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Summary

In this article, a new algorithm for obtaining the maximum likelihood estimators (MLEs) of
parameters in the joint segregation analysis (JSA) of multiple generations of P1, F1, P2, F2 and F2 : 3

(MG5) for quantitative traits was set up. Firstly, owing to the fact that the component variance
of the heterogeneous genotype in F2 : 3 included both the first-order genetic parameters (denoted by
the means of distributions) and the second-order parameters, a simple closed form for the MLEs
of the means of component distributions did not exist while the expectation and maximization (EM)
algorithm was used. To simplify the estimation of parameters, the first partial derivative of the
above variance on the mean in the sample log-likelihood function was omitted. However, this would
be remedied by the iterated method. Then, variances of component distributions for segregating
populations were partitioned into major-gene, polygenic and environmental variances so that the
generally iterated formulae for estimating the means as well as polygenic and environmental
variances of component distributions in the maximization step (M-step) of the EM algorithm were
obtained. Therefore, the EM algorithm for estimating parameters in the JSA model for the MG5
was simplified. This is called the expectation and iterated maximization (EIM) algorithm. Finally, an
example of the inheritance of the resistance of soybean to beanfly showed that the results of mixed
inheritance analysis in this paper coincided with those in both Wang & Gai (2001) and Wei et al.
(1989), so the EIM algorithm was appropriate.

1. Introduction

The results from both plant breeding and QTL
(quantitative trait loci) mapping show that the in-
heritance system of quantitative traits consists of both
a few major genes and a number of polygenes (Elston
et al., 1973; Paterson, 1997; Kearsey & Farquhar,
1998; Gai & Wang, 1998; Wang & Gai, 2001; Zhang,
2001). The mixed major-gene plus polygenes inherit-
ance model was first studied in human genetics and
animal breeding (Elston et al., 1973). Recently, Wang
(1996) and Gai et al. (2003) applied the mixed in-
heritance model to the genetic study of plant quanti-
tative traits, such as maturity, tofu quality, cyst
nematode resistance and foliar feeding insect resist-
ance in soybean, bacterial blight and wide compati-
bility in rice, maturity in rapeseed and dwarf mosaic

virus resistance in maize, where the expectation and
maximization (EM) algorithm (Dempster et al., 1977)
was used for parameter estimation.

Using the EM algorithm, the joint segregation
analysis (JSA) method for the multiple generations P1,
F1, P2, F2 and F2 : 3 (denoted by MG5) was set up,
involving a mixed one-major-gene plus polygenes in-
heritance model (Wang & Gai, 1998). It was noticed
that the distribution variance of heterogeneous geno-
type line in F2 : 3 included both the first-order genetic
parameters (denoted by the means of distributions)
and the second-order parameters, so that a simple
closed form for the maximum likelihood estimators
(MLEs) of the means of the component distributions
did not exist. To simplify the estimation of par-
ameters, the first partial derivative of the above
variance on the mean in the sample log-likelihood
function was omitted. However, when the mixed* Correponding author. e-mail : soyzhang@njau.edu.cn
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two-major-gene plus polygenes inheritance model was
extended (Zhang, 2001), the inexact results of the
parameter estimation could be ascribed to the above
simplification. In the present analysis, the iterated
method is used to remedy that simplification. Under
the condition that the component variances of segre-
gating generations were partitioned into major-gene,
polygenic and environmental variances, and that the
iterated method was used in the maximization step of
EM algorithm, the EM algorithm could be brought
into effect. This is called the expectation and iterated
maximization (EIM) algorithm. An illustrative ex-
ample is given at the end of the paper.

2. The EIM algorithm of JSA of MG5 for

parameter estimation

(i) Basic assumption

The underlying assumptions are as follows: diploid
nuclear inheritance with no maternal or cytoplasmic
effects, no interaction or linkage between major genes
and polygenes, and no selection; the polygenic effect
and the environmental effect in any segregating

population follow a normal distribution; and the
variances within the two homozygous parents (P1 and
P2) and the F1 populations are equal.

(ii) Notion

Let x1i, x3i, x2i, x4i and x5i be a random sample of
observations or means of lines from a finite mixture
distribution with one, one, one, k1 and k2 normal
components for parent P1 and P2, the F1, F2 and F2 : 3,
respectively and nj and mj (j=1, . . . , 5) the corre-
sponding sample size and mean of populations in-
cluding the polygenic effects. The Mather & Jinks
(1982) notation was used in this paper. The notations
and their meanings of genetic parameters are shown
in Table 1.

(iii) Genetic model

Five kinds of genetic models, A, B, C, D and E, are
considered as listed in Table 1. If the two parents
differ at only two major loci for a specific quantitative
trait, then only nine major genotypes are possible.
Let A-a and B-b represent the alleles of the loci, then

Table 1. Genetic models in the joint segregation analysis of the five generations of P1, F1, P2, F2 and F2 :3

Class Major gene Polygenes

Model code

Only major
gene

Mixed
major gene
and polygenes

Polygenes – Additive-dominant-epistasis,
[d ], [h], [i], [ j], [l ]

– C

– Additive-dominant, [d ], [h] – C-1

A major gene Additive-dominant, d, h Additive-dominant-epistasis,
[d ], [h], [i], [ j], [l ]

A-1 D

Additive-dominant d, h Additive-dominant, [d ], [h] A-1 D-1
Additive, d(h=0) Additive-dominant, [d ], [h] A-2 D-2
Completely dominant, d(h=d ) Additive-dominant, [d ], [h] A-3 D-3
Completely negative dominant,
d(h=xd )

Additive-dominant, [d ], [h] A-4 D-4

Two major genes Additive-dominant-epistasis,
da, db, ha, hb, i, jab, jba, l

Additive-dominant-epistasis,
[d ], [h], [i], [ j], [l ]

B-1 E

Additive-dominant-epistasis,
da, db, ha, hb, i,jab, jba, l

Additive-dominant, [d ], [h] B-1 E-1

Additive-dominant,
da, db, ha, hb, i=jab=jba, l

Additive-dominant, [d ], [h] B-2 E-2

Additive, da, db, ha=hb=0 Additive-dominant, [d ], [h] B-3 E-3
Equally additive,
d (=da=db, ha=hb=0)

Additive-dominant, [d ], [h] B-4 E-4

Completely dominant,
da=ha, db=hb

Additive-dominant, [d ], [h] B-5 E-5

Equally dominant,
d=da=ha=db=hb

Additive-dominant, [d ], [h] B-6 E-6

d, h : additive and dominance effects of major gene for model A and D; da, ha : additive and dominance effects of the first
major gene for model B and E; db, hb : additive and dominance effects of the second major gene for model B and E; i, jab, jba
and l : additiveradditive, additiverdominance, dominanceradditive, dominancerdominance epistatic effects between the
two major genes; [d ], [h], [i], [ j], [l ] : additive effects, dominance effects, additiveradditive, additiverdominance (or domi-
nanceradditive) and dominancerdominance epistatic effects for the polygene system.

Y.-M. Zhang et al. 158

https://doi.org/10.1017/S0016672303006141 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672303006141


the major genotypes for the two parents and F1

will be AABB, aabb and AaBb, while for F2 a
1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1 mixture of (1) AABB, (2)
AABb, (3) AAbb, (4) AaBB, (5) AaBb, (6) Aabb, (7)
aaBB, (8) aaBb and (9) aabb is expected. For F2 : 3 the
same mixture of major genotypes corresponding to
the major genotypes in F2 is expected. The general
distribution forms of the five populations can be
written as:

P1: x1i � N(m1, s
2) ; F1: x2i � N(m2, s

2) ;

P2: x3i � N(m3, s
2) ; F2: x4i �

Xk1

t=1

p1tN(m4t, s
2
4t) ;

F2 : 3: x5i �
Xk2

t=1

p2tN(m5t, s
2
5t),

where N(m, s2) is a normal distribution with mean m
and variance s2 ; p1t and p2t are the segregation pro-
portions of the nine major genotypes in the segre-
gating populations F2 and F2 :3, respectively ;
s2
41= � � �=s2

49=s2
4 ; x5i is the mean of the ith line in

F2 : 3. In the genetic experiment, some F2 seeds were
reserved and planted to form F2 : 3, where each line in
F2 :3 population was formed by some F2 seeds on a
plant. In the next year, P1, F1, P2, F2 and F2 : 3 popu-
lations were simultaneously planted by the random-
ized design. Thus F2 : 3 was independent of F2.
Therefore, the sample likelihood function for JSA of
MG5 is

L=
Yn1
i=1

f(x1i ; m1, s
2)
Yn2
i=1

f(x2i ; m2, s
2)

Yn3
i=1

f(x3i ; m3, s
2)
Yn4
i=

Xk1

t=1

p1t f(x4i ; m4t, s
2
4)

Yn5
i=

Xk2

t=1

p2t f (x5i ; m5t, s
2
5t), (1)

where f(xi ; m, s
2) represents the density function of a

normal distribution N(m, s2).

(iv) Partitioning of variances of components

If model E is considered for a quantitative trait, let
s40
2 and s50

2 be the polygenic variances of F2 and F2 : 3

populations, respectively. The variances s4
2 and

s2
5t(t=1, . . . , k2) in (1) will have the following re-

lationships:

s2
4=s2

40+s2

s2
5t=s2

50+s2=n+VMGt (t=1, . . . , k2), (2)

where VMGt(t=1, . . . , k2) is the variance component
involved in the genetic effects of major genes, called

major-gene variance; n the number of plants observed
in a line; s2 environmental variance. When k2=9,

VMG1=VMG3=VMG7=VMG9=0

VMG2=[1=2(db+i)2+1=4(hb+jab)
2]=n

VMG4=[1=2(da+i)2+1=4(ha+jba)
2]=n

VMG5=[d 2
a +d 2

b +i2+(da+jab)
2+(db+jba)

2

+(ha+1=2l)2+(hb+1=2l)2+1=4l2]=4n

VMG6=[1=2(daxi)2+1=4(haxjba)
2]=n

VMG8=[1=2(dbxi)2+1=4(hbxjab)
2]=n:

Thus, the variance is partitioned into major-gene,
polygenic and environmental variances.

(v) The EIM algorithm in the estimation of
component parameters

The EIM algorithm includes both the E-step and the
iterated M-step (IM-step). In the E-step, the expected
complete data log-likelihood for the JSA method of
MG5 can be written as

L(h=Y)=
X3

j=1

Xnj
i=1

log f(xji ; mj, s
2)

+
X5

j=4

Xnj
i=1

Xkjx3

t=1

wjit log f(xji ; mjt, s
2
jt), (3)

where wjit is the posterior probability of the tth major
genotype from the ith individual of F2( j=4) or the ith
line of F2 : 3( j=5), s2

4t=s2
4(t=1, . . . , k1), h=(m1, m2,

m3 , m41, . . . , m4k1
, s2

4, m51, . . . , m5k2
, s2

51, . . . , s2
5k2
). In

this step, wjit will be calculated as

wjit=pjx3, t f(xji ; mjt, s
2
jt)
.Xkjx3

m=1

pjx3,m f(xji ; mjm, s
2
jm)

( j=4, 5; i=1, . . . , nj ; t=1, . . . , kjx3):

In the IM-step, the iterated formulas are used to ob-
tain the maximized point of L(h |Y) for a specific
genetic model by computing partial derivatives of
L(h |Y) for all parameters and letting the derivatives
be zero. However, since there are still some con-
straints on the means, Lagrange multiplication (or
l-multiplicator method) can be used in the IM-step
for those models. For example, for model D for JSA
of MG5, the underlying relationships between the
means of component distributions and genetic par-
ameters (mj, d, h) are as follows:

m1=m1+d m2=m2+h m3=m3xd
m41=m4+d m42=m4+h m43=m4xd
m51=m5+d m52=m5+ 1

2
h m53=m5xd:
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There are therefore two constraint conditions among
the means of component distributions:

g1=m41xm43xm51+m53=0

g2=2m42x2m43+m51x4m52+3m53=0:

Thus, L1=L(h |Y )xl1g1xl2g2 is constructed. In the
IM-step, if @L1=@m=0, the iterated formulae of means
of component distributions is obtained,

mj=
Xnj
i=1

xji=nj ( j=1, 2, 3), (4a)

mjt=
�Xnj

i=1

wjitxji+cjts
2
jt

�.Xnj
i=1

wjit

( j=4, 5; t=1, 2, 3), (4b)

where c41=xl1, c42=x2l2, c43=l1+2l2, c51=
l1xl2, c52=4l2 and c53=xl1x3l2. We have noticed
that s2

52=s2
51+(0�5d 2+0�25h2)=n in model D, and

both d and h were a function of means of component
distributions. While the first partial derivative of
s52
2 on the mean was omitted, the iterated formulae of

means in (4a) and (4b) were obtained. This would
be remedied by the iterated method as follows: (i)
obtain l1 and l2 by the two constraint conditions
while the values of the component parameters were
given; (ii) calculate the means by (4a) and (4b); (iii)
get the new estimates of s5t

2 by (2) ; (iv) replicate steps
(i)–(iii) until estimates for l1 and l2 converge (the
convergence of component parameters was confirmed
by Monte Carlo simulation, data not shown). The
items s5t

2 in (3) were included in the estimation of
parameters by the iterated method to avoid the
inexact results caused by omitting the items as in
Wang & Gai (1998).

The polygenic variance is estimated by

@L1

@s2
j0

=
Xnj
i=1

Xkjx3

t=1

wjit

�
x

(s2
jt)

x1

2
+

(xjixmjt)
2(s2

jt)
x2

2

�
=0

( j=4, 5): (5)

Taking s2
4=s2

40+s2, s2
5t=s2

50+s2=n+VMGt and
v2t=s2

51=s
2
5t (t=1, . . . , k2), it is found that

s2
40=

Xn4
i=1

Xk1

t=1

w4it(x4ixm4t)
2=n4xs2, (6a)

s2
50=

Xk2

t=1

v22t

Xn5
i=1

w5it(x5ixm5t)
2
.Xk2

t=1

v2t
Xn5
i=1

w5itxs2=n:

(6b)

Using the EM algorithm, the latter k2x1 items in
the numerator and denominator in the first item of
the right-hand side of (6b) are omitted; the unequal
s5t
2 included s50

2 in (5) for model E may result in a
complicated equation in s50

2 .
The environmental variance is estimated by setting

@L1=@s
2 to zero:

@L1

@s2
=
X3

j=1

Xnj
i=1

�
x

(s2)x1

2
+

(xjixmj)
2(s2)x2

2

�

+
Xn4
i=1

Xk1

t=1

w4it

�
x

(s2
4)

x1

2
+

(x4ixm4t)
2(s2

4)
x2

2

�

+
Xn5
i=1

Xk2

t=1

w5it

�
x

(s2
5t)

x1

2
+

(x5ixm5t)
2(s2

5t)
x2

2

�

r
1

n
=0: (7)

Let v4=s2=s2
4 and v5t=(s2=n)=s2

5t (t=1, . . . , k2), so
that

According to the above derivation, the procedure to
obtain the maximum likelihood estimates of the
parameters can be summarized as follows: (i) choose
initial values for parameters according to the ob-
servations; for example, the means of P1, F1 and P2

may be set equal to m(0)
1 � m(0)

3 , respectively, the pooled
variance of P1, F1 and P2 may be set equal to s2(0) ; the
mean �xx and its standard error s�xx of F2 are used to
determine m(0)

41 � m(0)
49 and s4

(0) by m(0)
4t =�xx+0�7(5xt)s�xx

sgn( m(0)
1 xm(0)

3 ) (t=1 � 9) and s(0)
4 =n4s

2
�xx=C, C 2

(1�5, 3) ; (ii) compute posterior probabilities wjit, and
obtain the expected complete data log-likelihood
L(h |Y) (E-step) ; (iii) compute the conditional maxi-
mum of L(h |Y) and obtain m(1), sj0

2(1) and s2(1) (IM-
step) ; (iv) replace initial values with estimates from
step (iii) and then iterate steps (ii) and (iii) until a
previously selected precision is achieved.

(vi) Test of goodness of fit

Let F0(x) be the expected distribution derived from
the selected model. Given H0 : F(x)=F0(x), when the
n observations xi(i=1, . . . , n) are transformed by the
accumulated probability transformation [yi=F0(xi)=
P(x<xi)], n independent observations yi(i=1, . . . , n)

s2=

P3
j=1

Pnj
i=1 (xjixmj)

2+
Pk1

t=1 v
2
4

Pn4
i=1 w4it(x4ixm4t)

2+n
Pk2

t=1 v
2
5t

Pn5
i=1 w5it(x5ixm5t)

2

P3
j=1 nj+v4n4+

Pk2

t=1 v5t
Pn5

i=1 w5it

: (8)
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uniformly distributed on the interval (0, 1) can be
obtained when H0 holds, where the sample is derived
from its population distribution F(x). Consequently,
three x2 statistics with 1 degree of freedom, namely
U2

1=12[
P

yixn=2]2=n, U2
2=

45
4
(
P

y2
ixn=3)2=n and

U2
3=180[

P
(yix1=2)2x12=n]2=n, can be used to test

whether the mean, second moment and variance of yi
are 1/2, 1/3 and 1/12, respectively under H0. More-
over, Smirnov’s statistics and Kolmogorov’s statistics
can also be used (Kendall & Stuart, 1979).

3. An example

To illustrate the application of the EIM algorithm,
JSA of MG5 is used to re-analyse the inheritance of
resistance to beanfly in soybean (Melanagromyza
sojae Zehntner). Three soybean crosses – I : JNCWD
(resistant: R)rHJQDHY (susceptible : S), II :
WXCQGJ (R)rPXTED (S) and III : PXTED
(S)r1138-2 (R) – were made among five varieties
(Wei et al., 1989). A split plot design was used in the
experiment, with crosses in main plots and parent
hybrid generations in sub-plots. The number of in-
sects (larvae plus pupae) in the stem (NIS) was used as
an indicator of resistance. The frequency distribution
of NIS for MG5 of cross I is shown in Table 2. It is
obvious that the F1 population tends toward the

resistant parent. The distribution of NIS of the F2

demonstrates a biased single mode toward the resist-
ance parent while that of the F2 : 3 lines demonstrates
bi-modality, as do those of crosses II and III. This
suggests that there is a major gene for resistance of
soybean to the beanfly.

(i) JSA of resistance of soybean to beanfly

According to the procedures in Wang & Gai (1998),
the maximized likelihood, Akaike’s information

Table 2. The frequency distribution of number of insects in whole plant for P1, F1, P2, F2 and F2 : 3 of the cross I
a

Generation 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 Mean Variance

P1 3 4 5 8 1.90 1.2526
F1 5 7 5 3 1.30 1.0632
P2 6 6 5 2 1 5.30 1.3789
F2 24 36 39 37 20 20 12 9 3 2.82 4.1182
F2 : 3 16 68 15 0 5 18 5 2.26 3.1025

a Cross I is the soybean cross JNCWDrHJQDHY. The same is true for the later tables.

Table 3. The AIC values under various genetic models for three soybean crossesa

Model

AIC

Model

AIC

I II III I II III

A-1 1281.33 1018.04 1387.99 D 1229.93 1029.63 1382.91
A-2 1354.69 1155.03 1494.18 D-1 1210.58 1005.40 1337.95
A-3 1290.20 1015.93 1390.72 D-2 1216.52 1042.45 1348.28
A-4 1512.00 1327.70 1673.06 D-3 1231.53 1048.04 1329.92
B-1 1249.77 1016.17 1371.20 D-4 1195.50 987.29 1357.30
B-2 1280.56 1022.22 1396.78 E 1225.94 1029.17 1367.36
B-3 1320.65 1103.41 1454.48 E-1 1255.81 1024.84 1382.97
B-4 1352.26 1127.94 1509.51 E-2 1276.81 1030.34 1398.99
B-5 1288.19 1017.40 1390.68 E-3 – 1183.22 1439.95
B-6 1266.65 1035.15 1416.96 E-4 1395.58 1072.44 1427.44
C 1376.73 1183.81 1552.55 E-5 1275.07 1021.86 1385.17
C-1 1396.94 1180.83 1571.92 E-6 1285.48 1067.24 1437.31

Minimum values are underlined.
a II is the soybean cross WXCQGJrPXTED, III PXTEDr1138-2. The same is true for the later tables.

Table 4. Maximum likelihood estimates of component
parameters in model D-3 or D-4

Parameter
Cross I
(D-4)

Cross II
(D-4)

Cross III
(D-3)

m1 1.65 1.34 1.79
m2 1.46 1.32 1.58
m3 6.85 5.84 5.19
m41 1.97 1.47 5.21
m42 5.50 5.42 1.64
m51 1.26 1.33 5.47
m52 1.35 1.41 1.45
m53 5.11 5.50 1.29
s2 1.46 1.24 1.17
s41
2 1.90 1.24 1.60

s51
2 0.29 0.25 0.23
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criterion (AIC) and the maximum likelihood esti-
mates in every model were calculated using the EIM
algorithm. Here, AIC=x2L(h |Y)+2N, where N is
the number of independent parameters. The AIC
values are listed in Table 3. From Table 3, model D-4
in crosses I and II, and model D-3 in cross III have
the smallest AIC values and thus show the best fit.
The difference is due to the fact that crosses I and II
are RrS, and cross III is SrR. Therefore we can
reasonably conclude that the resistance to beanfly is
dominated by a mixture of dominant major gene plus
additive-dominant polygenes.

The first-order and second-order genetic para-
meters in model D-4 or D-3, calculated from the
results in Table 4, and the components in each segre-
gating population, are given in Table 5. The additive
effects of major genes in crosses I, II and III are
estimated as –1.35, –1.52 and 1.45 heads/plant, res-
pectively; the resistance trait is completely negative-
dominant or dominant. The major-gene variations of
the three crosses in F2 are 38–49% of their total
phenotypic variances, those in F2 : 3 are 42–48% of the
total variance. The polygenic variations of the three

crosses in F2 are 17–33% of their total phenotypic
variances, those in F2 : 3 are 44–52% of the total vari-
ance. Finally, the most probable major-gene genotype
of an individual or a line in segregating populations
can be determined by using the posterior probability
wjit (Wang & Gai, 2001).

4. Discussion

Thirteen genetic models, involving two groups – the
two-major-gene models and the mixed two-major-
gene plus polygenes models – were studied in this
paper,which extended the results ofWang&Gai (1998,
2001). Therefore, more information was provided to
infer whether there is one or two major gene(s) in the
inheritance of a quantitative trait. Moreover, the ef-
ficiency of identification of our ‘two major genes plus
polygenes’ inheritance model was also studied by the
Monte Carlo simulation. The simulated genetic model
was E-3 while db=0.5da, ha= bb=0, and the herita-
bilities of the major gene and polygenes in the F2

population were 0.4 and 0.2, respectively. The error
variance may be set equal to one. Therefore, P1, F1, P2,

Table 6. The test of goodness of fit for model D-4 or D-3 of the three crosses

Cross Model Generation U1
2 U2

2 U3
2 nW2 Dn

I D-4 P1 0.00 (1.00)a 0.00 (0.99) 0.00 (0.98) 0.15 (>0.05) 0.20 (>0.05)
F1 1.03 (0.31) 1.21 (0.27) 0.22 (0.64) 0.24 (>0.05) 0.27 (>0.05)
P2 0.06 (0.81) 0.08 (0.77) 4.31 (0.04)* 0.21 (>0.05) 0.26 (>0.05)
F2 7.04 (0.01)** 8.22 (0.00)** 1.42 (0.23) 1.19 (<0.01)** 0.18 (>0.05)
F2 :3 0.25 (0.62) 0.00 (0.95) 2.80 (0.09) 0.24 (>0.05) 0.14 (<0.05)*

II D-4 P1 0.00 (0.98) 0.03 (0.87) 0.54 (0.46) 0.16 (>0.05) 0.18 (>0.05)
F1 0.42 (0.52) 0.05 (0.83) 2.71 (0.10) 0.36 (>0.05) 0.34 (<0.05)*
P2 0.07 (0.79) 0.03 (0.86) 3.11 (0.08) 0.17 (>0.05) 0.20 (>0.05)
F2 2.42 (0.12) 2.83 (0.09) 0.50 (0.48) 0.95 (<0.05)* 0.23 (<0.05)*
F2 :3 1.78 (0.18) 1.29 (0.26) 0.40 (0.53) 0.23 (>0.05) 0.12 (>0.05)

III D-3 P1 0.51 (0.48) 0.90 (0.34) 1.08 (0.30) 0.25 (>0.05) 0.27 (>0.05)
F1 1.51 (0.22) 1.17 (0.28) 0.19 (0.66) 0.29 (>0.05) 0.30 (>0.05)
P2 0.02 (0.89) 0.07 (0.79) 0.31 (0.58) 0.14 (>0.05) 0.17 (>0.05)
F2 3.55 (0.06) 3.61 (0.06) 0.10 (0.76) 0.78 (<0.05)* 0.16 (<0.05)*
F2 :3 1.69 (0.19) 1.75 (0.19) 0.06 (0.80) 0.27 (>0.05) 0.11 (>0.05)

U1
2, U2

2, U3
2 : x2 statistics with 1 degree of freedom; nW2 : Smirnov’s statistics ; Dn : Kolmogorov’s statistics.

a Values are the sample statistic and the corresponding p-value; *, **: the 0.05, 0.01 significance levels respectively.

Table 5. Estimates of genetic parameters of resistance to beanfly of the three crosses

First-order
parameter

Estimates
Second-order
parameter

Estimates in F2 Estimates in F2 :3

I II III I II III I II III

m 3.97 3.70 3.58 sP
2 3.47 3.56 4.12 3.02 3.94 3.10

d x1.35 x1.52 1.45 smg
2 1.37 1.73 1.58 1.30 1.65 1.50

h 1.35 1.52 1.45 spg
2 0.65 0.60 1.37 1.43 2.05 1.37

[d ] x1.25 x0.73 x3.15 se
2 1.46 1.24 1.17 0.29 0.25 0.23

[h] x3.16 x3.00 x2.62 hmg
2 (%) 39 49 38 43 42 48

hpg
2 (%) 19 17 33 47 52 44
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F2 and F2 : 3 populations with sample sizes 20, 20, 20,
200 and 128 respectively are simulated by one, one,
one, two and three normal distributions respectively.
The replication is 100. According to the results of AIC
and test of goodness of fit, the best model across 24
models for every replication was selected. The results
showed that the power for identifying the two major
genes above was 94%. However, sometimes the
polygenes can not be identified, which is a problem
that needs to be addressed. In addition, although JSA
of quantitative traits does not provide the positions of
QTLs, it can give useful information on quantitative
traits at very low cost. Furthermore, the results of the
JSA reciprocally confirm the results of QTL mapping.

Why did we not fit the model directly in terms of the
Mather and Jinks parameterization? Of course, this
would make it unnecessary to use Lagrange multi-
pliers. However, the items involving genetic par-
ametersm, d, etc., in the derivative of L(h |Y) might be
too complicated; as a result, it is difficult to obtain the
expression of genetic parameters m, d, etc., as shown
in formula (4).

The iterated formulas for estimating the means,
polygenic variance and environmental variance of
component distributions, such as (4), (6a), (6b) and
(8) by the EIM algorithm, are obtained in this paper,
and the iterated method is used in order to simplify
the EM algorithm for JSA of MG5. When mixed two-
major-gene plus polygenes inheritance models and
more complicated models are extended, it is simple to
estimate the component parameters. For the esti-
mation of polygenic variance, the information of all
components including sj0

2 ( j=4,5) is used to improve
the precision of parameter estimation.

Although the NIS did not theoretically obey a
normal distribution, the test of goodness-of-fit be-
tween the expected values from the selected model
and the observed values showed that hypothesis
about the normal distribution almost held (Table 6).
The results of the inheritance of resistance to beanfly
in this paper are relatively consistent with those in
Wang & Gai (2001) because of the similarly mixed
‘one major gene plus polygenes’ genetic model. But
the former is more objective than the latter. Firstly,
the former confirms that there is only one major gene.
Secondly, the former reflects the difference that
crosses I and II are RrS, and cross III is SrR
by means of the best fitting genetic model. Then,
the omitted two restrictions in model D in Wang
& Gai (2001) are considered so that the relatively
large maximum log-likelihood for model D in Wang
& Gai (2001) was corrected. This can explain why
the AIC values of model D for the three crosses in
Wang & Gai (2001) are smaller than those in this
paper and why the best-fitting genetic model in Wang

& Gai (2001) is model D. Finally, the major gene
heritability as well as polygene heritability estimates
among the three crosses in this paper are more con-
sistent than those in Wang & Gai (2001). Therefore, it
is feasible to estimate the parameters using the EIM
algorithm.
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