parameters; namely, the Bond (Bo) and Ohnesorge (Oh) numbers – or, equivalently, the
Bond and Laplace (La) numbers, which are defined as

Bo = ρgR2
b

σ
, Oh = μ√

ρRbσ
with La = ρRbσ

μ2 = Oh−2. (2.1a,b)

The Ohnesorge number varies within a range of values 0.006 ≤ Oh ≤ 0.032 and, except
in the Appendix A, the value of the Bond number is kept constant and equal to Bo = 0.01.

Figure 2(a) shows that the unperturbed air-liquid interface located far from the bubble
is flat, and this horizontal boundary has been used to divide the computational domain
into two identical cylinders with a height and radius of 5 dimensionless units. The
present numerical simulations reproduce those which have already been published in
Brasz et al. (2018), Blanco-Rodríguez & Gordillo (2020) and have been carried out by
imposing symmetry conditions at the axis and zero flux at the rest of the boundaries. The
dynamically adaptive numerical grid has been refined up to a level of 14, which means that
each grid cell can be subdivided up to 14 times in order to appropriately describe the flow
at those regions with high gradients or large values of the interfacial curvature.

From now on, the results of the simulations that correspond to the impact of a drop
with a radius Rd falling over a pool of the same type of liquid with a velocity V will be
expressed in terms of the following dimensionless variables, defined using Rd, V and ρV2

as characteristic values of length, velocity and pressure

Fr = V2

gRd
, We = ρV2Rd

σ
, Mo = gμ4

ρσ 3 , Mow = 25.74 × 10−12, (2.2a–d)

with g denoting the acceleration of gravity, Fr the Foude number, We the Weber number,
Mow the value of the Morton number corresponding to the physical properties of water
and Mo the Morton number, which is related with the Ohnesorge number based on Rd,
Ohd = μ/

√
ρσRd, as:

Ohd = (MoFr/We)1/4. (2.3)

The leftmost panel in figure 2(b) shows that the drop is initially placed at a distance
of 0.04 dimensionless units above the gas-liquid interface. This flat boundary is used to
divide the numerical domain into two identical cylinders with a height and a radius of N
dimensionless units, with N = 27 for Mo = Mow. The numerical calculations have been
performed by imposing a free outflow boundary condition at the top part of the numerical
region and free-slip and impermeable boundary conditions at the axis of symmetry and
at the lateral and the bottom surfaces of the domain. The maximum grid refinement
level varies between 12 and 14, and it was verified that the results obtained for Fr = 600
replicate those in Ray et al. (2015). Unless otherwise specified, the value of the Morton
number in the simulations presented here correspond to the value of the Morton number
Mo = Mow given in (2.2a–d). The values of Fr and We explored here are indicated in
figure 3, where the two solid lines with equations provided in Prosperetti & Oguz (1993)
delimit the bubble entrapment region described in Pumphrey, Crum & Bjorno (1989). In
view of (2.3), the fact that Mo = Mow does not imply a constant value of Ohd.

Figure 2 shows that both the BB and DP jets emerge after the capillary waves excited
by the rim retraction process reach the base of the cavity with an initial radius rc.
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Figure 3. The squares and circles in the figure indicate the values of the Froude and Weber numbers used
in the simulations for the case of DP jets when Mo = Mow see (2.2a–d). The area limited by the curves
We = 18.24Fr0.179 and We = 20.35Fr0.247 given in Prosperetti & Oguz (1993) indicates the bubble entrapment
region.

Whereas rc = 1 for BB jets, the impact of a drop on a liquid pool produces a crater with a
dimensionless radius given by (Prosperetti & Oguz 1993; Jain et al. 2019)

DP : rc � 0.5Fr1/4. (2.4)

In both the BB and DP cases, capillary waves with a characteristic wavelength λ∗
propagate with a dimensionless velocity vλ; see figure 2. Figures 4 and 5 illustrate the way
the values of vλ have been determined numerically: the shapes of the cavities are calculated
at different instants of time separated at regular intervals Δt at which the increments
in the angular positions of the maximum elevation of the capillary waves, Δθ , are also
determined with the purpose of calculating vλ as

vλ = rc
Δθ

Δt
. (2.5)

The results obtained from the analysis, depicted in figure 6, reveal that, for the case of BB
jets, vλ � 5, a value which is independent of Oh and which coincides with the one reported
in Gordillo & Rodríguez-Rodríguez (2019). For the case of DP jets, figure 6 represents the
velocity of the waves Vλ = Vvλ, with vλ given in (2.5), divided by the capillary velocity
based on the radius of the cavity,

√
σ/(ρRd0.5Fr1/4). The result in this figure reveals,

also in this case, that the waves propagate with a velocity which is proportional to the
capillary velocity based on the radius of the cavity. The proportionality constant, however,
varies slightly with Fr and We, and it is somewhat smaller than in the case of the BB
jets. In the remainder of this contribution, the variations with Fr and We depicted in
figure 6 will be neglected, and the speed of the capillary waves will be approximated
as 3.5

√
σ/(ρRd0.5Fr1/4); namely, 3.5 times the capillary velocity based on the radius of

the deformed cavity.
Moreover, it can be seen from figure 4 that the maximum radii of curvature of the

capillary waves excited for the case of BB jets, which are a proxy to the wavelength λ∗,
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Figure 4. Time evolution of the capillary waves excited after the bursting of a bubble for Bo = 0.01 and
Oh = 0.006 (a), Oh = 0.012 (b), Oh = 0.020 (c) and Oh = 0.032 (d). The shape of the bubble at t = 0.100 is
represented in all figures in black. Notice that the radii of curvature of the travelling capillary waves, which is a
proxy for the wavelength, λ∗, increase with Oh. Here, zfs indicates the vertical position of the flat free interface.

increase with Oh. This result was already reported in Gordillo & Rodríguez-Rodríguez
(2019), where, in addition, it was predicted and later confirmed from an analysis of the
numerical results that λ∗ ∝ Oh1/2. In contrast, in the case of DP jets, the wavelength of
the capillary waves is somewhat similar to the initial radius of the drop, which can be
noted in figure 5. Therefore, from now on, λ∗ ≈ 1 for the case of DP jets. Notice that
the reason for the different scaling for λ∗ is due to the fact that, in the case of DP jets, the
initial thickness of the retracting rim that induces the generation of the capillary waves that
travel along the cavity walls is not negligible, which is in contrast to the case of BB jets
(Gordillo & Rodríguez-Rodríguez 2019). Instead, this rim possesses an initial thickness
which is similar to the wavelength of the wave that, after the impact, displaces the initially
flat interface upwards. This fundamental difference from the case of BB jets is the reason
why, for the case of DP jets, λ∗ does not scale with the Ohnesorge number based on
rc = 0.5Fr1/4. This result is further confirmed in figure 7, where it is shown that λ∗ and
the wave propagation velocity are insensitive to changes of Mo.

Figure 8 shows a key result for our subsequent purposes: the radial velocities at the base
of the deformed cylindrical cavity at the scale ∼ rc are quite similar to the values of the
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Figure 5. Time evolution of the capillary waves excited after a drop impacts a deep liquid pool for Mo = Mow.
Top row: Fr = 300 and We = 60 (a), We = 75 (b). Middle row: Fr = 600 and We = 75 (c), We = 90 (d).
Bottom row: Fr = 3000 and We = 90 (e), We = 120 ( f ). The cavity shape at t = 10 is represented in all figures
in black. The radii of the circles in dashed lines are rc = 0.5Fr1/4. Notice that the radii of curvature of the
travelling capillary waves do not noticeably change with Fr or We and are similar to those of the impacting
drop; namely, λ∗ ≈ 1. Here, zfs indicates the vertical position of the flat free interface.
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Figure 6. Propagation velocity of the capillary waves for the cases of (a) BB jets and (b) DP jets. The values
represented have been calculated using (2.5), with Δθ obtained from the analysis of figures 4 and 5. The result
in figure (a) is the same as the result already reported in Gordillo & Rodríguez-Rodríguez (2019), where it was
found that the velocity of capillary waves is independent of Oh and is equal to five times the capillary velocity
based on Rb. This result is also valid for arbitrary values of Bo; see the Appendix A.
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Figure 7. Comparison between the time evolutions of the capillary waves excited after a drop impacts a deep
liquid pool at the same values of t for Fr = 600, We = 114 and three different values of Mo: Mo1 = 1.75Mow
(dashed line), Mo2 = 16Mo1 (dashed-dotted line) and Mo3 = 81Mo1 (solid line), which implies a threefold
variation of Ohd = (MoFr/We)1/4. In contrast to the BB case depicted in figure 4, the wavelength of the wave
travelling along the cavity walls does not depend on Mo and, thus, it does not depend on Ohd; see (2.3); the
velocity of the capillary waves does not depend on Ohd either. Here, Mow indicates the value of the Morton
number corresponding to the physical properties of water given in (2.2a–d).

capillary wave velocities depicted in figure 6, and this result applies to the arbitrary values
of Oh for the BB case and of Fr, We and Mo for DP jets. The main consequence of the fact
that the capillary waves propagate at velocities which are clearly larger than the capillary
velocity based on the crater radius for both BB and DP jets is that the values of the Weber
number based on the wave velocity and on the unperturbed radius of the cavity are ≈ 25 for
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On the jets produced by the capillary collapse of cavities
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Figure 8. The radial velocity Vr at the base of the deformed cavity is very similar to the values of the wave
velocities depicted in figure 6; namely, Vr � Vλ. In this figure, Vc = √

σ/(ρRc), with Rc = Rb for BB jets
or Rc = 0.5RdFr1/4 for DP jets. Since the Weber number based on the wave velocity is such that (Vλ/Vc)

2 �
(Vr/Vc)

2 	 1, the radial collapse of the void that gives rise to the ejection of the jet is driven by inertia, and not
by capillarity. Figure (a) shows a BB case with Oh = 0.032 and (b) shows a DP case with Fr = 600, We = 90
and Mo = Mow.

the case of BB jets and arbitrary values of Oh and � 10 for the case of DP jets; see figure 8.
Therefore, in both cases, the dynamic pressure associated with the velocities induced by
the propagation of the capillary waves is an order of magnitude larger than the capillary
pressure, a fact that suggests that the implosion of the base of the cavity and the subsequent
ejection of the jet could be described as a purely inertial process in which capillarity plays
a subdominant role. Section 4 will be devoted to exploring this possibility; however, before
this is done, the computed velocity fields for the case of BB jets will be compared with the
ones predicted by the theory in Gordillo & Rodríguez-Rodríguez (2019).

3. Comparison of the numerical results corresponding to the case of bubble bursting
jets with theoretical predictions assuming an inertio-capillary balance

Figure 9 illustrates that the velocity field can be divided into three well-defined
spatio-temporal regions: (i) the bulk, with a velocity field v(r, z, t); (ii) the jet region,
which extends along the spatio-temporal region zmin(t) ≤ z ≤ s(t); and (iii) the drop,
located at z = s(t). In the limit of low-viscosity liquids of interest here, Oh 
 1 and
Ohd 
 1, see (2.1a,b) and (2.3), vorticity is confined within thin regions located very
close to the interface and, therefore, the bulk velocity field is irrotational. The velocity
potential φ, with v(r, z, t) = ∇φ, satisfies the Laplace equation ∇2φ = 0. The bulk region
ends at z = zmin(t); namely, just at the beginning of the jet region, where the equations
governing the flow can be notably simplified, as reported recently in Blanco-Rodríguez
& Gordillo (2020). Indeed, due to the fact that the jet geometry is slender and the
dynamic pressure is much larger than the capillary pressure since, otherwise, a jet would
not be formed (Gordillo & Rodríguez-Rodríguez 2019), pressure gradients within the
jet can be neglected and, therefore, the vertical momentum equation for u(z, t) reduces
to Du/Dt = 0, with D/Dt indicating the material derivative. This momentum equation
indicates that the flow within the jet is ballistic; namely, that fluid particles conserve the
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Figure 9. Sketch showing the meaning of the different variables used to characterise the jet ejection process
as well as the different spatio-temporal regions in which the flow can be divided; namely, the bulk, jet and
drop regions. These variables are defined in the main text, except for the jet radius rj and the velocity vj at
the spatio-temporal boundary where the jet meets the drop: rj(t) = χ(z = s(t), t), vj(t) = u(z = s(t), t), with
ds/dt = vtip(t) and vtip(t) and b(t) calculated using integral balances of mass and momentum, while u(z, t)
and χ(z, t) are calculated using the method of characteristics described in Gekle & Gordillo (2010); see also
Blanco-Rodríguez & Gordillo (2020), where the integral balances of mass and momentum at the drop are
solved. The decomposition of the flow in three regions and the very good agreement between the predictions
and the numerical results presented in Blanco-Rodríguez & Gordillo (2020) reveal that the jet is driven by
the bulk velocity field v: once the value of the bulk velocity field is known at the base of the jet, both the
spatio-temporal evolution of the jet and the drop radius and velocity can be predicted using the equations in
Gekle & Gordillo (2010), Blanco-Rodríguez & Gordillo (2020).

velocities they possess at the base of the jet. These velocities are prescribed by v since
u(z = zmin(t), t) = vz(r = 0, z = zmin(t), t), where vz indicates the vertical component of
the bulk velocity field. As explained in Blanco-Rodríguez & Gordillo (2020), the time
evolution of the radius of the drop, b(t), and of the jet tip velocity, vtip(t), can be
determined by applying integral balances of mass and momentum at z = s(t) once the
functions u(z, t) and χ(z, t), calculated using the method described in Gekle & Gordillo
(2010), are particularised at z = s(t); see figure 9. Moreover, the criterion derived in
Blanco-Rodríguez & Gordillo (2020) determines the instant t∗ at which the drop detaches
from the jet and, hence, the drop radius and velocity can be predicted as vd = vtip(t∗),
rd = b(t∗).

Figure 9, together with the explanations given above, reveal that once v is known, the
functions describing the jet radius and velocity χ(z, t) and u(z, t), the jet tip radius and
velocity b(t) and vtip(t), and even the drop radius and velocity rd and vd, can be calculated
as a function of the control parameters using the results described in Blanco-Rodríguez
& Gordillo (2020). Since our main interest is in describing the origin of the jets, this
section focuses on providing analytical expressions for the irrotational bulk velocity field
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On the jets produced by the capillary collapse of cavities

h (z, t)

(a)

(b)

vr (z, t)

v (z, r)

rmin (t)

α rmin (t)

� �

β

zmin (t) zmin (t)zs

dQ (z0) = –2π h (z0) vr (z0) dz0

z z

ε

Figure 10. Panel (a) is a sketch representing the base of the cavity from which the jet is ejected, and panel (b)
indicates that the velocity field can be approximated by a line of sinks with intensities dQ(z0) = −2πq(z0) dz0
extending along the axis of symmetry a distance proportional to the wavelength λ∗ ∝ Oh1/2 (see figures 2a
and 4).

v(r, z, t), and special attention is paid to the value of vz at r = 0 and z = zmin(t′), with t′ the
instant at which the minimum value of rmin(t) is attained; see figures 9 and 10. With that
purpose in mind, it proves convenient to now define zjet = zmin(t′), rjet = rmin(t′), and also
vjet = vz(r = 0, zjet, t′), which represents the vertical component of the bulk velocity at the
axis when the radius of the base of the collapsing cavity is the minimum. The relevance of
vjet can be understood because this is the maximum velocity with which the liquid flows
into the jet and, thus, at the usual limit at which the capillary force pulling back the tip
of the jet is small compared with inertial terms in the momentum balance, vtip(t) � vjet
and vd � vjet: this is due to the fact that material points conserve their velocities when
flowing along the jet and because the jet tip barely decelerates through capillary forces at
the usual limit when the dynamic pressure is much larger than the capillary pressure. As
shown by the results reported in Blanco-Rodríguez & Gordillo (2020), the capillary forces
pulling the tip of the jet downwards will make vd < vjet, but it will be shown here that
these differences are small for low values of the Ohnesorge number.

In summary, in this contribution the values of vjet and vd will be reported, but
those of the velocity field u(z, t) will not – see figure 9 – which, in contrast, could be
calculated using the theoretical framework presented in Blanco-Rodríguez & Gordillo
(2020). Moreover, this contribution will focus on the description of bubble-bursting jets in
the range Oh ≤ 0.02, for which a bubble is not entrapped before the jet is produced and for
which vd � vjet. The cases corresponding to the ejection of jets after a bubble is entrapped
for 0.02 < Oh < 0.04, which has been studied carefully in Blanco-Rodríguez & Gordillo
(2020), reveal that the capillary deceleration at the tip of the jet can no longer be neglected
and, as a consequence of this, vd is noticeably smaller than vjet.

Recalling now that the dimensionless variables in this section are defined using Rb, the
capillary velocity

√
σ/(ρRb) and the capillary pressure σ/Rb as the characteristic values

of length, velocity and pressure, respectively, our analysis starts by noticing that Gordillo
& Rodríguez-Rodríguez (2019) reported that the bulk velocity field v giving rise to BB
jets – see figure 9 – can be calculated as the velocity field produced by a line of sinks of
length � and intensity q(z), with � ∝ λ∗ ∝ Oh1/2, λ∗ the characteristic wavelength of the
waves travelling along the cavity walls and q(z) the flow rate per unit length induced by
the collapse of the void with a radius

h(z) = z tan β, (3.1)
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with β the opening semiangle of the truncated cone from which the jet is ejected (see
figure 10a). The flow rate induced by the sinks located at a vertical position z0 can thus be
calculated as (see figure 10b)

dQ(z0) = −2πq(z0) dz0 = −2πh(z0)vr(z0) dz0, (3.2)

with vr calculated from the balance between the inertial and capillary terms in the
Euler-Bernoulli equation (Zeff et al. 2000; Sierou & Lister 2004; Lai et al. 2018),

vr ∝ (cos β)1/2h−1/2. (3.3)

The substitution of (3.1) and (3.3) into (3.2) yields

dQ(z0) = −2πKz1/2
0

√
sin β dz0, (3.4)

with K the proportionality constant arising from the balance in (3.3). Therefore, the
velocity field at (z, ε) (see figure 10) generated by a line of sinks of length � extending
from z = zs = zmin + αrmin to z = zs + �, with α an order unity constant, independent of
time, and rmin(t) and zmin(t) = rmin(t)/ tan β indicating the radial and vertical coordinates
of the base of the cavity (see figure 10) can be expressed as

v(z, ε) = 1
4π

∫ zs+�

zs

εer + (z − z0)ez

[(z − z0)2 + ε2]3/2 dQ(z0), (3.5)

with er and ez indicating the unit vectors in the radial and axial directions, respectively.
The substitution of (3.4) into (3.5) yields the following expressions for the vertical and

radial components of the velocity:

vz(z, ε) = −K
√

sin β

2

∫ zs+�

zs

z1/2
0 (z − z0)

[(z − z0)2 + ε2]3/2 dz0, (3.6)

and

vr(z, ε) = −K
√

sin β

2

∫ zs+�

zs

z1/2
0 ε

[(z − z0)2 + ε2]3/2 dz0. (3.7)

Equations (3.6) and (3.7) depend on � and also on the constants α and K, which are
to be determined in what follows. First, the result in Gordillo & Rodríguez-Rodríguez
(2019) is used, where it was reported that the length of the line of sinks � is proportional
to the wavelength of the capillary waves that trigger the ejection of the jet and, therefore,
� ∝ λ∗ ∝ Oh1/2. Moreover, notice that the integration limits in (3.6) and (3.7) can be
expressed as (see figure 10):

zs(t) = rmin(t)/ tan β + αrmin(t) and zs(t) + � = rmin(t)/ tan β + αrmin(t) + �,

(3.8)

with β = π/4 the opening semiangle of the truncated cone, � ≈ Oh1/2 and rmin(t, Oh)

indicating the radius of the base of the cavity from which the jet emerges, which is a
time-varying quantity, and is not to be confused with rjet, which only depends on Oh.
Indeed, let it be insisted that the maximum jet velocity, vjet(Oh), is reached at the axis
of symmetry when the radius of the truncated cone is rjet(Oh), with rjet indicating the
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On the jets produced by the capillary collapse of cavities

minimum value of rmin(t, Oh). For Oh � 0.03, Blanco-Rodríguez & Gordillo (2020) found
that rjet varies linearly with the wavelength of the capillary wave as:

rjet = 0.2215

(
1 −

√
Oh

0.0305

)
, (3.9)

with the values of the two free constants, 0.2215 and 0.0305, adjusted by fitting the
theoretical prediction with the numerical results. For 0.03 � Oh � 0.04, a bubble is
entrapped before the jet emerges and, in these cases, a viscous cut-off imposes that
rjet ∝ Oh−2 (Gordillo & Rodríguez-Rodríguez 2019; Blanco-Rodríguez & Gordillo 2020).
The role played by viscosity when a bubble is entrapped for Oh � 0.03 will be clarified
in § 4 and, as pointed out above, the focus here will mainly be on the analysis of the jets
produced within the range of values of Oh for which no bubbles are entrapped and, thus,
(3.9) provides the value of rjet(Oh).

In order to determine the values of the constants K and α, the results in Duchemin et al.
(2002) and Lai et al. (2018) are used, where it is found that the time evolution of the jets
can be described assuming the inertio-capillary balance, implying that lengths vary in time
as τ 2/3, with τ the instant to or from the ejection of the jet and, therefore, the velocities
scale as τ−1/3. Under this hypothesis, the value of the local Weber number, defined as
Welocal = rs(t)v2

s (t) with rs(t) ∝ rmin(t) the radial position of a point on the interface
and vs(t) the corresponding liquid velocity, remains constant in time. From the results
in figures 6 and 8 in § 2, where it is shown that capillary waves travel at a velocity which
is five times the capillary velocity, it is deduced that the value of the local Weber number
should be (Vλ/Vc)

2 = v2
λ � 25. Indeed, figure 11 reveals that the value of the local Weber

number for La = Oh−2 = 4000 at the point on the interface located at rs = 1.25rmin is
roughly constant in time and equal to 25; a similar result is obtained for other values
of rs provided that rs/rmin < 1.5. Then, the values of the two free constants, K and α, are
determined from the following two conditions: (i) Welocal = 25 at the point on the interface
located at rs = 1.25rjet(Oh = La−1/2 = 4000−1/2), with rjet given in (3.9); and (ii) vz(r =
0, z = rjet/ tan β, Oh = La−1/2 = 4000−1/2) = vjet(Oh = La−1/2 = 4000−1/2), with vjet
calculated numerically and vz calculated by means of (3.6). The solutions to these two
equations yield the following values for the two free constants: K = 11.3 and α = 0.6.

Figures 12 and 13 show that the velocity field predicted by (3.6) and (3.7) with � =
1.24Oh1/2, K = 11.3 and α = 0.6 for arbitrary values of Oh are in good agreement with
the numerical results at different instants of time after the jet is ejected. Here, the value
of the free constant relating the length of the sinks with the wavelength of the capillary
wave in � ∝ λ∗ ∝ Oh1/2 has been set to 1.24 (Gordillo & Rodríguez-Rodríguez 2019): it
was checked that the modification of this multiplicative constant between 1 and 1.5 only
has a noticeable effect on the velocity fields calculated for Oh � 0.01.

It is noted that the velocity fields calculated using (3.6) and (3.7) depend parametrically
on time through rmin(t), which is given by (3.9) only at the instant the jet is ejected. Since
figures 12 and 13 show that the velocity fields are accurately predicted by the theory
once the jet is ejected, the time evolution of rmin(t) could have been calculated using
the initial shape of the interface obtained numerically as a starting point, with this shape
being updated in time by means of the kinematic boundary condition using the predicted
velocity fields. However, the results shown in figures 12 and 13 have been obtained using
the values of rmin(t) given by the numerical simulations. Notice also that the time evolution
of the tip of the jet as well as the drop formation process could be predicted using the
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Figure 11. Comparison between the numerical and the velocity fields calculated using (3.6) and (3.7) for
α = 0.6 and � = Oh1/2, K = 11.3 and β = π/4 for the case of BB jets and Oh = La−1/2 = 4000−1/2. The
comparison of the velocity fields on the bottom line correspond to the three jet shapes represented in blue
in the top-left image. The red arrows indicate numerical results, whereas the black ones correspond to those
computed using (3.6) and (3.7). The black line at the axis indicates where the line of sinks is located.

velocity fields depicted in figures 12 and 13. As pointed out above, the time evolution of
the jets can be described using just the local flow structure near the base of the jet; see
Blanco-Rodríguez & Gordillo (2020) for details.

Once the values of α, K and � are known, the maximum jet velocity can be calculated
as vjet = vz(r = 0, zjet = rjet/ tan β) with rjet and vz respectively given in (3.9) and
(3.6), which possesses the following analytical solution, already provided in Gordillo &
Rodríguez-Rodríguez (2019):

vjet = K sin β

2
√

cos β
√rjet

[
x2

1 − x2
2

− ln

√
1 + x2

1 − x2
− x1

1 − x2
1

+ ln

√
1 + x1

1 − x1

]
, (3.10)

where x2
1 = zs/zjet, zs = zjet + αrjet, zjet = rjet/ tan β and x2

2 = (zs + �)/zjet, with � =
1.24Oh1/2, α = 0.6, K = 11.3, β = π/4 and rjet given by (3.9).

Figure 14 compares the value of vjet(Oh) calculated using (3.10) with the numerical
values of vjet calculated here and the numerical values of vtip given in Deike et al. (2018)
– see figure 9 for the definition of vtip. Moreover, figure 14 also includes experimental
and numerical values that correspond to the velocities of the first drops produced after
the breakup of the jet, vd. The results in figure 14 reveal that the predicted values of
vjet, which are in close agreement with the numerical values, are slightly larger than
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Figure 12. Comparison between the numerical and the analytical velocity fields calculated from (3.6) and
(3.7) for α = 0.6, � = 1.24Oh1/2, β = π/4 and K = 11.3 for the case of BB jets at the different instants of
time and different values of Oh corresponding to the bubble shapes depicted in the top row. The red arrows
indicate the numerical results, whereas the blue ones correspond to those computed using (3.6) and (3.7).
Time advances from top to bottom, the results are grouped in columns and, from left to right, correspond to
the following values of the Ohnesorge number: Oh = La−1/2 = 27777−1/2, Oh = La−1/2 = 10000−1/2 = 0.01
and Oh = La−1/2 = 7200−1/2. The blue line at the axis indicates where the line of sinks is located.
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Figure 13. Comparison between the numerical and the analytical velocity fields calculated from (3.6) and
(3.7) for α = 0.6, � = 1.24Oh1/2, β = π/4 and K = 11.3 for the case of BB jets at the different instants of
time and different values of Oh corresponding to the bubble shapes depicted in the top row. The red arrows
indicate the numerical results, whereas the blue ones correspond to those computed using (3.6) and (3.7). Time
advances from top to bottom, the results are grouped in columns and, from left to right, correspond to the
following values of the Ohnesorge number: Oh = La−1/2 = 4444−1/2, Oh = La−1/2 = 2500−1/2 = 0.02 and
Oh = La−1/2 = 1000−1/2. The last column corresponds to conditions for which a bubble is entrapped and the
fastest jets with the smaller drops are produced (Brasz et al. 2018; Blanco-Rodríguez & Gordillo 2020). The
blue line at the axis indicates where the line of sinks is located.
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Figure 14. This figure compares the droplet velocities vd for Bo ≤ 0.05 reported in Ghabache et al. (2014)
(green open squares), in Krishnan, Hopfinger & Puthenveettil (2017) (purple open triangles), the droplet
velocities calculated in Blanco-Rodríguez & Gordillo (2020) for Bo = 0.01 (solid blue dots) and Bo = 0.05
(solid red dots), the numerical results in figure 6 in Deike et al. (2018) for vtip, with vtip defined in figure 9
(blue and cyan open symbols, corresponding respectively to Bo = 10−3 and 10−2) and also the values for the
velocities vjet calculated numerically at r = 0, z = zjet = rjet/ tan β when rmin(t) = rjet (solid black squares)
with the values of vjet (blue continuous line) predicted by (3.10) with � = 1.24Oh1/2, α = 0.6, K = 11.3,
β = π/4 and rjet given by (3.9), represented in the inset. Notice that the values of vd are slightly smaller
than vjet as a consequence of the capillary forces pulling the tip of the jet back (Blanco-Rodríguez & Gordillo
2020).

the velocities of the drops emitted, vd. As explained above, this is a consequence of the
capillary deceleration experienced by the tip of the jet, an effect already quantified in
Blanco-Rodríguez & Gordillo (2020), where a detailed description of the drop formation
process is also provided. However, as explained at the beginning of this section, the values
of vjet and vtip are very similar to each other within this range of values of Oh because
material points move ballistically along the jet and also because of the relatively small
deceleration caused by the capillary forces acting on the jet tip.

Equation (3.10) reveals that the origin of the large velocities of the jets produced by
bursting bubbles is caused by the combination of two effects: as expressed by (3.9), rjet

decreases with Oh1/2 and, therefore, the term r−1/2
jet increases with Oh. This means that one

of the reasons for the large velocities of the jets produced after the bursting of bubbles is
that the capillary waves that propagate along the walls of the crater transform the initially
rounded cavity into a truncated cone with a radius at its base that is substantially smaller
than that of the original bubble. In addition, vjet also increases with Oh because the length
of the line of sinks increases as ∝ Oh1/2. Therefore, the increase in vjet with Oh in the
region where no bubbles are entrapped, Oh ≤ 0.02, is caused by the combination of two
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Figure 15. The local Weber number is only approximately constant in time for the case of BB jets. Top and
bottom figures correspond, respectively, to Oh = 0.01 and Oh = 0.02.

effects: rjet decreases with Oh1/2, and also because the wavelength of the capillary waves
increases with Oh as λ∗ ∝ Oh1/2.

The findings in this section support the results in Gordillo & Rodríguez-Rodríguez
(2019), where the flow field is calculated by being induced by a line of sinks with a length
prescribed by the wavelength of the capillary waves, and their flow rate per unit length
is fixed by the same inertio-capillary balance as the one which leads to the self-similar
solution in Lai et al. (2018), which is proven to be an excellent approximation. Indeed,
the self-similar results in Lai et al. (2018) are approximate but not exact because if they
were, the value of the local Weber number would not vary in time, whereas figures 11
and 15 show that the value of the local Weber number does experience slight variations in
time. This fact is the motivation for the results presented in next section, where whether
or not the ejection of BB and DP jets can be described using the theoretical framework in
Gordillo & Rodríguez-Rodríguez (2019) without resorting to the inertio-capillary balance
implicitly assumed in (3.3) is explored.

4. Comparison of the numerical results with predictions relaxing the assumption of
an inertio-capillary balance

While the agreement between the predictions and the numerical results in § 3 is fairly
good when the intensities of the sinks are calculated using (3.3), this section is devoted to
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On the jets produced by the capillary collapse of cavities

h(z, t) = r0(t) + z2r1(t)

2r0(t)

q (t) = r0r�0

z

�b ∼ (r0/�r0r1)

Figure 16. Sketch showing that the local geometry of a collapsing bubble can be described using a parabola
of the type h(z, t) = r0(t) + r1(t)z2. The blue line at the axis indicates the location of the line of sinks.

exploring how the predictions of the velocity field are modified when the assumption of
an inertio-capillary balance is relaxed.

This discussion begins by noticing that the implosion of a void that is located near a free
interface of a low-viscosity liquid such as water shares many similarities with the pinch-off
of bubbles which, unlike the case of the pinch-off of drops in air (Eggers 1993; Day,
Hinch & Lister 1998; Burton, Rutledge & Taborek 2004; Castrejón-Pita et al. 2015), is not
universal. Indeed, it is well known that the final instants of the collapse of an axisymmetric
bubble are not universal because they are strongly dependent on the liquid viscosity (Doshi
et al. 2003; Suryo, Doshi & Basaran 2004; Burton, Waldrep & Taborek 2005; Thoroddsen,
Etoh & Takehara 2007), on the gas flow rate through the neck (Gordillo et al. 2005)
and, most importantly, also on the initial geometry of the cavity, which is characterised,
as it is shown in figure 16, by two different length scales, r0 and r−1

1 (Bergmann et al.
2006; Gordillo & Pérez-Saborid 2006). The latter and main difference from the analogous
case of the pinch-off of drops in air, together with the slow logarithmic convergence of
the system of equations that describe the collapse of a cavity (Gordillo & Pérez-Saborid
2006), prevent the purely inertial asymptotic limit being reached. This asymptotic regime
is described in Eggers et al. (2007), Gordillo & Fontelos (2007) but it is never observed in
practice (Bolaños Jiménez et al. 2008; Gordillo 2008). Therefore, the dynamics governing
the final instants of bubble pinch-off do not converge in a real experiment to a universal
solution, as it is the case for drops (Eggers 1993; Day et al. 1998; Burton et al. 2004;
Castrejón-Pita et al. 2015), instead needing to be described as solving the system of two
ordinary differential equations deduced in Gordillo & Pérez-Saborid (2006), Gordillo
(2008) for the two lengths, r0(t) and r−1

1 (t), which characterise the time-evolving local
shape of the interface h(z, t) = r0(t) + z2r1(t); see figure 16. These two equations are
deduced by making use of the Euler-Bernoulli equation for a time-dependent velocity field
generated by a line of sinks of length �b(t) > r0(t) with �b � r0/

√
r0r1 (Bergmann et al.

2006) which, when written in dimensionless variables using, as characteristic values of
length, pressure and velocity, an outer length scale a, the capillary pressure σ/a and the
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capillary velocity
√

σ/(ρa) read (Gordillo & Pérez-Saborid 2006; Gordillo 2008):

ln(r0r1)
d ln(r0ṙ0)

ds
− 1 + γΛ

p̂
r0r1

+ 4Oh
r0ṙ0

+ 2r0(1 − 2r0r1)

(r0ṙ0)2 = 0

(ln(r0r1) + 2Oh
r0ṙ0

)
d ln(r0r1)

ds
− 1 + Λ

2
p

r0r1
+ 4Oh

r0ṙ0
+ r0

(r0ṙ0)2 = 0

dt
ds

= −e−2s

r0ṙ0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (4.1)

The solutions for (4.1), the latter of which is deduced from dr0/dt = ṙ0 = r0ṙ0/r0, with
γ an order unity constant and s = − ln r0, depend on: (i) the initial conditions; (ii) on
the Ohnesorge number Oh = μ/

√
ρaσ ; (iii) the gas to liquid density ratio Λ; and (iv) on

the Reynolds number based on the gas material properties through the functions p and
p̂ that express gas overpressure. The system of equations (4.1) accurately describes the
experimental observations, using liquids with different viscosities, bubbles of different
diameters and different initial conditions; see Bolaños Jiménez et al. (2008) and Bolaños
Jiménez et al. (2009). It was also shown in Gordillo (2008) that (4.1) reproduced
the experimental observations reported in Thoroddsen et al. (2007) regarding the time
evolution of r0(t) and regarding the formation of tiny satellite bubbles, and also recovered
the Stokes limit deduced in Doshi et al. (2003), Suryo et al. (2004), as demonstrated by
the experiments in Bolaños Jiménez et al. (2009).

The ability of (4.1) to reproduce experimental observations is a clear consequence of the
correctness of the different approaches made in the modelling, which start by neglecting
the vorticity produced at the gas-liquid interface and by expressing the irrotational velocity
field as a line of sinks of dimensionless flow rate per unit length ∝ r0ṙ0 placed at the axis of
symmetry along a distance �b ∝ r0/

√
r0r1; see figure 16. In fact, the first logarithmic term

in (4.1) results from ln(r0/�b) = 1/2 ln(r0r1) for �b = r0/
√

r0r1 > r0. The system solution
(4.1) in the inviscid limit Oh 
 1 predicts that r0 ∝ ταc with τ the time to pinch-off
and 1/2 < αc < 2/3, a fact indicating that the collapse of bubbles is faster than in the
analogous case of the pinch-off of drops, for which the inertio-capillary balance holds;
i.e., r0 ∝ τ 2/3 (Day et al. 1998; Duchemin et al. 2002; Lai et al. 2018).

In order to understand the reasons why the faster dynamics govern the pinch-off of
bubbles, it should be noted that if the initial conditions governing the collapse were such
that r1 ∝ r−1

0 and the capillary terms were not subdominant, �b = r0/
√

r0r1 ∝ r0 and the
first logarithmic term in (4.1), ln(r0/�b), would be a constant. In this particular case, the
axial and radial lengths characterising the local shape of the bubble around its minimum
(see figure 16) would scale in the same way, and only the former of the equations in
(4.1) would be required to describe the bubble collapse process. Moreover, a self-similar
solution of the type r0 ∝ τ 2/3 would be obtained, and the value of the local Weber number
would remain constant in time. However, as pointed out above, the (4.1) system converges
very slowly (logarithmically) to the asymptotic solution (Gordillo & Pérez-Saborid 2006);
therefore, it retains a memory of the initial conditions, which, in the case at hand, are
represented by the capillary waves propagating towards the base of the bubble. These
waves will impose an initial value for �b that, in general, will be different from the value
�b ∝ r0 required for the system to evolve in a self-similar manner and, moreover, capillary
terms are subdominant as depicted in figure 8. These facts explain the findings in § 3 in
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On the jets produced by the capillary collapse of cavities

which the numerical solutions are not, strictly speaking, self-similar; indeed, as depicted
in figures 11 and also in 15, the local Weber number is not constant in time.

The reason why the bubble collapse proceeds faster than r0 ∝ τ 2/3 can be understood
in simple terms because the length of the sinks �b(t) ∝ r0/

√
r0r1 is larger than r0(t) and,

also, the ratio �b(t)/r0(t) increases in time, a fact meaning that the cavity shape becomes
more slender as the cavity collapses (Gordillo et al. 2005). Clearly, the longer the line
of sinks for a given r0 is, the larger the velocities are and the faster the collapse process
will be. From the point of view of the equations governing the collapse of cavities, the
smaller values of the exponent αc in r0 ∝ ταc are associated with the larger values of the
time-dependent ratio �b(t)/r0(t) > 1, which grows in time for the case of bubbles, but
remains constant in time for the self-similar case in which the inertio-capillary balance
holds, r0 ∝ τ 2/3.

The left column in figure 17 shows a comparison between the predicted and the
numerical time evolution of the local shapes of the interface for the values Fr = 600,
We = 95 within the bubble entrapment region depicted in figure 3. The system (4.1) is
integrated in the limit Λ = 0 using, as initial conditions, the values of r0(0), ṙ0(0) and
r1(0) taken from the simulations, with x(0) indicating the initial value of the generic
variable x. It should be highlighted that the solution for the system (4.1) largely depends
on the initial geometry of the collapsing bubble.

Indeed, the solutions for (4.1) in the limits of negligible gas, viscous and capillary effects
read (Gordillo 2008):

q = r0ṙ0 = r0ṙ0(0)

r0r1(0)
× e−

√
2s−2s(0)+[ln(r0r1(0))]2

, r0r1 = e−
√

2s−2s(0)+[ln(r0r1(0))]2
,

(4.2a,b)

which, when expressed in terms of the time to pinch-off τ , yield to solutions of the type
r0 ∝ ταc with 1/2 < αc < 2/3. Indeed,

r0 ∝ ταc → q ∝ r0ṙ0 ∝ τ 2αc−1 ∝ r2−1/αc
0 → − ln q ∝ (2 − 1/αc)s → (2 − 1

αc
) = d ln q−1

ds
,

(4.3)

and, therefore:

αc = 1
2

(
1 − 1

2
d ln q−1

ds

)−1

, (4.4)

which, in the limit d ln q−1/ds 
 1 reads:

αc � 1
2

(
1 + 1

2
d ln q−1

ds

)
. (4.5)

Then, the substitution of the expression of q in (4.2a,b) into (4.5) yields:

αc = 1
2

+ 1

4
√

2[s − s(0)] + [ln(r0r1(0))]2
, (4.6)

which indicates that the exponent αc decreases with time and converges very slowly
(logarithmically) to 1/2. Interestingly, (4.6) also reveals that this convergence depends
on the initial conditions through the term representing the initial shape of the cavity,
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Figure 17. Left-hand column: The top panel shows the comparison between the numerical local shapes of the
bubble entrapped in the DP case corresponding to Fr = 600, We = 95, Mo = Mow (continuous lines) and the
calculated shapes resulting from the integration of the system (4.1) in the limit Λ = 0 (dashed black lines).
Below, a comparison between the numerical values of r0(t) and of q(t) (squares) with the values calculated
by integrating the equations in (4.1). Right-hand column: The top panel shows a comparison between the
numerical local shapes of the bubble entrapped in the BB case corresponding to Oh = 0.032 (colour lines) and
the shapes predicted by (4.2a,b) (dashed black lines). Below, a comparison between the numerical values of
r0(t) and q(t) (squares) with the values calculated using the equations in (4.2a,b).
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On the jets produced by the capillary collapse of cavities

ln(r0r1(0)), this being one of the reasons why the different exponents appear in the
literature to describe the pinch-off of bubbles (Gordillo 2008). Therefore, (4.6) predicts
that αc decreases when the slenderness of the initial shape of the cavity increases; i.e.,
when [ln(r0r1(0))]2 increases or the entrapped bubble is more elongated.

The collapse of the bubble entrapped in the case of BB jets for Oh = 1000−1/2 � 0.032
is depicted in figure 17, where the (4.2a,b) solution, which is valid for low-viscosity liquids
when the value of the local Weber number is much larger than the unity, is superimposed
into the numerical solution, finding an almost perfect match. Figure 17 also shows that, in
agreement with (4.2a,b), the sink strength r0ṙ0 decreases in time as r0 → 0, a fact meaning
that the local value of the Reynolds number, given by Oh−1r0ṙ0 � 30r0ṙ0, also decreases
in time. Therefore, viscous effects become relevant when the bubble splits in two and the
jet is ejected; this is the reason why, as mentioned above, for 0.04 � Oh � 0.03 there
exists a viscous cut-off and the minimum radius from which the jet emerges is different
from zero. Thus, the existence of the viscous cut-off length avoids singular values of the
jet velocity (Gordillo & Rodríguez-Rodríguez 2019). In summary, in general, two different
length scales are required to describe the time evolution of the shape of a bubble that
splits in two. Moreover, if the ratio of these two length scales is not kept constant along
the collapse process, self-similarity is lost and solutions of the type r0(τ ) ∝ ταc , with
1/2 < αc < 2/3, will be found, with smaller values of αc; i.e., with larger values of the
velocities for the larger values of the ratio �b/r0 = 1/

√
r0r1, see figure 16.

Similar ideas to those expressed above are still applicable for the cases in which a cavity
collapses without breaking into two parts, as is the case of the jets emerging from the
bases of truncated cones considered in § 3 and sketched in figure 10. Indeed, two different
length scales, rmin(t) and �b, with rmin and �b playing the roles of r0 and r0/

√
r0r1 in

(4.1), respectively, are also required to describe the collapse of these cavities. Therefore,
since �b is imposed by the capillary waves reaching the base of the cavity and, thus, is
constant in time, the ratio �b/rmin(t) will increase in time and the collapse will be faster
than the self-similar collapse rmin ∝ τ 2/3, which would only take place if �b(t)/rmin(t)
remained constant in time, as explained above. Moreover, the first logarithmic term in
(4.1) corresponds to ln(rmin/�b) (Gordillo 2008); therefore, the equation describing the
time evolution of the minimum radius of the cavity rmin(t), which plays the same role as
r0(t) in the equations above, can be written as:

ln
(

rmin

�b

)
drminṙmin

dt
+ 1

2
ṙ2

min − 1
rmin

= 0. (4.7)

Defining s = − ln(rmin/�b) and the intensity of the sinks as q = rminṙmin, (4.7) yields:

−2s
d ln q

ds
− 1 + 2�be−s

q2 = 0 ⇒ d
ds

(
s

q2

2
+ �be−s

)
= 0 (4.8)

and, therefore, the result found in Gordillo et al. (2005) is recovered:

q = q(0)√− ln(rmin/�b)

(
s(0) + 2

rmin(0) − rmin

q2(0)

)1/2

≈ q(0)√− ln(rmin/�b)
, (4.9)

where the initial conditions at s(0) ≈ 1 have been imposed, and it has also been taken into
account that, as illustrated in figure 8, rmin(0)/q2(0) 
 1.

The expression for the flow rate in (4.9) has been calculated under the assumption that
the collapsing cavity is a cylinder instead of a truncated cone and that the Euler-Bernoulli
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equation is particularised at the plane of symmetry of the cylinder. Therefore, the result in
(4.9) is just an approximation whose validity will be checked a posteriori by comparing the
predictions with the numerical results. The physical meaning of (4.9) is that the strength of
the sinks driving the jet ejection process is not fixed by an inertio-capillary balance at the
scale of rmin(t) as in § 3 but by the flow rate q(0) imposed by the capillary waves travelling
towards the pole of the bubble at the scale of the initial radius of the cavity; see figure 8.
Then, since

dQ(z0) = −2πq dz0, (4.10)

the substitution of (4.10) into (3.5) yields:

vz(z, ε) = −q
2

∫ zs+�

zs

(z − z0)

[(z − z0)2 + ε2]3/2 dz0, (4.11)

and

vr(z, ε) = −q
2

∫ zs+�

zs

ε

[(z − z0)2 + ε2]3/2 dz0, (4.12)

with q the flow rate per unit length in (4.9), which is constant along the vertical direction.
In order to express the flow rate per unit length q in (4.11) and (4.12) as a function of the
control parameters, it must be taken into account that since capillary waves propagate in
the case of BB jets at five times the capillary velocity at the scale of the radius of the
cavity rc, q(0) � vλrc � 5 (see figure 6a). Therefore, assuming that the unknown length
�b in (4.9) is the initial radius of the cavity, �b = rc = 1, (4.9) reads:

q = q(0)√− ln(rmin/�b)
= 5√− ln rmin

. (4.13)

Notice that the approximation for the flow rate per unit length in (4.13) is asymptotically
valid in the limit rmin 
 1 regardless of the exact value of the outer length �b. This is
because, for an arbitrary value of �b ∼ O(1), which is a fixed length independent of time,
| ln rmin| 	 | ln �b| and, therefore, ln(rmin/�b) = ln rmin − ln �b � ln rmin.

It should be pointed out that (4.13) expresses that the flow rate of the sinks controlling
the jet ejection process is fixed at the scale of the radius of the unperturbed bubble
and also that it can be calculated as the product of the velocity of the capillary waves
travelling along the cavity walls towards the base of the bubble times the radius of the
bubble, with small logarithmic corrections. The integration limits in (4.11) and (4.12),
zs = rmin/ tan β + αrmin and z = zs + �, depend on α, which is fixed here to the value
found in § 3, α = 0.6, and also depend on the length of the sinks, � = COh1/2, with C a
multiplicative constant. The value C = 2.8 used here is determined using the condition
that the vertical velocity predicted by (4.11) at the axis of symmetry, vz(r = 0, z =
rjet/ tan β), with rjet given in (3.9), coincides with the numerical value obtained for the
smallest value of Oh explored here, Oh = 6 × 10−3, at the instant of time the vertical
velocity is maximum.

The results depicted in figures 18 and 19 show remarkable agreement between the
numerical results and the velocity fields calculated through (4.11)–(4.13) using α = 0.6,
� = 2.8Oh1/2 and q given by (4.13) for all values of Oh and t.

As explained at the beginning of § 3, the maximum jet velocity is attained when
rmin(t) = rjet with rjet given in (3.9); therefore, vjet can be predicted solving (4.11)
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Figure 18. Comparison of the numerical and analytical velocity fields calculated using (4.11) and (4.12) for
α = 0.6, � = 2.8Oh1/2 and q given by (4.13) for the case of BB jets at the different instants of time and
different values of Oh corresponding to the bubble shapes depicted in the top row. The red arrows indicate
the numerical results, whereas the green ones correspond to those computed using (4.11) and (4.12). Time
advances from top to bottom, the results are grouped in columns and, from left to right, the results correspond to
the following values of the Ohnesorge number: Oh = La−1/2 = 27777−1/2, Oh = La−1/2 = 10000−1/2 = 0.01
and Oh = La−1/2 = 7200−1/2. The green line at the axis indicates where the line of sinks is located.
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Figure 19. Comparison of the numerical and analytical velocity fields calculated from (4.11) and (4.12) for
α = 0.6, � = 2.8Oh1/2 and q given by (4.13) for the case of BB jets at the different instants of time and
different values of Oh corresponding to the bubble shapes depicted in the top row. The red arrows indicate the
numerical results, whereas the green ones correspond to those computed using (4.11) and (4.12). Time advances
from top to bottom, the results are grouped in columns and, from left to right, the results correspond to the
following values of the Ohnesorge number: Oh = La−1/2 = 4444−1/2, Oh = La−1/2 = 2500−1/2 = 0.02 and
Oh = La−1/2 = 1000−1/2. The last column corresponds to conditions for which a bubble is entrapped and the
fastest jets with the smaller drops are produced (Brasz et al. 2018; Blanco-Rodríguez & Gordillo 2020). The
green line at the axis indicates where the line of sinks is located.
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Numerical results
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Figure 20. This figure compares the droplet velocities vd for Bo ≤ 0.05 reported in Ghabache et al. (2014)
(green open squares), in Krishnan et al. (2017) (purple open triangles), the droplet velocities calculated in
Blanco-Rodríguez & Gordillo (2020) for Bo = 0.01 (solid blue dots) and Bo = 0.05 (solid red dots), the
numerical results in figure 6 in Deike et al. (2018) for vtip, with vtip defined in figure 9 (blue and cyan
open symbols, corresponding respectively to Bo = 10−3 and 10−2) and also the values for the velocities vjet
calculated numerically at r = 0, z = zjet = rjet/ tan β when rmin(t) = rjet (solid black squares) with the values
of vjet (green continuous line) predicted by (4.15) with rjet given by (3.9), represented in the inset. It should
be noted that the values of vd are slightly smaller than vjet as a consequence of the capillary forces pulling
the tip of the jet back (Blanco-Rodríguez & Gordillo 2020). The dashed line is proportional to Oh1/2. For
comparative purposes, the values of vjet predicted by (3.10) with � = 1.24Oh1/2, α = 0.6, K = 11.3, β = π/4
are represented by a blue continuous line. Velocities are made dimensionless using the capillary velocity√

σ/(ρRb).

particularised at z = rjet/ tan β, ε = 0, which yields:

vjet = q
2

(
1

αrjet
− 1

αrjet + �

)
. (4.14)

The substitution of α = 0.6, � = 2.8Oh1/2 and the value of q in (4.13) into (4.14) yields:

vjet = 5
1.2
√− ln rjet

(
1

rjet
− 1

rjet + 4.67Oh1/2

)
, (4.15)

with rjet given in (3.9).
Figure 20 compares the values of vjet calculated numerically with those predicted by

(4.15). The excellent agreement between the predictions, experiments and the numerical
results depicted in figure 20 indicate that (4.15) can be used to calculate the initial jet
velocity for all ranges of Oh considered here. Notice that (4.15) predicts the jet velocities
slightly more accurately than the analogous (3.10) for the smaller values of Oh. However,
the differences between the two approaches regarding the smaller range of values of Oh
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is extremely small, which it can be appreciated in figure 21. In fact, the larger differences,
albeit also small, between the two approaches are observed for values of Oh for which a
bubble is entrapped; see the case of La = 1000 in figures 13 and 19, where it can be noted
that the analysis of § 3 predicts the numerical velocity field for this particular value of La
more accurately.

The results shown in this section reveal that the agreement between the predictions,
numerical results and experiments is as good as the agreement depicted in § 3. Therefore,
the velocity field produced by the bursting of bubbles for arbitrary values of Oh and for
times close to the jet ejection instant can be predicted using the theoretical framework put
forward in Lai et al. (2018), Gordillo & Rodríguez-Rodríguez (2019). It should also be
noted that the time evolution of the radius and of the jet tip velocity could be quantified in
terms of the time-varying local velocity fields depicted in figures 12 and 13 or 18 and 19
during the instants close to the jet ejection instant; specifically, when rmin(t) = rjet using
the theoretical framework provided in Blanco-Rodríguez & Gordillo (2020).

However, the results in figures 18–20 clearly indicate that the ejection of bubble bursting
jets can also be described when the inertio-capillary balance is relaxed. Then, because the
expressions deduced in this section are simpler than the analogous ones in § 3, because the
equations deduced in this section do not depend on the semiangle β illustrated in figure 10
and also because the ejection of the faster DP jets can only be described when the cavity
collapse is driven by inertia as will be shown below, from now on the velocity fields of
BB and DP jets will be quantified making use of (4.11), (4.12), (4.14) and (4.15). The
Appendix A demonstrates that the equations deduced in this section can also be used to
describe the ejection of BB jets for arbitrary values of Bo and Oh ≤ 0.02. The Appendix A
also provides equations that predict the radii of the ejected droplets and also the droplet
velocities vd with a special emphasis on the case of water.

Thanks to the analogy that exists between BB and DP jets, which has already been
pointed out in § 2 and illustrated in figures 4 and 5, the results in this section are used
to predict the velocity fields and the initial velocities of the jets produced when a drop
falls onto a deep liquid pool. Indeed, the flow rate per unit length q(0) in (4.9) can also be
calculated in the case of DP as the product of the velocity of the capillary waves multiplied
by the radius of the cavity, rc, as:

q(0) = VλRc

VRd
= 0.5Fr1/4vλ, (4.16)

where it has been taken into account that rc = 0.5Fr1/4 (Prosperetti & Oguz 1993; Jain
et al. 2019). The results in figure 6(b) indicate that the velocity of the capillary waves can
be approximated as:

vλ � 3.5(0.5Fr1/4We)−1/2, (4.17)

and, therefore, the substitution of the result of (4.17) into (4.16) yields:

q(0) � 3.5

√
0.5Fr1/4

We
. (4.18)

Consequently, the flow rate per unit length of the sinks that describe the ejection of DP
jets can be expressed, using the results in (4.9) and (4.18) as:

q � 3.5

√
0.5Fr1/4

−We ln(2rminFr−1/4)
, (4.19)
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Figure 21. Comparison between the numerical velocity fields (in red) and the analytical velocity fields
calculated using either (4.11) and (4.12) for α = 0.6, � = 2.8Oh1/2 and q given by (4.13) (in green) or (3.6) and
(3.7) for α = 0.6, � = 1.24Oh1/2, β = π/4 and K = 11.3 (in blue). The comparison refers to the case of BB jets
at different instants of time and values of Oh corresponding to the bubble shapes depicted in the top row. Time
advances from top to bottom, the results are grouped in columns and, from left to right, the results correspond to
the following values of the Ohnesorge number: Oh = La−1/2 = 27777−1/2, Oh = La−1/2 = 10000−1/2 = 0.01
and Oh = La−1/2 = 7200−1/2. The green/blue lines at the axis indicate where the line of sinks is located.
Velocities are made dimensionless using the capillary velocity

√
σ/(ρRb).
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where �b is also taken here as the radius of the cavity, �b = rc = 0.5Fr1/4. The same
comment made in the case of BB jets applies here: (4.19) is expected to provide an
approximate value for the flow rate per unit length q whenever rmin 
 �b � rc. Another
difference with the case of BB jets is that, in the case of DP jets, λ∗ ≈ 1; see figure 5,
and, therefore, (4.11) and (4.12) are solved using � = 1 and α = 0.6, with q calculated
through (4.19). The results, depicted in figures 22–24 for Mo = Mow, for the ranges of Fr,
We indicated in figure 3 and several instants of time after the jet is issued indicate that,
BB and DP jets can indeed be described in terms of the same physical ideas using the
theoretical framework presented in Gordillo & Rodríguez-Rodríguez (2019).

The initial velocity of DP jets can also be predicted by making use of (4.14), which,
using the expression of q given in (4.19), reads:

vjet = 3.5
2

√
0.5Fr1/4

−We ln(2rjetFr−1/4)
×
(

1
αrjet

− 1
αrjet + 1

)
, (4.20)

with α = 0.6 and where it has been taken into account that λ∗ = 1 and also that, in this
case, variables are made dimensionless using Rd, V and ρV2 as characteristic values of
length, velocity and pressure.

The predictions of (4.20) are expected to explain the measured experimental values of
the velocities of the very fast jets ejected after the impact of a drop on a liquid pool (Michon
et al. 2017; Thoroddsen et al. 2018). Indeed, (4.20) reveals that Vjet = Vvjet diverges when
rjet → 0 as vjet ∝ (rjet

√− ln rjet)
−1 and, hence, in comparison with the case of bubble

bursting jets, extremely fast jets can be ejected if the capillary waves travelling along the
cavity walls deform the base of the void in such a way that rjet 
 1. However, in contrast
to the case of bubble bursting jets, this type of event happens under very specific values
of the control parameters and it is barely repeatable (Michon et al. 2017) because the
collapsing cavity caused by an impacting drop easily losses axisymmetry, resulting in a
reduction in the jet velocity (Gekle & Gordillo 2010). In spite of the fact that these are
very rare events, Thoroddsen et al. (2018) and Yang et al. (2020) report experiments on
DP jets with velocities up to � 48 m s−1, which can be depicted in figure 25, where the
experimental measurements are compared with the jet velocities calculated as Vjet = Vvjet,
with vjet given by (4.20) and rjet measured from the experimental images included in the
figure. It can be seen in figure 25 that the predicted velocity of the jets are, in some cases, in
very close agreement with the measured values. It is particularly interesting to note that the
fastest velocities reported by Thoroddsen et al. (2018) are very well predicted by (4.20). For
the other cases depicted in figure 25, the predicted value is close but below the measured
value. The reason why the agreement is not equally good for all the cases shown is because
the predicted jet velocity depends on rjet, which is taken from the images inserted into
figure 25, which admit a relative error in the measurements from the pictures provided
in Thoroddsen et al. (2018) and Yang et al. (2020) of ±20 %. Therefore, the predicted
jet velocity depends highly on the instant at which those images were taken. Thus, if the
image corresponds to an instant shortly before the jet is issued, rjet in (4.20) will be larger
and the calculated value of the velocity vjet will be smaller. This fact explains the different
degrees of agreement between the measurements and predictions in figure 25. It should be
pointed out that the images in figure 25 that correspond to the experiments in Thoroddsen
et al. (2018) reflect the instant at which the jet is issued, as explained in the original paper.
Notice the close agreement between the predicted and the experimental values for the jet
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Figure 22. Comparison between the numerical and analytical velocity fields calculated from (4.11) and (4.12)
for Fr = 100, Mo = Mow, α = 0.6, � = 1 and q given by (4.19) for the case of DB jets at the different instants
of time and different values of We that correspond to the bubble shapes depicted in the top row. The red arrows
indicate the numerical results, whereas the green ones correspond to those computed using (4.11) and (4.12).
Time advances from top to bottom, the results are grouped in columns and, from left to right, the results
correspond to the following values of the Weber number: We = 45, We = 53, We = 62. The green line at the
axis indicates where the line of sinks is located.
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Figure 23. Comparison between the numerical and analytical velocity fields calculated from (4.11) and (4.12)
for Fr = 300, Mo = Mow, α = 0.6, � = 1 and q given by (4.19) for the case of DB jets at the different instants
of time and different values of We that correspond to the bubble shapes depicted in the top row. The red arrows
indicate the numerical results, whereas the green ones correspond to those computed using (4.11) and (4.12).
Time advances from top to bottom, the results are grouped in columns and, from left to right, the results
correspond to the following values of the Weber number: We = 55, We = 70, We = 85. The green line at the
axis indicates where the line of sinks is located.
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Figure 24. Comparison between the numerical and the analytical velocity fields calculated from (4.11) and
(4.12) for Fr = 600, Mo = Mow, α = 0.6, � = 1 and q given by (4.19) for the case of DB jets at the different
instants of time and different values of We corresponding to the bubble shapes depicted in the top row. The
red arrows indicates numerical results, whereas the green ones correspond to those computed using (4.11) and
(4.12). Time advances from top to bottom, the results are grouped in columns and, from left to right, the results
correspond to the following values of the Weber number: We = 60, We = 75, We = 99. The green line at the
axis indicates where the line of sinks is located.
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Figure 25. Comparison between the experimental measurements in Thoroddsen et al. (2018) (in red) and Yang
et al. (2020) (in blue) with the jet velocity calculated as Vjet = Vvjet, with vjet given by (4.20) and rjet measured
from the experimental images in the figure. The experimental values of rjet are indicated in red in each of
the insets and the black scale bar indicates 5 × 10−4 m for the experiments in Thoroddsen et al. (2018) and
2 × 10−4 m for the experiments in Yang et al. (2020). In the case of the experiments in Yang et al. (2020), the jet
velocity is calculated using the material properties of water. The velocities of the jets produced when a bubble
is entrapped in Thoroddsen et al. (2018) are taken as that of the downward jets in their figure 4 because the
velocities of the upward jets, once they are seen above the free interface, are much smaller as a consequence
of the jet tip deceleration caused by the capillary retraction and by the air drag force (Blanco-Rodríguez &
Gordillo 2020).

velocity, which is also pretty close to the measured vertical velocities before the jet emerges
in figure 6 in Thoroddsen et al. (2018). Moreover, in their figures 5 and 6, Thoroddsen
et al. (2018) provide the value of the exponent αc � 0.53 ± 0.02 in rmin ∝ ταc when the
collapse of the cavity gives rise to the emergence of jets with velocities of ∼ 50 m s−1 and
a bubble is not entrapped. Under these conditions, rmin/rc = 2rminFr−1/4 � 4 × 10−3 →
s = − ln(rmin/rc) � 5.5 during the final instants of time of the radial collapse before the
jet emerges. In the present theoretical description, the flow rate per unit length of the sinks
that induce the collapse of the cavity and the emergence of the jet given by (4.9) is such
that q−1 ∝ √

s and, therefore, (4.5) predicts that:

αc = 1
2

+ 1
8s

� 0.522, (4.21)

a value which is quite close to the one measured experimentally. Notice that the values
of the exponents predicted by (4.21) are smaller than those in (4.6) that correspond to the
case of jets being ejected after a bubble has been entrapped. As pointed out above, the
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exponent αc depends highly on the slenderness of the entrapped bubble as (4.6) clearly
shows: the more elongated the entrapped bubble is, the smaller αc is. These conclusions
are in agreement with the results shown in figures 5 and 6 in Thoroddsen et al. (2018).
Clearly, since the length of the line of sinks �b is constant in time for the case of the jets
ejected when a bubble is not entrapped, the ratio �b/rmin is larger than in the case where a
bubble is entrapped, which explains why the value of the exponent (4.21) calculated using
(4.5) is smaller than the value provided in (4.6) for the case where a bubble is entrapped.

It should be pointed out that, in contrast with the case of BB jets, which could be equally
well described using either the approximation described in this section or the one in § 3,
the velocities of the jets produced in the DP case can only be accurately predicted using
the results in this section. Indeed, if the inertio-capillary balance were to be preserved
during the cavity collapse process, the value of the exponent would be αc = 2/3 and not
slightly larger than 0.5 as seen in (4.21), a conclusion which had already been emphasised
by Thoroddsen et al. (2018) and Yang et al. (2020). Therefore, if the results in § 3 were
applied to describe the jet ejection process in the DP case, the jet velocities predicted
would be far smaller than those observed experimentally, a conclusion which can also
be deduced by comparing (3.10) and (4.20): while in the former case vjet ∝ r−1/2

jet , the
values of vjet predicted by (4.20), which are in good agreement with the experimental
measurements in figure 25, diverge as vjet ∝ (rjet

√− ln rjet)
−1 	 r−1/2

jet when rjet → 0.
Nonetheless, as discussed in the Appendix A, where the effect of the Bond number on the
bursting of bubbles is also analysed, jet velocities do not diverge to infinity because rjet > 0
and, hence, vjet is finite. In this regard, it can be noted that the base of the truncated cone
from which the jet is issued shrinks in the axial direction faster than in the radial direction
by a factor of 1/α = 1/0.6 > 1; see (4.14) and (4.20). Therefore, the length of a cylinder
with an aspect ratio ∼ 1 will shrink to zero before its radius is zero, thus preventing the
appearance of infinite velocities. This is a purely irrotational mechanism that also avoids
the existence of infinite jet velocities.

The case of the much slower and much thicker jets appearing outside the bubble
entrapment region depicted in figure 3 is analysed by making use of the experimental
data in Michon et al. (2017). Indeed, Michon et al. (2017) report experiments on the
velocities and the diameters of the drops emitted from the tip of of DP jets formed with
liquids of different viscosities, Mo ≥ Mow, We/Fr � 1/4 and values of the Foude number
200 � Fr � 2000. The radii rd of the droplets formed under these conditions, which are
a good proxy of rjet because, for this range of values of Fr and We, the jets are mostly
cylindrical, are provided in figure 4(b) of Michon et al. (2017) for Mo = Mow. The jet
velocities calculated by means of (4.20) when rjet is approximated linearly to the data for
rd in Michon et al. (2017) are compared with the experimental results in figure 26(b),
where it can be seen that, in spite of approximating rjet by rd, the predicted jet velocity
is in fair agreement with experiments. Figure 26 also shows that the experimental results
deviate from the scaling proposed in Michon et al. (2017), Vjet ∝ √

σ/(ρRd). The reason
for the deviation from the experimental data is that vjet also depends on rjet, which can
also be inferred from the analysis of the encircled regions in figure 26. The larger rd is,
the smaller the dimensionless jet velocity is. In contrast, the dependence of vjet with rjet is
well captured by (4.20), even when rjet is approximated by the experimental value of rd.

The jet velocities predicted by (4.20) for DP jets resort to the value of rjet, which, unlike
the case of BB jets, could not explicitly be expressed in this case as a function of the
control parameters We, Fr and Mo. Indeed, (3.10) and (4.15), which are the analogous
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Figure 26. Left-hand panel: In this figure, rjet is approximated by a linear fit to the data in figure 4(b) of
Michon et al. (2017) for the radii rd of the droplets ejected, which is expected to be a good approximation to
rjet and, therefore, rjet � rd . Right-hand panel: A comparison between the jet velocities given in figure 7(a) of
Michon et al. (2017) in the case of water and the jet velocities calculated using (4.20) multiplied by We1/2 with
rjet given by the linear fit to the data depicted in the left-hand panel and α = 0.6 (red line). In the right-hand
panel, the blue dashed line indicates the scaling Vjet/

√
σ/(ρRd) = constant proposed by Michon et al. (2017).

Notice also that the encircled region of points in the left-hand panel, which represents the drop radii above
the trend of the rest of experimental data, produces slower jets. These two facts indicate that the jet velocity
depends on rjet and, therefore, that the jet velocity is proportional to the capillary velocity but with corrections
associated with the precise value of rjet, as expressed by (4.20).

expressions for (4.20) for the case of BB jets, depend explicitly on Oh because, in this
case, Gordillo & Rodríguez-Rodríguez (2019) succeeded in expressing rjet as a function of
Oh; see (3.9). The determination of the function rjet(Mo, Fr, We) for the case of DP jets, a
task which is to be left for future study, could also help to improve our understanding
of the precise conditions under which bubbles are entrapped as a consequence of the
crater collapse, a process with implications for, among others, the origin of the noise
of rain (Prosperetti & Oguz 1993). Let it be emphasised here that the papers published
on the noise of rain since the original work of Pumphrey et al. (1989), including the
seminal contributions by Prosperetti et al. (1989), Prosperetti & Oguz (1993), were not
able to provide an equation for rjet(Fr, We), even in the case of water, Mo = Mow. This
fact justifies why the determination of rjet(Mo, Fr, We) is far from being trivial and why
this extra effort should be left for future study.

5. Conclusions

In this contribution, we present a quantitative and predictive model that unifies the
description of the jets produced by bursting bubbles and by the collapse of the crater
formed when a drop impacts a liquid pool. Our results make use of the theory in Gordillo
& Rodríguez-Rodríguez (2019), where the velocity field is calculated as the one produced
by a line of sinks. In the case of bursting bubbles, the jet velocities are expressed in a closed
form using two different approximations, their predictions being in remarkable agreement
with experimental and numerical results. It is also shown that the same type of theoretical
description applies in the case of jets formed after a drop impacts a liquid pool. In this case,
an algebraic equation has also been deduced for the velocities of the jets, which effectively
predicts the velocities of ∼ 50 m s−1 of the very fast jets produced after the impact of a
drop on a liquid pool that takes place under very specific and well-controlled conditions,
as well as the velocities ∼ 1 m s−1 of the thicker and much slower jets commonly seen
in experiments. The main physical idea in this contribution can be summarised in simple
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terms as follows: jets are produced as a consequence of the flow rate imposed by the
radial velocity field induced by the capillary waves travelling along void walls and these
waves also deform the bottom of the cavity from which the jet is issued. Since the flow
rate is imposed by the converging capillary waves, the smaller the radius of the bottom
of the cavity from which the jet is issued is, the larger the jet velocity will be. This
rather simple physical idea is quantified using the theoretical framework presented in
Gordillo & Rodríguez-Rodríguez (2019), which provides algebraic equations that are in
good agreement with experimental results and numerical simulations. In the case of bubble
bursting jets, the dimensionless jet velocities can be calculated by making use of equations
that depend explicitly on the Ohnesorge number. In the case of jets produced after a drop
impacts a liquid pool, the dimensionless jet velocity is expressed as a function of Fr, We
and of the minimum radius of the cavity, which we aim to express as a function of the
Weber, Froude and Morton numbers in a future contribution.

Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2021.207.
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Appendix A. Bond number effect for the case of bursting bubbles in water

This appendix is devoted to analysing the way the results for the bubble bursting case in
the limit Bo 
 1 studied in sections §§ 3 and 4 are modified for larger values of the Bond
number. With that purpose in mind, the static shapes of the bubbles are first computed,
solving the Laplace-Young equation following the method described in Lhuissier &
Villermaux (2012) which, as figure 27 shows, significantly deviate from a sphere for
increasing values of Bo. These initial shapes are taken as the initial condition for the
numerical simulations in GERRIS (Popinet 2003, 2009). In the supplementary materials,
which are available at https://doi.org/10.1017/jfm.2021.207, it has been verified that vλ = 5
irrespective of the value of Bo and, thus, capillary waves travel along the cavity walls at
five times the capillary velocity based on Rb for arbitrary values of Bo and Oh. Hence, it is
expected that (4.11) and (4.12) with α = 0.6, � = 2.8Oh1/2 and q given by (4.13) reproduce
the numerical velocity fields. This is confirmed in figures 28 and 29, a fact indicating that
our results can indeed be extended to describe the ejection of BB jets for finite values of
Bo.

This conclusion is further supported by the result depicted on the left in figure 30, where
the values of vjet calculated using (4.15) and the equation for rjet including the effect of Bo

rjet = 0.2215(1 + 0.4Bo)

[
1 −

√
Oh

0.0305(1 + 0.3Bo)

]
, (A1)
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Figure 27. Initial shapes of the bubbles calculated by solving the Young-Laplace equation for different values
of Bo = ρgR2

b/σ , with Rb = (3Vb/(4π))1/3 and Vb the bubble volume. Here, Lc = √
σ/(ρg) denotes the

capillary length. The results shown in this figure have been validated by comparing them with the ones provided
in Princen (1963).

are compared with the results obtained numerically. Notice that, in agreement with the
numerical results, the values of vjet predicted through (4.15) decrease with Bo as a
consequence of the fact that rjet in (A1) increases with Bo. The calculated values of vjet
are, however, larger than vd because of the capillary forces that decelerate the tip of the jet;
see Blanco-Rodríguez & Gordillo (2020) or the beginning of § 3 for details. This is clearly
shown on the right of figure 30, where the experiments for the case of water in Ghabache
et al. (2014) and Spiel (1995) are compared with the numerical results and also with the
predicted value of vjet for Bo = 0. In spite of vjet − vd increases with Bo, figure 31 shows
that (4.15) for vjet calculated using the expression of rjet in (A1) provides an estimation
of vd for the case of water with acceptable relative errors, even for Bo � 1. Notice that
the reason why the focus here has been on the case of water is because the effect of the
Bond number on the drop ejection process has already been considered in detail by Berny
et al. (2020). It should be pointed out, however, that the simplified equation for rd given in
Blanco-Rodríguez & Gordillo (2020) for Bo 
 1:

rd = 0.22(1 − (Oh/0.031)1/2) if Oh < 0.03,

rd = 18.45Oh2 if 0.03 < Oh < 0.04,

}
(A2)

with Oh = La−1/2, is in very good agreement with the numerical and experimental results
reported in Berny et al. (2020) for arbitrary values of Bo and also with our own numerical
results, as shown in figure 32, where the value of Lad = La rd is represented as a function
of La. The discontinuous dependence of rd with Oh exhibited in (A2) is a consequence of
the simplifications of the full theoretical model presented in Blanco-Rodríguez & Gordillo
(2020), which predicts a continuous dependence of rd with Oh. Our simplified expression
for rd in (A2), however, predicts that rd cannot be zero and vd cannot tend to infinity when
a bubble is entrapped.

Indeed, the equations for rjet, vjet, vd and rd deduced in Gordillo & Rodríguez-Rodríguez
(2019), Blanco-Rodríguez & Gordillo (2020), as well as those deduced here, are not
singular, which is in contrast with the analogous expressions deduced in Gañán Calvo

916 A37-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.207


On the jets produced by the capillary collapse of cavities

2.2

2.1

r r

1.9

2.0

1.8

1.7

2.5

2.0

1.5

1.0

0.5

0

–0.5

1.9

1.8

1.6

1.5

1.4

1.3

1.1

1.0

1.2

1.7

1.6

1.5

1.4

1.3
–0.3 –0.2 –0.3–0.2–0.1 0 0.1 0.2 0.3–0.1

–1 0 1

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

0 0.1 0.2 0.3 –0.3 –0.2 –0.1 0 0.1 0.2 0.3

|v| = 10 |v| = 10

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

|v| = 10

–1 0 1

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

|v| = 10 |v| = 10

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

|v| = 10

(z
 –

 z m
in

)/
r m

in

2.5

2.0

1.5

1.0

0.5

0

–0.5

(z
 –

 z m
in

)/
r m

in

–1 0 1

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

|v| = 10 |v| = 10

2.5

2.0

1.5

1.0

0.5

0

–0.5
–1 0 1

|v| = 10

2.5

2.0

1.5

1.0

0.5

0

–0.5

(z
 –

 z m
in

)/
r m

in

r/rmin r/rmin r/rmin

r

(a)

(d )

(g)

( j)

(b)

(e)

(h)

(c)

( f )

(i)

(k) (l)

z

Figure 28. Comparison between the numerical and analytical velocity fields calculated using (4.11) and (4.12)
for α = 0.6, � = 2.8Oh1/2 and q given by (4.13) for the case of BB jets at the different instants of time and
different values of Bo corresponding to the bubble shapes depicted in the top row. The red arrows indicate
the numerical results, whereas the green ones correspond to those computed using (4.11) and (4.12). Time
advances from top to bottom, the results are grouped in columns and, from left to right, the results correspond
to the following values of Bo and La: Bo = 0.6718 and La = Oh−2 = 131140, Bo = 0.3924 and La = Oh−2 =
141750 and Bo = 0.2177 and La = Oh−2 = 149290.
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Figure 29. Comparison between the numerical and analytical velocity fields calculated using (4.11) and (4.12)
for α = 0.6, � = 2.8Oh1/2 and q given by (4.13) for the case of BB jets with Bo = 0.6718 at the different
instants of time and different values of La = Oh−2 corresponding to the bubble shapes depicted in the top
row. The red arrows indicate the numerical results, whereas the green ones correspond to those computed
using (4.11) and (4.12). Time advances from top to bottom, the results are grouped in columns and, from
left to right, the results correspond to the following values of La: La = Oh−2 = 32786, La = Oh−2 = 8196
and La = Oh−2 = 2049, for different instants of time corresponding to the shapes depicted at the top of each
column.
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Figure 30. (a) Comparison between the numerical values of vjet and the predicted jet velocities calculated
using (4.15) and (A1). (b) A comparison between the numerical values of vjet (squares) and vd (circles), the
experiments for the case of water in Ghabache et al. (2014) (∗) and Spiel (1995) (+) and the predicted value
of vjet using the equation for rjet given in (A1) for Bo = 0 (blue line). The black line represents the equation
for vd given in (A3). The results are made dimensionless using the capillary velocity. The colour code, which
serves to indicate the value of Bo, is the same as that used by Deike et al. (2018), Berny et al. (2020).
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Figure 31. Relative error between the drop velocities measured by Ghabache et al. (2014) (∗) and Spiel (1995)
(+) and the jet velocity vjet calculated using (4.15) when rjet is given by (A1). The relative error is defined here
as e = |vd − vjet|/vjet. The results shown correspond to the case of water, with physical properties given by
ρ = 103 kg m−3, σ = 7 × 10−2 N m−1. The vertical line corresponds to Rb = 1.2 × 10−3 m.

(2017), given in Berny et al. (2020) as:

vd = 19Oh1/2(1/
√

550 − Oh)−3/4, Lad = La rd = 0.6[
√

La(
√

La/540 − 1)]5/4,
(A3a,b)

Equations (A3a,b) are represented using black lines in figures 30 and 32.
Let us point out here that the theory in Gañán Calvo (2017) predicts as equations

(A3) express that the jet velocity could be infinite and the radii of the droplets could
be zero within certain ranges of the parameter space – and, moreover, Gañán Calvo &
Lopez-Herrera (2019) also assert that their own numerical results are ‘starkly inconsistent’
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Brasz et al. (num) (2018)

Berny et al.  (2020)
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Present study

Figure 32. The numerical and experimental results for rd reported in Berny et al. (2020), Brasz et al. (2018),
Ghabache & Seon (2016) for arbitrary values of Bo, as well as the numerical results obtained here, are compared
with the value predicted in Blanco-Rodríguez & Gordillo (2020). Our equation (A2) is plotted with a blue line
and the equation for Lad in (A3) given in Berny et al. (2020) and deduced by Gañán Calvo (2017, 2018), is
plotted in black. The colour code indicating the value of Bo is the same as that used by Deike et al. (2018),
Berny et al. (2020).

with the flow generated by a line of sinks. However, it has been shown here that: (i) the
emergence of BB and DP jets can indeed be described by means of the velocity field
induced by a line of sinks; and (ii) neither velocities reach infinite values, nor is the
diameter of the jets produced zero for any combination of the control parameters. This
is because the singularity is prevented by the viscous cut-off length μ2/(ρσ) (Gordillo
& Rodríguez-Rodríguez 2019), and this is the reason why the minimum size of the
droplets produced is � 10μ2/(ρσ) and why the maximum drop velocities are ∼ σ/μ

(Blanco-Rodríguez & Gordillo 2020). Notice also another reason that prevents infinite
jet velocities being reached when a bubble is entrapped is the overpressure required to
evacuate the gas from the axisymmetric collapsing cavity which, as pointed out in Gordillo
(2008), is responsible for the generation of tiny satellite bubbles. In addition, in the cases
in which a bubble is not entrapped, the velocity at which the base of the truncated cone
or the cylindrical surface from which the jet is issued shrinks in the axial direction more
quickly than in the radial direction by a factor of 1/α = 1/0.6 > 1; see (4.14) and (4.20).
Therefore, the length of a cylinder with an aspect ratio ∼ 1 will shrink to zero before its
radius is zero, thus preventing the appearance of infinite velocities. Finally, it should be
pointed out that, in a real system, the convergence of interfacial asymmetries towards the
axis reduces the jet velocity with respect to the case in which axisymmetry is preserved all
along the cavity collapse process, as discussed at length in Gekle & Gordillo (2010).

REFERENCES

BASARAN, O.A., GAO, H. & BHAT, P.P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45 (1), 85–113.
BERGMANN, R., VAN DER MEER, D., STIJNMAN, M., SANDTKE, M., PROSPERETTI, A. & LOHSE, D.

2006 Giant bubble pinch-off. Phys. Rev. Lett. 96, 154505.
BERNY, A., DEIKE, L., SÉON, T. & POPINET, S. 2020 Role of all jet drops in mass transfer from bursting

bubbles. Phys. Rev. Fluids 5, 033605.

916 A37-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.207


On the jets produced by the capillary collapse of cavities

BIGG, K.E. & LECK, C. 2008 The composition of fragments of bubbles bursting at the ocean surface.
J. Geophys. Res. 4113, D11209.

BLANCO-RODRÍGUEZ, F.J. & GORDILLO, J.M. 2020 On the sea spray aerosol originated from bubble
bursting jets. J. Fluid Mech. 886, R2.

BOLAÑOS JIMÉNEZ, R., SEVILLA, A., MARTÍNEZ-BAZÁN, C. & GORDILLO, J.M. 2008 Axisymmetric
bubble collapse in a quiescent liquid pool. II. Experimental study. Phys. Fluids 20 (11), 112104.

BOLAÑOS JIMÉNEZ, R., SEVILLA, A., MARTÍNEZ-BAZÁN, C., VAN DER MEER, D. & GORDILLO, J.M.
2009 The effect of liquid viscosity on bubble pinch-off. Phys. Fluids 21 (7), 072103.

BRASZ, C.F., BARTLETT, C.T., WALLS, P.L.L., FLYNN, E.G., YU, Y.E. & BIRD, J.C. 2018 Minimum size
for the top jet drop from a bursting bubble. Phys. Rev. Fluids 3, 074001.

BURTON, J.C., RUTLEDGE, J.E. & TABOREK, P. 2004 Fluid pinch-off dynamics at nanometer length scales.
Phys. Rev. Lett. 92, 244505.

BURTON, J.C., WALDREP, R. & TABOREK, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev.
Lett. 94, 184502.

CASTREJÓN-PITA, A.A., CASTREJÓN-PITA, J.R. & MARTIN, G.D. 2012 A novel method to produce small
droplets from large nozzles. Rev. Sci. Instrum. 83 (11), 115105.

CASTREJÓN-PITA, J.R., CASTREJÓN-PITA, A.A., THETE, S.S., SAMBATH, K., HUTCHINGS, I.M.,
HINCH, J., LISTER, J.R. & BASARAN, O.A. 2015 Plethora of transitions during breakup of liquid
filaments. Proc. Natl Acad. Sci. 112 (15), 4582–4587.

DAY, R.F., HINCH, E.J. & LISTER, J.R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev.
Lett. 80, 704–707.

DEIKE, L., GHABACHE, E., LIGER-BELAIR, G., DAS, A.K., ZALESKI, S., POPINET, S. & SEON, T. 2018
Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.

DOSHI, P., COHEN, I., ZHANG, W.W., SIEGEL, M., HOWELL, P., BASARAN, O.A. & NAGEL, S.R. 2003
Persistence of memory in drop breakup: the breakdown of universality. Science 302 (5648), 1185–1188.

DUCHEMIN, L., POPINET, S., JOSSERAND, C. & ZALESKI, S. 2002 Jet formation in bubbles bursting at a
free surface. Phys. Fluids 14, 3000–3008.

EGGERS, J. 1993 Universal pinching of 3d axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458–3460.
EGGERS, J., FONTELOS, M.A., LEPPINEN, D. & SNOEIJER, J.H. 2007 Theory of the collapsing

axisymmetric cavity. Phys. Rev. Lett. 98, 094502.
GAÑÁN CALVO, A.M. 2017 Revision of bubble bursting: universal scaling laws of top jet drop size and speed.

Phys. Rev. Lett. 119, 204502.
GAÑÁN CALVO, A.M. 2018 Scaling laws of top jet drop size and speed from bubble bursting including gravity

and inviscid limit. Phys. Rev. Fluids 3, 091601.
GAÑÁN CALVO, A.M. & LOPEZ-HERRERA, J.M. 2019 Capillary soft singularities and ejection: application

to the physics of bubble bursting. Preprint. arXiv:1911.08844.
GEKLE, S. & GORDILLO, J.M. 2010 Generation and breakup of worthington jets after cavity collapse. Part 1.

Jet formation. J. Fluid Mech. 663, 293–330.
GHABACHE, E., ANTKOWIAK, A., JOSSERAND, C. & SEON, T. 2014 On the physics of fizziness: How bubble

bursting controls droplets ejection. Phys. Fluids 26, 121701.
GHABACHE, E. & SEON, T. 2016 Size of the top jet drop produced by bubble bursting. Phys. Rev. Fluids

1, 051901(R).
GORDILLO, J.M. 2008 Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical

simulations. Phys. Fluids 20 (11), 112103.
GORDILLO, J.M. & FONTELOS, M.A. 2007 Satellites in the inviscid breakup of bubbles. Phys. Rev. Lett.

98, 144503.
GORDILLO, J.M. & PÉREZ-SABORID, M. 2006 Axisymmetric breakup of bubbles at high Reynolds numbers.

J. Fluid Mech. 562, 303–312.
GORDILLO, J.M. & RODRÍGUEZ-RODRÍGUEZ, J. 2018 Comment on revision of bubble bursting: universal

scaling laws of top jet drop size and speed. Phys. Rev. Lett. 121, 269401.
GORDILLO, J.M. & RODRÍGUEZ-RODRÍGUEZ, J. 2019 Capillary waves control the ejection of bubble

bursting jets. J. Fluid Mech. 867, 557–571.
GORDILLO, J.M., SEVILLA, A., RODRÍGUEZ-RODRÍGUEZ, J. & MARTÍNEZ-BAZÁN, C. 2005

Axisymmetric bubble pinch-off at high reynolds numbers. Phys. Rev. Lett. 95, 194501.
ISMAIL, A.S., GAÑÁN CALVO, A.M., CASTREJÓN-PITA, J.R., HERRADA, M.A. & CASTREJÓN-PITA,

A.A. 2018 Controlled cavity collapse: scaling laws of drop formation. Soft Matt. 14, 7671–7679.
JAIN, U., JALAAL, M., LOHSE, D. & VAN DER MEER, D. 2019 Deep pool water-impacts of viscous oil

droplets. Soft Matt. 15, 4629–4638.

916 A37-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1911.08844
https://doi.org/10.1017/jfm.2021.207


F. J. Blanco–Rodríguez and J. M. Gordillo

KRISHNAN, S., HOPFINGER, E.J. & PUTHENVEETTIL, B.A. 2017 On the scaling of jetting from bubble
collapse at a liquid surface. J. Fluid Mech. 822, 791–812.

LAI, C.-Y., EGGERS, J. & DEIKE, L. 2018 Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett.
121, 144501.

LHUISSIER, H. & VILLERMAUX, E. 2012 Bursting bubble aerosol. J. Fluid Mech. 696, 5–44.
MACINTYRE, F. 1972 Flow patterns in breaking bubbles. J. Geophys. Res. 77, 5211–5225.
MICHON, G.-J., JOSSERAND, C. & SÉON, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev.

Fluids 2, 023601.
POPINET, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex

geometries. J. Comput. Phys. 190 (2), 572–600.
POPINET, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.

228 (16), 5838–5866.
PRINCEN, H.M. 1963 Shape of a fluid drop at a liquid-liquid interface. J. Colloid Sci. 18, 178–195.
PROSPERETTI, A., CRUM, L.A. & PUMPHREY, H.C. 1989 The underwater noise of rain. J. Geophys. Res.:

Oceans 94 (C3), 3255–3259.
PROSPERETTI, A. & OGUZ, H.N. 1993 The impact of drops on liquid surfaces and the underwater noise of

rain. Annu. Rev. Fluid Mech. 25 (1), 577–602.
PUMPHREY, H.C., CRUM, L.A. & BJORNO, L. 1989 Underwater sound produced by individual drop impacts

and rainfall. J. Acoust. Soc. Am. 85 (4), 1518–1526.
RAY, B., BISWAS, G. & SHARMA, A. 2015 Regimes during liquid drop impact on a liquid pool. J. Fluid

Mech. 768, 492–523.
REIN, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306,

145–165.
SIEROU, A. & LISTER, J.R. 2004 Self-similar recoil of inviscid drops. Phys. Fluids 16, 1379–1394.
SPIEL, D.E. 1995 On the births of jet drops from bubbles bursting on water surfaces. J. Geophys. Res.

100, 4995–5006.
SURYO, R., DOSHI, P. & BASARAN, O.A. 2004 Non-self-similar, linear dynamics during pinch-off of a

hollow annular jet. Phys. Fluids 16 (11), 4177–4184.
THORODDSEN, S.T., ETOH, T.G. & TAKEHARA, K. 2007 Experiments on bubble pinch-off. Phys. Fluids

19 (4), 042101.
THORODDSEN, S.T., TAKEHARA, K., NGUYEN, H.D. & ETOH, T.G. 2018 Singular jets during the collapse

of drop-impact craters. J. Fluid Mech. 848, R3.
VERON, F. 2015 Ocean spray. Ann. Rev. Fluid Mech. 47, 507–538.
WALLS, P.L.L., BIRD, J.C. & BOUROUIBA, L. 2014 Moving with bubbles: a review of the interactions

between bubbles and the microorganisms that surround them. Integr. Compar. Biol. 54, 1014–1025.
WANG, X., et al.2017 The role of jet and film drops in controlling the mixing state of submicron sea spray

aerosol particles. Proc. Natl Acad. Sci. 114 (27), 6978–6983.
YANG, Z.Q., TIAN, Y.S. & THORODDSEN, S.T. 2020 Multitude of dimple shapes can produce singular jets

during the collapse of immiscible drop-impact craters. J. Fluid Mech. 904, A19.
ZEFF, B.W., KLEBER, B., FINEBERG, J. & LATHROP, D.P. 2000 Singularity dynamics in curvature collapse

and jet eruption on a fluid surface. Nature 403, 401–404.

916 A37-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.207

	1 Introduction
	2 Numerical simulations
	3 Comparison of the numerical results corresponding to the case of bubble bursting jets with theoretical predictions assuming an inertio-capillary balance
	4 Comparison of the numerical results with predictions relaxing the assumption of an inertio-capillary balance
	5 Conclusions
	A Appendix A. Bond number effect for the case of bursting bubbles in water
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


