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Simplicity of Some Twin Tree
Automorphism Groups
with Trivial Commutation Relations

Jun Morita and Bertrand Rémy

Abstract. We prove simplicity for incomplete rank 2 Kac–Moody groups over algebraic closures of
finite fields with trivial commutation relations between root groups corresponding to prenilpotent
pairs. We don’t use the (yet unknown) simplicity of the corresponding finitely generated groups (i.e.,
when the ground field is finite). Nevertheless we use the fact that the latter groups are just infinite
(modulo center).

Introduction

In this paper we prove simplicity (up to center) of some (incomplete) Kac–Moody
groups over algebraic closures of finite fields. At first glance, this might be a surpris-
ing result, because the examples that are usually given to introduce incomplete Kac–
Moody groups (as defined by J. Tits [19]) are of affine type, and the latter groups
have a matrix interpretation. For instance, a Kac–Moody group of type Ãn over some
field F is isogenous to SLn(F[t, t−1]). In fact, any F-split simple algebraic group G
gives rise to a Kac–Moody group functor R 7→ G(R[t, t−1]) on F-algebras. The values
over fields of such a functor are (Kac–Moody) groups admitting a lot of (congruence)
quotients, since the ring R[t, t−1] has arbitrarily small ideals.

The question is: given a certain class of ground fields, which types of Kac–Moody
groups shall we exclude to hope for simplicity? The situation over finite ground
fields is almost completely understood [6]. The outcome suggests that among the
irreducible generalized Cartan matrices, the only types that should be excluded are
the affine ones. To be more precise, this general picture over finite fields is completely
confirmed except when the generalized Cartan matrix is 2 × 2, in which case the
problem is only half-solved [8]. The connection with our case, where ground fields
are of the form Fq, is that simplicity over finite ground fields easily implies simplicity
over the algebraic closure (3.1, Remark 11). We deal here with the only case where
simplicity over finite ground fields is still an open question.

Theorem Let A =
(

2 −n
−m 2

)
be a generalized Cartan matrix of indefinite type, i.e.,

mn > 4. Let GA be the corresponding simply connected incomplete Kac–Moody group
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functor and let F be the algebraic closure of a finite field. Assume that m, n > 2. Then
the group GA(F)/Z

(
GA(F)

)
is simple.

Our theorem (also Theorem 12, Remark 13) and its proof given below remain
valid when replacing F by any infinite subfield of F. This theorem settles in particuar
the last case needed to prove the following statement (see Remark 13 and Subsection
3.2): irreducible, simply connected, non-affine Kac–Moody groups over (infinite sub-
fields of) algebraic closures of finite fields are simple modulo their centers. The picture
over finite fields is slightly less complete.

The reason why excluding affine types gives simplicity over finite ground fields
has a geometric explanation that naturally leads us to introduce the main tool in
the investigation of these groups, namely buildings (another concept introduced by
J. Tits and presented in 1.1). Roughly speaking a building is a nice, symmetric, sim-
plicial complex designed to admit group actions. By definition, a building is covered
by subcomplexes (called apartments) that are all isomorphic and whose geometry
is fully encoded by a Coxeter group which is called the Weyl group of the building.
An infinite Weyl group is a Euclidean reflection group if and only if it has polyno-
mial growth for its natural generating set. For generalized Cartan matrices of size
> 3, simplicity occurs (at least over finite fields) precisely when the Weyl group of
the buildings is not Euclidean, because then the associated root system has some nice
weak hyperbolicity properties. The proof of our result is also related to some kind of
hyperbolicity since our assumption mn > 4 corresponds to hyperbolic root systems
of rank 2. This proof requires in addition the use of some weak version of simplic-
ity, called the normal subgroup property, which is reminiscent to a famous result of
G. Margulis about lattices in higher rank Lie groups.

The structure of the paper is the following. In Section 1, we introduce the basic
objects used in the paper, namely twin buildings and Kac–Moody groups. In Sec-
tion 2, we recall the situation over finite fields because we need to state the normal
subgroup property in this case. In Section 3, we prove our main theorem and men-
tion the remaining related problem for finitely generated Kac–Moody groups.

Let us finally introduce some notation. Concerning groups, Z(G) means the cen-
ter of a group G. Concerning rings, Z (resp. Q, R) means the set of integral (resp.
rational, real) numbers. In this article, p is a prime number and q a power of some p;
finally, Qp (resp. Fp, Fq) means the field of p-adic numbers (resp. a prime field of
characteristic p, a finite field of order q).

1 Twin Building and Kac–Moody Theory

All the theories in this subsection are due to J. Tits, see for instance [18] and [20] for
(twin) buildings and [19] for Kac–Moody groups.

1.1 Twin Building Theory

Let us first recall the definition of a building. If W = 〈s ∈ S | (st)Mst = 1〉 is a
Coxeter group defined by the Coxeter matrix [Mst ]s,t∈S, there is a simplicial com-
plex, called the Coxeter complex Σ of (W, S), on the maximal simplices of which W
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acts simply transitively [4]. In this context, simplices are rather called facets. Cox-
eter complexes (seen as simplicial or metric spaces) are generalized tilings on which
the initial Coxeter group acts as a generalized reflection group generated by natural
involutions (reflections in faces of a given chamber, i.e., a maximal facet).

Up to removing the facets with infinite stabilizers, there exists a geometric re-
alization for Σ, usually different from the one introduced in Bourbaki, carrying a
complete metric such that the resulting metric space is non-positively curved and
contractible. Technically the notion is that of a complete CAT(0)-space. Since we
will use this terminology without going into technical details, we simply refer to [5].

Definition 1 A building of type Σ is a simplicial complex covered by sub-complexes
all isomorphic to the Coxeter complex Σ, called apartments and required to satisfy
the following axioms.

(i) Any two simplices are always contained in an apartment.
(ii) Given any two apartments A, A′ there is an isomorphism A ' A′ fixing A ∩ A′.

The group W is called the Weyl group of the building.

The above axioms can be motivated by metric considerations. Indeed, they can
be used to glue together the above (Davis–Moussong) metrics on each apartment in
order to define a complete CAT(0) metric on the building: axiom (i) says that the
distance between two points can always be computed by doing it in a suitable apart-
ment, and axiom (ii), up to additional work in order to define suitable 1-lipschitz
retractions, shows that the distance computed this way doesn’t depend on the apart-
ment.

Example 2 Let D∞ be the infinite dihedral group, i.e., the group generated by two
reflections in consecutive integers on the real line. Then a building of type D∞ is a
tree (without pending leaf). Note that such a tree may have no automorphism at all
since trees in which any two vertices have distinct valencies are not excluded by the
axioms (the isomorphism in (ii) need not be defined globally).

Example 3 The Coxeter complex of type Ã2 is the one given by the tiling of R2

by regular triangles. Buildings whose apartments have this shape are called trian-
gle buildings; they appear as Bruhat-Tits buildings for Lie groups like SL3 over local
fields. More generally, one consequence of Cartan and Bruhat–Tits theories is the
possibility to associate to any S-arithmetic group a complete CAT(0)-space on which
it acts nicely. These spaces are obtained as products of symmetric spaces and of Eu-
clidean buildings, i.e., buildings in which apartments are Euclidean tilings.

New interesting questions occur when the buildings of the geometric actions un-
der consideration are no longer Euclidean. Many examples of buildings with hyper-
bolic tilings as apartments are available thanks to Kac–Moody theory (1.2). Such
exotic buildings provide more opportunities to study non-linear discrete groups via
geometric actions.
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Let us now turn very quickly to twinnings [20]. Initially, the idea is to extend
some rigidity properties (useful in the classification of spherical buildings) to non-
spherical buildings, provided they are twinned with another isomorphic building.
The idea to add a twin to a non-spherical building enables one to define an opposi-
tion relation between facets in the two different buildings. Conventionally, each of
the two twinned buildings is given a sign ±. This opposition relation between facets
of opposite signs is a substitute for the existence of a longest element in the Weyl
group of the buildings.

Example 4 By Bruhat–Tits theory, the groups SLn

(
Fq((t±1))

)
, where Fq((t±1))

are locally compact non-Archimedean fields of formal Laurent series, act on isomor-
phic Euclidean buildings, say X±. There is a natural twinning between X− and X+

such that the discrete group SLn(Fq[t, t−1]) (embedded diagonally in the product of
the two previous groups) acts on X− × X+ and preserves opposition of chambers of
opposite signs.

Given a homogeneous tree, there are uncountably many ways to associate with it a
twin tree, but most twinnings have no automorphism at all [16]. Still, the additional
Moufang condition on twin buildings guarantees the existence of enough automor-
phisms for these buildings. We will not go into details, but we simply mention that
Kac–Moody theory provides lots of examples of twin buildings satisfying the Mo-
ufang condition. Even more exotic (i.e., non- Kac–Moody) Moufang twin buildings
with enough automorphisms are also available by means of more down-to-earth con-
structions, see [14] and also [1].

1.2 Kac–Moody Groups

Kac–Moody groups are constructed from the same kind of data as Chevalley groups,
namely a ground field and some Lie-theoretic data classifying semisimple Lie algebras
[12].

More precisely, a generalized Cartan matrix is an integral matrix A = [As,t ]s,t∈S

indexed by a set S (which is here assumed to be finite), such that As,s = 2 for any
s ∈ S and As,t 6 0 for any s 6= t in S; it is further required that As,t = 0 if and only
if At,s = 0. From this Lie-theoretic matrix, a certain group functor over rings can be
constructed by generators and relations [19]. It is a heavy machinery of algebraic and
combinatorial nature, which gives a Chevalley group scheme if the matrix [As,t ]s,t∈S

is a Cartan matrix (i.e., if it can be written as the product of a diagonal matrix with
a positive definite symmetric matrix). In fact, as in this classical case, the matrix A
only determines Kac–Moody group functors up to center, and in what follows we
always use the simply connected groups (this choice plays no significant role for our
purposes—it makes simplicity results easier to state). A Kac–Moody group is the value
of a Kac–Moody functor on a field, called the ground field in what follows.

We are interested in the geometric outcome of this construction: a Kac–Moody
group acts on the product of two Moufang twin buildings and the kernel of the action
is its center. It is a well-known fact that a group enjoying the structure of a Tits
system (also called BN-pair) naturally acts (strongly transitively) on a building. In the
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case of a Kac–Moody group of non-classical (i.e., non-Chevalley) type, there are two
conjugacy classes of subgroups which lead to two distinct buildings. Moreover, the
Weyl group, i.e., the shape of the apartments of the twinned buildings X±, is explicitly
known, since its Coxeter matrix [Ms,t ]s,t∈S is determined by the rule Ms,t = 2 (resp.
3, 4, 6 or∞) according to whether As,t At,s is equal to 0 (resp. 1, 2, 3 or is > 4). At
last the associated buildings X± are locally finite if and only if the ground field is
finite, which we assume until the end of the next section. This implies that, for the
CAT(0)-metric, the isometry groups Isom(X±) are locally compact for the compact
open topology, and as such admit Haar measures.

Example 5 Over a given field F, for a suitable choice of generalized Cartan ma-
trices (namely for those of affine type), the corresponding Kac–Moody groups are of
the form G(F[t, t−1]) where G is a semisimple algebraic group over F. Then the ac-
tions of G(F[t, t−1]) on the associated twin buildings are those given by Bruhat–Tits
theory by seeing G(F[t, t−1]) as a subgroup of the two completions G

(
F((t))

)
and

G
(

F((t−1))
)

.

Example 6 Using the rule [As,t ]s,t∈S → [Ms,t ]s,t∈S, we easily see that many build-
ings whose apartments are real hyperbolic tilings are made available by Kac–Moody
theory. An interesting point in this construction is the fact that a Kac–Moody group
acts on each of the two twinned buildings in a highly transitive way (in particular it
acts on each factor with a chamber as fundamental domain).

2 Finitely Generated Kac–Moody Groups

In this section, we recall the general situation of twin building lattices, as far as the
question of simplicity is concerned. For this we need to recall some general notions
from geometric group theory.

2.1 A Glimpse of Geometric Group Theory

Roughly speaking, arithmetic groups are matrix groups with coefficients in rings
of integers of global fields and in natural generalizations; examples of such groups
are SLn(Z) or SLn(Z[1/p]). An arithmetic group appears as a subgroup in a prod-
uct of (real and totally disconnected) Lie groups (e.g., SLn(Z) < SLn(R), and
SLn(Z[1/p]) < SLn(R) × SLn(Qp) for the diagonal inclusion). Furthermore a non-
compact simple Lie group naturally acts on a complete CAT(0)-space [3]. It is a
symmetric space if the simple Lie group is defined over the real numbers. When the
ground field of the simple Lie group is a non-Archimedean local field, the metric
space is a Euclidean building (the construction of the latter space is not trivial at all,
it follows from the so-called Bruhat–Tits theory [17]). Putting these two facts to-
gether (and forgetting the step involving the ambient topological groups), we obtain
an interesting situation (called here a geometric action) where a discrete group Γ acts
on a metric space (X, d) so that the following hold:

(GA1) the metric d on X is complete and CAT(0);
(GA2) the group Γ acts by isometries and properly discontinuously on X;
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(GA3) the Γ-action has a nice fundamental domain.

By “nice”, we can mean compact, but compactness is usually too strong. More tech-
nically, it means that the full isometry group Isom(X, d) carries a Haar measure and
that the corresponding invariant measure on the homogeneous space Isom(X, d)/Γ
has finite volume. We say then that Γ is a lattice for (X, d).

Example 7 The symmetric space associated to SL2(R) is Poincaré’s upper half-
plane H2

R and the group SL2(Z) acts on it with the well-known fundamental domain
{z ∈ C : |z| > 1 and |<(z)| 6 1

2}.

Example 8 The Bruhat–Tits building associated with the rank 1 non-Archimedean
simple Lie group SL2(Qp) is the homogeneous tree Tp+1 of valency p +1. The natural
action of the lattice SL2(Z[ 1

p ]) is the diagonal action on the mixed product H2
R×Tp+1

of a differentiable manifold and a simplicial complex.

Example 9 To obtain a geometric action of a lattice on a product of two trees, one
can use slightly less familiar matrix groups. Namely, start with a quaternion alge-
bra over Q, say H, such that H(R) is a skew-field (in arithmetic terms, H is ramified
at∞); pick two prime numbers p and l such that H(Qp) and H(Ql) are matrix alge-
bras. Then the elements in H(Z[ 1

pl ]) form a discrete group having a geometric action
on Tp+1 × Tl+1, and the fundamental domain is compact.

A typical question in geometric group theory asks what can be said about a dis-
crete group once it is known to admit a geometric action on a particularly nice
CAT(0)-space (e.g., a non-spherical building or a cube complex—products of trees
belong to both classes). Relevant questions are for instance related to freeness, lin-
earity, residual finiteness, simplicity, etc. The historical statement, in connection with
Example 7, is the proof that SL2(Z) contains a finite index subgroup isomorphic to
the free group F2 (this is F. Klein’s ping-pong argument).

2.2 Non-affine Higher-rank Finitely Generated Kac–Moody Groups

We can now go back to the objects defined in the previous section. Let Λ be a Kac–
Moody group over a finite field Fq of order q. Then the diagonal Λ-action on X−×X+

is geometric in the sense of the axioms (GA) in 2.1. Using the group combinatorics of
twin Tits systems, we can see that a fundamental domain is given for instance by the
product of a negative chamber by a suitable positive apartment. The starting point of
the analogy between Kac–Moody groups over finite fields and S-arithmetic groups is
the following result [11]: at least when q > #S, the group Λ, which is finitely generated
by construction, is a lattice in Isom(X±) × Isom(X±). In fact, the covolume of Λ is
given by

∑
w∈W q−`(w) for a suitable normalization of Haar measures; in particular,

for twin trees (where #S = 2) the covolume is always finite since W has linear growth
in that case.

Now the main structure result on normal subgroups of lattices in Lie groups is due
to G. Margulis [2, Lecture 4]: let Γ be an irreducible lattice in a higher-rank semisim-
ple Lie group. Then for any ∆ / Γ, either the subgroup ∆ is finite and central, or ∆
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has finite index in Γ. A group all of whose normal subgroups satisfy the previous
dichotomy is said to have the normal subgroup property, (NSP) for short. This is a
typical result we might try to generalize to lattices in products of buildings obtained
from Moufang twin buildings. This was indeed checked in [13]: let Λ be an irre-
ducible Kac–Moody group over a finite field. Then Λ has (NSP) whenever it is a lattice
of the product of its two twinned buildings (i.e., whenever the finite ground field is big
enough with respect to the growth of the Weyl group—see the above covolume for-
mula). The proof follows Margulis’ general strategy consisting in showing that for
an infinite ∆ / Λ, the discrete group Λ/∆ is both amenable and Kazhdan (implying
compactness, hence finiteness by discreteness).

The next step after (NSP) is simplicity. Here is a simplified statement of what is
proved in [6]: let Λ be a (simply connected) Kac–Moody group over the finite field Fq.
Assume that the generalized Cartan matrix defining Λ is non-affine and indecompos-
able, say of size n. Then Λ/Z(Λ) is simple whenever q > n > 2. For this simplic-
ity theorem, by (NSP) the key point is to rule out also the possibility to have finite
quotients either; this is where the new conditions on the generalized Cartan matrix
appear (non-affineness and n > 2). Indeed the argument to exclude finite quo-
tients for Λ uses the geometry of the root system of the Weyl group, more precisely
the fact that whenever an infinite Coxeter group is irreducible, non-affine and of
rank> 2, then its root system has many hyperbolic triples: seeing roots as half-spaces
bordered by fixed-point sets of reflections in the Coxeter complex Σ, this means ex-
istence triples of pairwise disjoint roots in Σ (which is clearly excluded for Euclidean
reflection groups).

Remark 10 It is interesting to have simple groups occurring as lattices in products
of buildings in which some freedom for the shape of the apartments is available.
Indeed, this leads to the following statement in geometric group theory [7]: there
exist infinitely many quasi-isometry classes of finitely presented simple groups.

3 Simplicity for Non-locally Finite Twin Trees

We prove simplicity for hyperbolic rank 2 Kac–Moody groups over algebraic closures
of finite fields (cf. the Theorem in the Introduction). This can be easily established
when the corresponding Kac–Moody group is simple over a finite subfield (see Re-
mark 11), so we concentrate on the case where the latter simplicity is still unknown.
This is when the commutation relations between root groups indexed by prenilpotent
pairs are trivial.

3.1 Simplicity Without Using Simplicity

Let us recall Tits functors, GA as well as TA, associated with generalized Cartan ma-
trices A to produce the corresponding Kac–Moody groups [19].

Let A =
(

2 −n
−m 2

)
be a generalized Cartan matrix of indefinite type (i.e., mn > 4).

We assume that m, n > 2, which implies that the commutation relations between
root groups indexed by prenilpotent pairs are trivial [10]. Then we obtain the corre-
sponding Kac–Moody group GA(F) over F = Fq and the so-called standard maximal
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split torus TA(F) ' HomZ(Z2, F×). The group GA(F) is generated by root sub-
groups Uδ for all real roots δ in this case.

For each real root δ, there is a natural isomorphism from the additive group (F,+)
onto Uδ , which we denote by r 7→ uδ(r). Tits’ presentation [19] implies that the
group Sδ = 〈Uδ,U−δ〉 is isomorphic to SL2(F) via an isomorphism which sends
uδ(r) (resp. u−δ(r)) to

(
1 r
0 1

)
(resp.

(
1 0
r 1

)
). Then, TA(F) is generated by hδ(µ) for

all real roots δ and for all µ ∈ F×, where hδ(µ) is an element of Sδ corresponding

to
( µ 0

0 µ−1

)
.

Let α and β be the simple roots defined by this presentation. For any non-zero
j ∈ Z we set γ j = τ j .α where τ = wα(1)wβ(1) and wδ(1) = uδ(1)u−δ(−1)uδ(1);
there exist integers a j and b j with a jb j > 0 such that

γ j = a jα + b jβ.

Note that in the geometric realization of the Weyl group D∞, the Coxeter complex
(hence any apartment) is the real line. The reflections in the Weyl group are those
with respect to the integers and the element τ acts as a translation along this line.

A element t ∈ TA(F) given by this presentation has the form t = hα(µ)hβ(ν),
where µ, ν ∈ F× are two multiplicative parameters. Then, we have

α(t) = µ2να(β∨) = µ2ν−m

and

γ j(t) = µγ j (α
∨)νγ j (β

∨) = µ2a j +β(α∨)b jνα(β∨)a j +2b j = µ2a j−nb jν−ma j +2b j ,

where γ∨ denotes the coroot of a real root γ.

Proof of the Theorem Let K / GA(F) be a non-central normal subgroup. In order
to prove our simplicity theorem (see Introduction), we must show that we have in
fact K = GA(F).

Since each root subgroup is conjugate to Uα or Uβ , and since Sα ' Sβ ' SL2(F),
it is enough to show that Uα ∩ K 6= {1} and Uβ ∩ K 6= {1} (the group SL2(F) does
not contain any proper normal subgroup intersecting non-trivially a root group).

Since F =
⋃

i>1 Fqi , we have Z
(
GA(F)

)
=
⋃

i>1 Z
(
GA(Fqi )

)
, and therefore there

exists ` > 1 such that Fq` ⊂ F and K ∩ GA(Fq`) is non-central. By the normal
subgroup property [13], and assuming that ` is large enough, the normal subgroup
K ∩ GA(Fq`) has finite index, say k, in GA(Fq`). This implies, in particular, that
[〈τ〉 : K ∩ 〈τ〉] divides k, which follows from

k = [G (Fq`) : K ∩ G (Fq`)]

=
[
G (Fq`) : 〈τ〉

(
K ∩ G (Fq`)

)]
×
[
〈τ〉
(

K ∩ G (Fq`)
)

: K ∩ G (Fq`)
]

and [
〈τ〉
(

K ∩ G (Fq`)
)

: K ∩ G (Fq`)
]

= [〈τ〉 : K ∩ 〈τ〉],
so that τ k ∈ K. As a consequence, we have [τ k,Uα] ⊂ K.

Let us start with u ∈ Uα − {1}, i.e., u = uα(c) for some c ∈ F×. It follows from
the defining relations of an incomplete Kac–Moody group that we have τ jUδτ

− j =
Uτ j .α, so that

[τ j , u] =
(
τ juα(c)τ− j

)
uα(−c) = uτ j .α(r)uα(s)
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for some suitable r, s ∈ F×. Hence we see that for suitable powers j (e.g., j divisible
by k) we can find elements in

(
(Uα−{1}) · (Uγ j −{1})

)
∩K. Therefore, we consider

an element v ∈ K of the form v = uα(r)uγ j (s) with r, s ∈ F×. It remains to use the
action of the torus TA(F) to separate the two factors Uα and Uγ j . Again we compute
for v as above and t = hα(µ)hβ(ν):

[t, v] =
(

tuα(r)uγ j (s)t−1
)(

uα(r)uγ j (s)
)−1

= uα
(
α(t)r

)
uγ j

(
γ j(t)s

)
uγ j (−s)uα(−r).

In view of the previous computation, and since Uα and Uγ j commute (this is where
we use m, n > 2), this provides

[t, v] = uα
(

(µ2ν−m − 1)r
)

uγk

(
(µ2a j−nb jν−ma j +2b j − 1)s

)
.

Now we can specialize our choice of multiplicative parameters µ and ν. For
κ ∈ F× we set µ = κm and ν = κ2; then for t = hα(κm)hβ(κ2) we obtain

[t, v] = uγ j

(
(κm(2a j−nb j )κ2(−ma j +2b j ) − 1)s

)
= uγ j

(
(κ(4−mn)b j − 1)s

)
.

It remains to choose κ ∈ F× so that κ(4−mn)b j 6= 1 to conclude that K ∩Uγ j 6= {1}
and K ∩Uα 6= {1}.

Similarly we can obtain K∩Uβ 6= {1}. Therefore, again using the action of TA(F),
we obtain Uα,Uβ ⊂ K, which finally shows that K = GA(F).

Remark 11 As pointed out to us by Pierre-Emmanuel Caprace, there is an alterna-
tive proof using [6, Prop. 23]. Let us also explain here why the same simplicity result
over F is easier when simplicity over finite fields is known. Indeed let GA be a simply
connected Kac–Moody group for which simplicity is known over (sufficiently large)
finite fields and let K / GA(F) be non-central. Then, arguing as in the beginning of
the above proof, we know that there exists ` > 1 such that

K ∩
(
GA(Fq`)− Z(GA(Fq`))

)
6= ∅.

Up to enlarging `, simplicity of GA(Fq`)/Z
(
GA(Fq`)

)
implies that K contains the lat-

ter group, hence intersects non-trivially all the root groups, which finally implies that
K = GA(F).

3.2 Simplicity Using Simplicity

For the sake of completeness, we conclude by explaining how simplicity for hyper-
bolic rank 2 Kac–Moody groups with non-trivial commutation relations for pre-
nilpotent pairs can be proved.

Recall that if Γ is an infinite finitely generated group satisfying (NSP), then
Γ/Z(Γ) is called just infinite in the sense that all its proper quotients are finite; this is,
so to speak, half of simplicity (Subsection 2.2). Recall also that for an infinite finitely
generated group, the following implications are well known:

linearity⇒ residual finiteness⇒ non-simplicity

(a group Γ is said to be residually finite if we have
⋂

[Γ:∆]<∞∆ = {1}). Here is
a rough strategy for constructing simple groups. Let Γ be an infinite group acting
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geometrically on a CAT(0)-space. Assume in addition that Γ is both just infinite and
not residually finite. Then the normal subgroup Γ◦ =

⋂
[Γ:∆]<∞∆ is non-trivial,

so it is a finite index subgroup since Γ is just infinite. In fact, more can be said: Γ◦

is a finite direct product of simple groups (all isomorphic to one another) [21]. It
remains then to stand by the geometric situation (e.g., a suitable irreducibility of the
geometric action) to be able to conclude that Γ◦ contains only one factor.

By (NSP), we know that a Kac–Moody lattice is just infinite (modulo center).
Therefore it is enough to show that a non-affine Kac–Moody lattice is non-residually
finite, for instance because it contains a suitable non-residually finite subgroup. The
latter subgroup can be given by some wreath product: if F is a finite non-abelian
group, then F o Z = F(Z) o Z is not residually finite [9]. Using this, the following
simplicity theorem can be proved [8].

Theorem 12 Let A =
(

2 −n
−1 2

)
be a generalized Cartan matrix of indefinite type

(i.e., n > 4), and let F be the algebraic closure of a finite field Fq. Then the corresponding
simply connected Kac–Moody groups GA(Fq) for q > 3 and GA(F) are simple groups
modulo their centers.

Reference. This is [8, Corollary 3].
Summarizing all (including known) facts, and taking into account Remark 11, we

obtain the following statement.

Remark 13 Let A be a generalized Cartan matrix of non-affine type, and let GA be a
Tits functor of type A. Let G be the elementary subgroup of GA(F) over the algebraic
closure F of a finite field Fp (that is, G = [GA(F),GA(F)]); the group G is generated
by all root subgroups. Then G is a simple group modulo its center whenever A is
indecomposable.

At last, it is natural to formulate the following question.

Question 14 Let A =
(

2 −n
−m 2

)
be a generalized Cartan matrix of indefinite type,

i.e., mn > 4. Let GA be the corresponding simply connected incomplete Kac–Moody
group and let Fq be a finite field. Assume that m, n > 2. When is the finitely generated
group GA(Fq)/Z

(
GA(Fq)

)
simple?

Simplicity in this case would shorten the proof of the present paper, but we think
that providing a simplicity proof over Fq, using only the weakening of simplicity
(NSP) over Fq, has its own interest. Note also that due to exceptional isomorphisms
between affine and non-affine types in this case, there exist non-simple non-affine
rank 2 Kac–Moody lattices. Note finally that the above question also applies to more
exotic lattices of locally finite Moufang twin trees, as defined in [1]. Some of these
groups can be constructed with a trivial torus, which might be an obstruction to
simplicity.
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