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ON THE NUMBER OF ZEROS OVER A FINITE FIELD 
OF CERTAIN SYMMETRIC POLYNOMIALS 

BY 

P. V. CECCHERINI* AND J. W. P. HIRSCHFELD 

1. Introduction. A variety of applications depend on the number of solu
tions of polynomial equations over finite fields. Here the usual situation is 
reversed and we show how to use geometrical methods to estimate the number 
of solutions of a non-homogeneous symmetric equation in three variables. 

2. The main equation. Write K = GF(q), the finite field of order q. Let F in 
K[T] be any polynomial of degree m > 2 , and form the following symmetric 
polynomial in K[X, Y, Z ] : 

LF = L(X,Y,Z) = F(X)(Y-Z) + F(Y)(Z-X) + F(Z)(X-Y). 
We wish to estimate the number of solutions over K of the equation L = 0. 

Without loss of generality, we may assume that m <q, since if F(T) = G(T) 
mod (7^ — T), then LF = 0 and LG = 0 are equivalent equations over K. 

In any case, L = 0 has at least 3q2-2q solutions over K, namely the triples 
(x, y, z) with some pair of coordinates equal: these are the trivial solutions. 
Further, if L = 0 has a non-trivial solution, then it has at least six: the given one 
as well as those obtained by permuting the coordinates. 

PG (n,q) is projective space of n dimensions over K. A k-arc in PG(2, q) is a 
set of k points no three of which are collinear. 

LEMMA 1. L = 0 has only trivial solutions over K if and only if %' = 
{(1, t, F(t)) \ teK} is a q-arc in PG(2, q). 

Proof. The determinant with successive rows (1, X, F(X)\ (1, Y, F(Y)), 
(1, Z, F{Z)) is equal to - L . So (x, y, z) is a non-trivial solution of L = 0 if and 
only if (1, x, F(x)), (1, y, F(y)), (1, z, F{z)) are three distinct collinear points of 
± • 

COROLLARY. If m= deg F = 2, then L = 0 has only trivial solutions over K. 

Proof. If m = 2,3r = 9ru{(0,0,1)} is the set of points in PG(2, q) of the 
irreducible conic with equation x0x2 = xlF(xJx0), whence 3fC is a q-arc. • 

To invert this corollary, we need the following. 
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LEMMA 2. Let F in K[T] have degree m with 2 < m < q —1. If the curve <€ 
with equation x™~1x2 = x™F(xJx0) coincides in PG(2,q) with an irreducible 
conic, then m =2. 

Proof. Let F(T) = A0 + A1T + A2T
2+- •+Aq_1Tq~1 and G(T) = 

F(T)-A0-AtT. Then X = {(1, t, F(t)) \ teK}\J{(0, 0,1)} is a conic if and only 
if 3T = {(1, t, G(t))\t G K}U {(0,0,1)} is : for, the projectivity given by x'0 = 
x0,x'1 = x1,x2 = —A0x0 — A1x1 + x2 transforms 3if into 3C'. Suppose therefore 
that the points of % form the set jfC'. 

It ^ is a conic with equation f(x0,x1,x2) = 0, then f(x0, xl9x2) = 
x\ + b0xxx2-\- biX0x2 + b2x0xx, since (1, 0, 0) and (0, 0,1) are in 3T but (0 ,1 , 0) is 
not. Since « is irreducible, b1{b1-bQb2)fQ. Now, g(t) = / ( l , t, G(t)) = 0 for all 
f in K Therefore, since degree g(T)<q, we obtain that g C r ^ c C r * —T) for 
some c in K. However, 

g(T) = b2T+T2 + b1G(T) + b0TG(T) 

= b2T + (l + b1A2)T
2 + (b1A3 + b0A2)T

3 + - • • 

+ b,Ar + b0Ar_1)Tr + • • • + ( ^ i V i + M , - ^ " 1 

+ b0Aq_1T« . 

Hence 

b2 = - c ; 

1 + 6 ^ 2 = 0; 

bi Ar + b0Ar_! = 0, for 3 < r < q - l ; 

fe0Aq-i - c. 

So A2 = -1/6 1 ? A 3 = b0/bl..., Ar = 6S-2/(-&i) r"\ - • •, Aq_! = bg-3/(-bi)q"2 , 
&oA,-i = c = ~ & 2 , 

whence 

If boj=0, this implies that b1 = b0b2, contradicting the irreducibility of /. So 
b0 = 0 and A 3 = A 4 = • • • = Aq_x = c = b2 = 0. Thus m = 2. • 

THEOREM 1. When q is odd or q = 4, L = 0 has non-trivial solutions over K if 
and only if deg F>2. 

Proof. If deg F = 2, the result is that of the Corollary to Lemma 1. If L = 0 
has only trivial solutions, then, by Lemma 1, 3? = {(1, t, F(t)) \ teK} is a q-arc 
in PG(2, q), whence f = f U{(0, 0,1)} is a (q +1) —arc, which is an irreducible 
conic by Segre's theorem ([4], p. 270; [3], §8.2): for q = 4 , a 5-arc is trivially a 
conic. But 3£ is the set of points on the curve with equation x™~1x2 = 
X™F(XJXQ). SO, by Lemma 2, deg F = 2. • 
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THEOREM 2. When q is even, there exists F with 2 < d e g F < q —1 such that 
L = 0 has only trivial solutions if and only if q>4. 

Proof. Let X* = {(1, t,F(t)) \teK}U{(0,1,0), (0,0,1)}. When F(T) = 
Tq~2,3if* consists of the points on the conic with equation xl = xxx2 plus the 
meet (1, 0,0) of its tangents. Alternatively, when F(T) = Tq/2, X* is the conic 
with equation x\ = x0x1 plus the meet (0, 0,1) of its tangents. In either case, for 
q > 4 , X* is a (q + 2 ) - a r c with d e g F > 2 . Hence, by Lemma 1, L = 0 has only 
trivial solutions. For q = 2, there is nothing to prove. For q = 4, the result was 
part of Theorem 1. • 

For examples of (q + 2)-arcs not containing a conic and the problem of their 
classification, see [2]. 

THEOREM 3. Let q be odd and suppose m = deg F satisfies 2<m< 
(q + 1 — 3a)/2 for some non-negative integer a. Then, for q > ( 1 2 a + 3)2, L = 0 
has at least 6(a +1) solutions over K. 

Proof. X = {(1, t, F(f)) 11 e K} U {(0,0,1)} is the set of the q + 1 points of the 
curve <ë of order m with equation x1S~1x2 — x™F(xJx0). By Lemma 1, it 
suffices to show that there exist on 3( at least 3(a + l) distinct points 
Ai? Bi9 Q(i = 1, 2 , . . . , a +1) such that each triple of points with the same index 
is collinear. If a = 0 , the result follows from Theorem 1. Now, let us suppose 
the result true for a —18 - 1 ^ 0 and prove it for a = |8. 

Let 2 < m < ( q + l -3 |3 ) /2 and Vq>12|3 + 3. Then 2 < m < 
[q + l - 3 ( j 3 - l ) ] / 2 and Vq> 1 2 ( 0 - 1 ) + 3. By the induction hypothesis there 
exists a subset 38 of X with 3/3 distinct points Ai5 JBi? Q(i = 1, 2 , . . . , 0) having 
the required property. If there does not exist on %C = 3fC\3ft a triple 
A 3 + 1 , JB3+1, C 3 + 1 of distinct collinear points, then Jt is (q + l - 3 0 ) - a r c with 

q -Vq/4 + 7 /4<q + l - 3 | 3 < q + l . 

So $f is contained in a unique irreducible conic ([5], p. 163; [3], §10.4) having 
at least |$f| = q + l - 3 | 3 > 2 m points in common with c€: this contradicts 
Bézout's theorem. So there exists a triple A3 + 1 ) B 3 + 1 , C3+i of collinear points 
on X. • 

3. An extension. The above results can be extended to the case of a 
polynomial F in K[TX, T2] of degree > 2 as follows. Let us denote by S F the 
system of four equations given by 

rank 

1 

1 

1 

X i 

Y1 

zl 

x2 
Y2 

Z2 

FiX, 

F(Y1 

F{ZX 

,X2) 

Y2) 

Z2\ 

<3. 

To estimate the number of solutions g = (*i, x2, yt, y2, z1( z2) of 2 F we may 
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suppose that d e g T . F < q - l ( i = 1, 2). The system XF has 3q4-2q2 trivial solu
tions given by £ with some pair of (xl9 x2), (yi, y2)? (zi, z2) equal. 

A k-cap in PG(3, q) is a set of k points no three of which are collinear. 

LEMMA 3. £ F has only trivial solutions if and only if % — 
{(1, tl9 t29 F(tl912)) I tl9 t2eK} is a q2-cap of PG(3, q). 

Proof. £ = (xl9 x2, yi, y2> zi> ^2) is a non-trivial solution of 2 F if and only if 
(l9xl9x29F(xl9x2))9 (1, yi, y2 ,P(yi, y2)), (1, z1? z2, F(z1? z2)) are distinct col
linear points of Sif. D 

If deg F = 2, write F(T1? T2) = f2 + f1 + f0 where £ is a form of degree i: we 
call f2 the quadratic part of F. 

COROLLARY. 1/ deg F = 2, then XF has only trivial solutions over K if and only 
if f2 is irreducible. 

Proof. Consider 3if = £ u { ( 0 , 0 , 0 , 1 ) } . If F(T l 9 T2) = /2 + a1T1 + a2T24-b0, 
the projectivity given by x'0 = x0,x'1 = x1,x2 = x2,x'3 = —b0x0 — a1x1 — a2x2 + x3 

transforms 3K into 

T = {(1, tl9129 f2(tl912)) I tl9 t2eK}U{(0, 0, 0,1)}. 

Now, jfC is the set of points of the quadric with equation x0x3 = f2(xl9 x2). If f2 

is reducible, 3T is a hyperbolic quadric or a cone and so contains a line. If f2 is 
irreducible, 3T is an elliptic quadric and forms a (q2 + l)-cap, whence X is a 
q2-cap. • 

To obtain a converse to this corollary, we require the following lemmas. 

LEMMA 4. Let F in K[Tl9 T2] have deg T i F<q - l(i = 1, 2). 1/ degTiF(Tl912) < 
2 and degT2F(fl5 T 2 )<2 /or a// f1? t2 in K9 then degT .F<2(/ = 1, 2). 

Proof. Let deg T i F=n and put F(Tl9T2) = Zï=0T
i
1ci(T2), where cteK[T2] 

and cn(T2) 7^0. Since deg cn < d e g T 2 F < q - l , there exists f2 in K such that 
cn(^) ¥=0- Then degTlF(T l5 f2) = n < 2 by assumption. Similarly, deg T 2 F<2. D 

LEMMA 5. Let F in K[Tl9 T2] have degree m>2 with degT .F<q - l(i = 1, 2). 
7/ the surface $f with equation x™_1x3 = x™F(xJx09 x2/x0) is an elliptic quadric in 
PG(3, q)9 then m~2. 

Proof. The points of 5̂  from the set 

X = {(1, ti, r2, F(tl5 r2) I r1? t2 e K} u {(0,0,0,1)}. 

If Sf is an elliptic quadric then, for all st in K9 the set 

K = {(1, si, t2, F ( 5 l , t2)) I r2 e K} U {(0, 0, 0,1)} 

is a conic in the plane with equation x1 = sTx0, in which x0, x2, x3 will be used as 
coordinates. Similarly, for all s2 in K, the set 3 ^ = 
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{(1, tl9 s2, F(tx, s2)) | *ieK}U{(0, 0, 0,1)} is a conic in the plane with equation 
x2 = s2x0, in which x0, x1? x3 will be used as coordinates. By Lemma 2, 
degF(s l9 T 2 )<2 for all sx in K and degF(T1? s 2 )<2 for all s2 in K So, by 
Lemma 4, deg T i F<2 and degT zF<2. Therefore 

F(T1,T2) = A0 + A1T1 + A2T2 + A11T
2
1 + A12T1T2 + A22TÎ 

+ T1T2(B1T1-^B2T2 + CT1T2). 

We wish to show that B1 = B2 = C = 0. 

Let G(T1,T2) = F(T1,T2)-(A0 + A1T1 + A2T2). The projectivity given by 
x'0 = x0, x[ = xx, x2 = x2, xf

3 = —A0x0 — A1x1- A2x2-\-x3 transforms JC into 9T = 
{(1, tx, t2, G(tl912) | fl5 t2GiC}U{(0, 0, 0,1)}, which is an elliptic quadric if and 
only if % is. With m = 4 and F=G, the equation of 5f is 

"1 X ^ X 2 V - £ / I X Q X ^ 1 ±J2XQX2 I v^XjX2/« 

So £P and 3T contain the line with equations x0 = xx = 0, which is impossible 
since T is a (q2 + l)-cap. So deg G < 4, whence C = 0. If deg G = 3, the 
equation of Sf is 

*0*3 = ^ o C ^ l l ^ l ~*~ A-tfXiXi + A 2 2 X 2 ) "^ X1X2(B1Xi + B2X2). 

Again iP and JC contain the line with equations x0 = xx = 0. So deg G < 3. Thus 
B1 = B2 = 0 and d e g G - 2 . • 

THEOREM 4. For q odd or q = 4, S F has only trivial solutions if and only if deg 
F = 2 and the quadratic part of F is irreducible. 

Proof. If 2 F has only trivial solutions, then by Lemma 3, X = 
3fU{(0,0,0,1)} is a (q2 + l)-cap in PG(3, q), which in turn is an elliptic 
quadric, [1]. By Lemma 5, degF = 2 and, by the Corollary to Lemma 3, the 
quadratic part of F is irreducible. The converse is given by the same 
corollary. • 

THEOREM 5. For q = 22r+1, r > l , there exists F with 2 < d e g F < q —1 such 
that S F has only trivial solutions. 

Proof. Let or be an automorphism of K = GF(22r+1) such that x^2 = x2: then 
x~ = x*

+\ With 

F(r1,t2) = t 1 r 2 +r?+t l t j , 

% = 3t\J{(0,0,0, 1)} is a (q2+l)-cap (but not an elliptic quadric), [6]. 
So, by Lemma 3, F is a polynomial of degree > 2 such that 2 F has only trivial 
solutions. • 
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Remark. Lemmas 2 and 5 are related to the following question: can two 
absolutely irreducible hypersurfaces of PG(n,q) of orders < q —1 have the 
same set of points but different equations? 
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