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Abstract

In this article, we study the Mazur–Ulam property of the sum of two strictly convex Banach spaces.
We give an equivalent form of the isometric extension problem and two equivalent conditions to decide
whether all strictly convex Banach spaces admit the Mazur–Ulam property. We also find necessary and
sufficient conditions under which the `1-sum and the `∞-sum of two strictly convex Banach spaces admit
the Mazur–Ulam property.
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1. Introduction and preliminaries

In 1987, Tingley proposed the following problem in [12].

Problem 1.1 (Isometric extension problem). Let E and F be real Banach spaces and let
V0 be a surjective isometry between the unit spheres S1(E) and S1(F). Is V0 necessarily
the restriction of a linear isometry on the whole space?

The isometric extension problem is only considered in real Banach spaces, since
the answer is clearly negative in the complex case. If it has a positive answer, the local
geometric properties of a mapping on the unit sphere will determine the properties of
the mapping on the whole space. This problem is related to the well-known Mazur–
Ulam theorem.

Theorem 1.2 (Mazur–Ulam theorem). Let E and F be real Banach spaces and let
V : E → F be a surjective isometry. Then V is affine.

A Banach space E is said to admit the Mazur–Ulam property if, for any Banach
space F, any surjective isometry V0 between the unit spheres S1(E) and S1(F) is
the restriction of a linear isometry between E and F (see [1]). It is clear that the
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isometric extension problem just asks whether all Banach spaces admit the Mazur–
Ulam property.

In the past decade, the isometric extension problem was mainly considered in
various classical Banach spaces (see [4]). The problem has been solved affirmatively
if E is a classical Banach space and F is a general Banach space. In other words, all
the classical Banach spaces admit the Mazur–Ulam property. The isometric extension
problem for the `1-sum of strictly convex Banach spaces was solved affirmatively (see
[14]) and also for the `∞-sum of strictly convex Banach spaces (see [7]).

Recently, the isometric extension problem was considered in finite-dimensional
polyhedral Banach spaces (see [9]) and somewhere-flat real Banach spaces (see [1]).
‘Sharp corner points’ on the unit ball of dual Banach spaces were applied to consider
this problem in Gâteaux differentiable spaces (see [6]). The problem was also studied
in R2 with symmetric absolute normalised norms [10, 11].

We state two lemmas which will be useful in this article.

Lemma 1.3 [8, Theorem 2]. Let E, F be real Banach spaces and V0 : S1(E)→ S1(F)
be a surjective isometry. Suppose that

‖V0(u) − λV0(v)‖ ≤ ‖u − λv‖ ∀u, v ∈ S1(E), λ ∈ R+.

Then V0 can be extended to a linear isometry on the whole space.

Lemma 1.4 [2, Lemma 2.1]. Let E and F be real Banach spaces and let E be strictly
convex. Suppose that V0 is a surjective mapping between S1(E) and S1(F) and

‖V0(u) − V0(v)‖ ≤ ‖u − v‖ ∀u, v ∈ S1(E).

Then V0(−u) = −V0(u) for any u ∈ S1(E).

We consider the isometric extension problem between the sum of two strictly
convex Banach spaces and a general Banach space. In Section 2, we give an equivalent
form of the isometric extension problem and we give two equivalent conditions to
decide whether all strictly convex Banach spaces admit the Mazur–Ulam property.
In Section 3, we prove that a surjective isometry between the `1-sum of two strictly
convex Banach spaces and a general Banach space has a linear isometric extension
under a condition. In Section 4, we prove that a surjective isometry between the
`∞-sum of two strictly convex Banach spaces and a general Banach space has a linear
isometric extension under the same condition. In Section 5, we obtain necessary and
sufficient conditions under which the `1-sum and the `∞-sum of two strictly convex
Banach spaces admit the Mazur–Ulam property.

Before we start, we need some definitions and notation. In this article, all Banach
spaces are over R. Let E and F be Banach spaces and let V be a surjective mapping
between them. We call V a sphere isometry if ‖V(u) − V(v)‖ = ‖u − v‖ for any u, v ∈ E
with ‖u‖ = ‖v‖. We say that V preserves spheres if ‖V(u)‖ = ‖u‖ for any u ∈ E. For
a subspace E0 ⊆ E, we say that V preserves the subspace E0 if V(E0) ⊆ F is also
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a subspace. We call V positive (real) homogeneous if V(λu) = λV(u) for any u ∈ E and
λ > 0 (λ ∈ R).

Let E be a Banach space. We denote the unit sphere and the unit ball respectively
by

S1(E) := {u ∈ E : ‖u‖ = 1}, B1(E) := {u ∈ E : ‖u‖ ≤ 1}.

Let E1 and E2 be Banach spaces and let E1 ⊕ E2 be their direct sum. We denote by
E1 ⊕`1 E2 and E1 ⊕`∞ E2 the vector space E1 ⊕ E2 with the `1-norm and the `∞-norm,
respectively. For x ∈ E1, y ∈ E2 and u ∈ E1 ⊕ E2, we write u := (u1, u2) ∈ E1 ⊕ E2 and

x̂ := (x, 0) ∈ E1 ⊕ E2, ŷ := (0, y) ∈ E1 ⊕ E2.

For any λ, µ ∈ R, we denote by max{λ, µ} the larger one and write

sgn(µ) :=

µ/|µ| if µ , 0,
0 if µ = 0.

2. Equivalent forms of the isometric extension problem
In this section, we give an equivalent form of the isometric extension problem. In

particular, we show that all the strictly convex Banach spaces admit the Mazur–Ulam
property if and only if any surjective real homogeneous sphere isometry between a
strictly convex Banach space and a general Banach space is linear.

Theorem 2.1. The following are equivalent.

(i) For Banach spaces E and F and a surjective mapping V between them, if V is a
positive homogeneous sphere isometry and preserves the sphere, then V is linear.

(ii) All Banach spaces admit the Mazur–Ulam property.

Proof. If (i) holds and V0 is a surjective isometry between S1(E) and S1(F), we define
Ṽ0 between E and F as follows:

Ṽ0(u) =

0 if u = 0,
‖u‖V0(‖u‖−1u) if u , 0.

It is clear that Ṽ0 is positive homogeneous and preserves the sphere. Moreover, Ṽ0
is surjective since V0 is surjective. Now we prove that Ṽ0 is a sphere isometry. Take
u, v ∈ E with ‖u‖ = ‖v‖. If we denote λ := ‖u‖ = ‖v‖, then

‖Ṽ0(u) − Ṽ0(v)‖ =

∥∥∥∥∥λV0

(u
λ

)
− λV0

( v
λ

)∥∥∥∥∥ = λ

∥∥∥∥∥u
λ
−

v
λ

∥∥∥∥∥ = ‖u − v‖.

Therefore, Ṽ0 is linear and thus an isometry on the whole space.
Conversely, suppose that all Banach spaces admit the Mazur–Ulam property. If V

is a surjective positive homogeneous sphere isometry between Banach spaces E and F
and preserves the sphere, define V0 to be the restriction of V on S1(E). It is clear that
V0 is a surjective isometry between S1(E) and S1(F). Then V0 has a linear isometric
extension Ṽ0 from E to F. Since V is positive homogeneous, we see that V0 = V and
thus V is linear. �
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Theorems 2.1 and 1.2 show why the isometric extension problem is a refinement
of the Mazur–Ulam theorem. We consider other equivalent forms of this problem
between a strictly convex Banach space and a general Banach space. In fact, it can be
seen from Lemma 1.4 that (ii) implies (i) in Theorem 2.2.

Theorem 2.2. The following are equivalent.

(i) For any Banach spaces E and F and a surjective mapping V between them, if E
is strictly convex and V is a positive homogeneous sphere isometry and preserves
the sphere, then V is linear.

(ii) For any Banach spaces E and F and a surjective mapping V between them, if E
is strictly convex and V is a real homogeneous sphere isometry, then V is linear.

(iii) All strictly convex Banach spaces admit the Mazur–Ulam property.

Proof. By similar methods to Theorem 2.1, we can prove that (i) is equivalent to (iii).
Now we want to prove that (i) is equivalent to (ii).

Suppose that (i) holds and V is a surjective real homogeneous sphere isometry
between Banach spaces E and F, where E is strictly convex. For any u ∈ E,

‖V(u)‖ =

∥∥∥∥∥V
(u
2

)
− V

(
−

u
2

)∥∥∥∥∥ =

∥∥∥∥∥u
2
−

(
−

u
2

)∥∥∥∥∥ = ‖u‖

and thus V preserves the sphere.
Conversely, suppose that (ii) holds and V is a surjective positive homogeneous

sphere isometry between Banach spaces E and F and preserves the sphere, where
E is strictly convex. For any u ∈ E, there exists v ∈ E such that V(v) = −V(u). Note
that ‖u‖ = ‖V(u)‖ = ‖V(v)‖ = ‖v‖ since V preserves the sphere. Then

‖u − v‖ = ‖V(u) − V(v)‖ = ‖2V(u)‖ = ‖2u‖ = ‖u‖ + ‖v‖

and so u = −v since E is strictly convex. Since V is positive homogeneous, we see that
V is real homogeneous. This completes the proof. �

3. Mazur–Ulam property of E1 ⊕`1 E2

We first reproduce a lemma in [13] and give the proof.

Lemma 3.1. Let E and F be Banach spaces and let V0 : S1(E)→ S1(F) be a surjective
isometry. Then

‖u + v‖ = 2⇐⇒ ‖V0(u) + V0(v)‖ = 2 ∀u, v ∈ S1(E).

Proof. Note that V0 is surjective. We only need to prove the ‘=⇒’ part. By the Hahn–
Banach theorem, there exists f ∈ S (E∗) such that f (u + v) = ‖u + v‖ = 2. Then

2 = ‖u + v‖ = | f (u + v)| ≤ | f (u)| + | f (v)| ≤ 2

and thus

f (u) = f (v) = 1. (3.1)
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For n ∈ N, set un = (1 − n−1)u + n−1v. By (3.1), we have {un} ⊆ S1(E). Let n ∈ N and
w ∈ S1(E) and suppose that

‖un + w‖ = 2. (3.2)

By the Hahn–Banach theorem and a similar argument, there exists f(n,w) ∈ S (E∗) such
that f(n,w)(un + w) = 2, which implies that

f(n,w)(w) = f(n,w)(v) = f(n,w)(un) = 1.

Therefore,

‖v + w‖ = 2, (3.3)

since w = f(n,w)(v + w) ≤ ‖v + u‖ ≤ 2. Note that

‖un − V−1
0 (−V0(un))‖ = ‖V0(un) + V0(un)‖ = ‖2V0(un)‖ = 2 ∀n ∈ N.

By a similar method to the one we used to deduce (3.3) from (3.2),

‖v − V−1(−V(un))‖ = 2 ∀n ∈ N

and thus

‖V0(v) + V0(un)‖ = 2 ∀n ∈ N.

Letting n→∞ gives ‖V0(v) + V0(u)‖ = 2 and completes the proof. �

Now, we begin to consider the isometries between S1(E1 ⊕`1 E2) and S1(F), where
E1 and E2 are strictly convex. In the following result, we prove that any surjective
isometry between S1(E1 ⊕`1 E2) and S1(F) necessarily maps antipodal points to
antipodal points.

Proposition 3.2. Let E1 and E2 be strictly convex Banach spaces and let F be a
Banach space. Suppose that V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective isometry. Then
V0(−u) = −V0(u) for any u ∈ S1(E1 ⊕`1 E2).

Proof. We first prove that V0(−x̂) = −V0(x̂) for any x ∈ S (E1). Since V0 is surjective,
there exists u ∈ S1(E1 ⊕`1 E2) such that V0(u) = −V0(x̂). Then

‖u1 − x‖ + ‖u2‖ = ‖u − x̂‖ = ‖V0(u) − V0(x̂)‖ = ‖−2V0(x̂)‖ = 2

and thus ‖u1 − x‖ = ‖u1‖ + ‖x‖. Since E1 is strictly convex, u1 = −‖u1‖x. For any
y ∈ S (E2),

‖V0(ŷ) + V0(u)‖ = ‖V0(ŷ) − V0(x̂)‖ = ‖ŷ − x̂‖ = 2.

By Lemma 3.1,
‖u1‖ + ‖y + u2‖ = ‖ŷ + u‖ = 2
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and thus ‖y + u2‖ = ‖y‖ + ‖u2‖. Since y is arbitrary, we have u2 = 0 and thus u = −x̂.
Similarly, we can prove that V0(−ŷ) = −V0(ŷ) for any y ∈ S (E2).

Next we prove that V0(−u) = −V0(u) for all u ∈ S1(E1 ⊕`1 E2). We can assume
u1, u2 , 0. Since V0 is surjective, there is a v ∈ S1(E1 ⊕`1 E2) such that V0(v) = −V0(u).
Then

‖u1 − v1‖ + ‖u2 − v2‖ = ‖u − v‖ = ‖V0(u) − V0(v)‖ = ‖2V0(u)‖ = 2

and thus

2 = ‖u1 − v1‖ + ‖u2 − v2‖ ≤ ‖u1‖ + ‖v1‖ + ‖u2‖ + ‖v2‖ = ‖u‖ + ‖v‖ = 2.

It follows that ‖u1 − v1‖ = ‖u1‖ + ‖v1‖. Since E1 is strictly convex,

v1 = −
‖v1‖

‖u1‖
u1.

By the result of the previous part of this proof, for any x ∈ S (E1),
‖x̂ − u‖ = ‖V0(x̂) − V0(u)‖ = ‖−V0(−x̂) + V0(v)‖ = ‖x̂ + v‖.

Set x = ‖u1‖
−1u1. Then

1 − ‖u1‖ + ‖u2‖ = ‖ ‖u1‖
−1u1 + v1‖ + ‖v2‖ = 1 − ‖v1‖ + ‖v2‖,

since v1 = −(‖v1‖/‖u1‖)u1. Therefore, ‖u1‖ = ‖v1‖ and u1 = −v1. We can prove that
u2 = −v2 by a similar argument. This completes the proof. �

The following lemma is a special case of [5, Lemma 5].

Lemma 3.3. Let F be a Banach space and w1,w2 ∈ S1(F). Suppose that ‖w1 ± w2‖ = 2.
Then

‖λw1 + µw2‖ = |λ| + |µ| ∀λ, µ ∈ R.

Proof. Assume that λ , 0 and µ , 0. Let θ1 = sgn(λ) and θ2 = sgn(µ). By the Hahn–
Banach theorem, there exists f ∈ S1(F∗) such that

θ1 f (w1) + θ2 f (w2) = f (θ1w1 + θ2w2) = ‖θ1w1 + θ2w2‖ = 2.

Since |θi f (wi)| ≤ 1 for i = 1, 2, we see that θ1 f (w1) = θ2 f (w2) = 1 and so

|λ| + |µ| = |λ|θ1 f (w1) + |µ|θ2 f (w2) = f (|λ|θ1w1 + |µ|θ2w2) = f (λw1 + µw2)
≤ ‖λw1 + µw2‖ ≤ |λ| + |µ|.

The case λ = 0 or µ = 0 is clear. This completes the proof. �

Proposition 3.4. Let E1 and E2 be strictly convex Banach spaces and let F be a
Banach space. Suppose that V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective isometry. If x ∈
S1(E1), y ∈ S1(E2) and λ, µ ∈ R with |λ| + |µ| = 1, then V0(λx̂ + µŷ) = λV0(x̂) + µV(ŷ).

https://doi.org/10.1017/S0004972715001215 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001215


[7] Mazur–Ulam property 479

Proof. By Lemma 3.1, since V0 is an isometry,

‖V0(x̂) ± V0(ŷ)‖ = ‖x̂ ± ŷ‖ = 2.

By Lemma 3.3,
‖λV0(x̂) + µV0(ŷ)‖ = |λ| + |µ| = 1.

Since V is surjective, there exists u ∈ S1(E1 ⊕`1 E2) such that V0(u) = λV0(x̂) + µV0(ŷ).
Now we prove that u = λx̂ + µŷ.

The case |λ| = 1 is clear. After Proposition 3.2, we can assume that 0 < λ < 1. Then

‖u1 + x‖ + ‖u2‖ = ‖u + x̂‖ = ‖V0(u) + V0(x̂)‖
= ‖(1 + λ)V0(x̂) + µV0(ŷ)‖ = 1 + λ + |µ| = 2

by Proposition 3.2 and Lemma 3.3. Therefore, ‖u1 + x‖ = ‖u1‖ + ‖x‖. Since E1 is
strictly convex, we get u1 = ‖u1‖x. It follows that

2 − 2‖u1‖ = 1 − ‖u1‖ + ‖u2‖ = ‖u1 − x‖ + ‖u2‖ = ‖u − x̂‖ = ‖V0(u) − V0(x̂)‖
= ‖(λ − 1)V0(x̂) + µV0(ŷ)‖ = 1 − λ + |µ| = 2 − 2λ.

Therefore, ‖u1‖ = λ and u1 = λx. Similarly, we can prove that u2 = µy. This completes
the proof. �

Remark 3.5. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective isometry. For i = 1, 2,
we can define Vi : S1(Ei)→ S1(F) by

Vi(x) = V0(x̂) ∀x ∈ S1(Ei).

Then, by Proposition 3.4,

V0(λx̂ + µŷ) = λV1(x) + µV2(y)

for any x ∈ S1(E1), y ∈ S1(E2) and λ, µ ∈ R with |λ| + |µ| = 1.

Proposition 3.6. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective isometry and that

R · V0(S1(E1)) ⊆ F, R · V0(S1(E2)) ⊆ F

are both subspaces. For i = 1, 2, the Vi defined in Remark 3.5 can be extended to a
linear isometry on Ei.

Proof. Assume that i = 1. We can define Ṽ1 : E1 → F by

Ṽ1(x) =

0 if x = 0,
‖x‖V1(‖x‖−1x) if x , 0.

It is clear that Ṽ1|S1(E1) = V1. Now, we prove that

‖Ṽ1(x1) − Ṽ1(x2)‖ ≥ ‖x1 − x2‖ ∀x1, x2 ∈ E1. (3.4)
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From Proposition 3.2, Ṽ1(λx) = λṼ1(x) for any x ∈ E1 and λ ∈ R. To prove (3.4),
we only need to prove that it holds for any x1, x2 ∈ B1(E1). For y ∈ S1(E2), set
u := (x1, (1 − ‖x1‖)y) and v := (x2, (1 − ‖x2‖)y). Note that u, v ∈ S1(E1 ⊕`1 E2). From
Proposition 3.4,

‖V0(u) − V0(v)‖ =

∥∥∥∥∥(‖x1‖V1

( x1

‖x1‖

)
− ‖x2‖V1

( x2

‖x2‖

))
+ (‖x2‖ − ‖x1‖)V2(y)

∥∥∥∥∥
≤

∥∥∥∥∥‖x1‖V1

( x1

‖x1‖

)
− ‖x2‖V1

( x2

‖x2‖

)∥∥∥∥∥ + | ‖x2‖ − ‖x1‖ | ‖V2(y)‖

= ‖Ṽ1(x1) − Ṽ1(x2)‖ + | ‖x2‖ − ‖x1‖ |

and

‖u − v‖ = ‖x1 − x2‖ + | ‖x2‖ − ‖x1‖ |.

This yields (3.4), since ‖V0(u) − V0(v)‖ = ‖u − v‖.
Let F1 := R · V0(S1(E1)) be a subspace of F. Then V1 can be seen as a surjective

isometry between S (E1) and S (F1). Define V−1
1 : S1(F1)→ S1(E1) as the inverse of

V1. By (3.4), for any w1,w2 ∈ S (F1) and λ ∈ R+,

‖V−1
1 (w1) − λV−1

1 (w2)‖ ≤ ‖Ṽ1(V−1
1 (w1)) − Ṽ1(λV−1

1 (w2))‖ = ‖w1 − λw2‖.

Then V−1
1 has a linear isomeric extension W1 from F1 to E1 by Lemma 1.3. It is clear

that W1 ◦ Ṽ1(x) = x for any x ∈ E1 and thus Ṽ1 is also a linear isometry. We can prove
the case i = 2 similarly. This completes the proof. �

Theorem 3.7. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective isometry and

R · V0(S1(E1)) ⊆ F, R · V0(S1(E2)) ⊆ F

are both subspaces. Then V0 can be extended to a linear isometry on the whole space.

Proof. In Proposition 3.6, we have linear isometries Ṽi : Ei → F for i = 1, 2. Define
Ṽ0 : E1 ⊕`1 E2 → F

by Ṽ0(u) = Ṽ1(u1) + Ṽ2(u2) for u ∈ E1 ⊕`1 E2. By Proposition 3.4, Ṽ0|S1(E1⊕`1 E2) = V0

and Ṽ0 is linear. This completes the proof. �

4. Mazur–Ulam property of E1 ⊕`∞ E2

In this section, we begin to consider the isometries between S1(E1 ⊕`∞ E2) and
S1(F), where E1 and E2 are strictly convex. In the following result, we prove that
the surjective isometry between S1(E1 ⊕`∞ E2) and S1(F) necessarily maps antipodal
points to antipodal points.

Proposition 4.1. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`∞ E2)→ S1(F) is an isometry and

−V0(S1(E1 ⊕`∞ E2)) ⊆ V0(S1(E1 ⊕`∞ E2)).

Then V0(−u) = −V0(u) for any u ∈ S1(E1 ⊕`∞ E2).
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Proof. We first prove that V0(−x̂) = −V0(x̂) for any x ∈ S1(E1). Note that

−V0(S1(E1 ⊕`∞ E2)) ⊆ V0(S1(E1 ⊕`∞ E2)).

There exists u ∈ S1(E1 ⊕`∞ E2) such that V0(u) = −V0(x̂). Consequently,

‖u − x̂‖ = ‖V0(u) − V0(x̂)‖ = ‖−2V0(x̂)‖ = 2

and thus ‖u1 − x‖ = 2. Since E1 is strictly convex, we see that u1 = −x. For any
y ∈ S1(E2), there exists v = (v1, v2) ∈ S1(E1 ⊕`∞ E2) such that V0(v) = −V0(ŷ). By a
similar argument, v2 = −y. Consequently,

‖u − v‖ = ‖V0(u) − V0(v)‖ = ‖−V0(x̂) + V0(ŷ)‖ = ‖−x̂ + ŷ‖ = 1

and thus ‖u2 + y‖ = ‖u2 − v2‖ ≤ 1. Since y is arbitrary, we get u2 = 0. Therefore,
we have u = −x̂ and V0(−x̂) = −V0(x̂). We can prove that V0(−ŷ) = −V0(ŷ) for any
y ∈ S1(E2) by a similar argument.

Now we prove that V0(−u) = −V0(u) for any u ∈ S1(E1 ⊕`∞ E2). We can assume that
u1, u2 , 0. Since

−V0(S1(E1 ⊕`∞ E2)) ⊆ V0(S1(E1 ⊕`∞ E2)),

there exists v = (v1, v2) ∈ S1(E1 ⊕`∞ E2) such that V0(v) = −V0(u). It is clear that
v1, v2 , 0. Otherwise, u1 = 0 or u2 = 0 by the result of the previous part of this proof.
Then, for any x ∈ S (E1),

‖x̂ − u‖ = ‖V0(x̂) − V0(u)‖ = ‖−V0(−x̂) + V0(v)‖ = ‖x̂ + v‖.

Let x = ‖v1‖
−1v1. Then

1 + ‖v1‖ =

∥∥∥∥∥ v1

‖v1‖
− u1

∥∥∥∥∥ ≤ 1 + ‖u1‖ (4.1)

and thus ‖v1‖ ≤ ‖u1‖. Similarly, if we let x = −u1/‖u1‖,

1 + ‖u1‖ =

∥∥∥∥∥− u1

‖u1‖
+ v1

∥∥∥∥∥ ≤ 1 + ‖v1‖

and thus ‖u1‖ ≤ ‖v1‖. Therefore, ‖u1‖ = ‖v1‖. From (4.1), since E1 is strictly convex,

1 + ‖u1‖ =

∥∥∥∥∥ v1

‖v1‖
− u1

∥∥∥∥∥
and thus u1 = −v1. Similarly, we can prove that u2 = −v2 to complete the proof. �

The following lemma is a special case of [3, Lemma 2].

Lemma 4.2. Let F be a Banach space and w1,w2 ∈ S1(F) with ‖w1 ± w2‖ = 1. Then

‖λw1 + µw2‖ = max{|λ|, |µ|} ∀λ, µ ∈ R.

Proof. Assume that λ , 0 and |λ| ≥ |µ|. Since ‖w1 ± w2‖ = 1, by the Hahn–Banach
theorem, there exists f ∈ S1(F∗) such that f (w1) = ‖w1‖ = 1 and f (w2) = 0. Then

max{|λ|, |µ|} = |λ| = | f (λw1 + µw2)| ≤ ‖λw1 + µw2‖.
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By the Hahn–Banach theorem again, there exists g ∈ S1(F∗) such that

‖λw1 + µw2‖ = |g(λw1 + µw2)| = |λg(w1) + µg(w2)|
≤ max{|λ|, |µ|} ·max{|g(w1 + w2)|, |g(w1 − w2)|}
≤ max{|λ|, |µ|} ·max{‖w1 + w2‖,w1 − w2‖} = max{|λ|, |µ|}.

We can similarly handle the case |λ| < |µ|. This completes the proof. �

Proposition 4.3. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`∞ E2)→ S1(F) is a surjective isometry. If x ∈ S (E1),
y ∈ S (E2) and λ, µ ∈ R with max{|λ|, |µ|} = 1, then V0(λx̂ + µŷ) = λV0(x̂) + µV0(ŷ).

Proof. Since V0 is an isometry, by Proposition 4.1,

‖V0(x̂) ± V0(ŷ)‖ = ‖x̂ ± ŷ‖ = 1.
By Lemma 3.1,

‖λV0(x̂) + µV0(ŷ)‖ = max{|λ|, |µ|} = 1.
Since V0 is surjective, there is u ∈ S1(E1 ⊕`∞ E2) such that V0(u) = λV0(x̂) + µV0(ŷ).
Now we prove that u = λx̂ + µŷ.

The case λ = 0 or µ = 0 is clear. After Proposition 4.1, we can assume that λ = 1
and µ , 0. Then

‖u + x̂‖ = ‖V0(u) + V0(x̂)‖ = ‖2V0(x̂) + µV0(ŷ)‖ = 2
by Proposition 4.1 and Lemma 3.1. Therefore, we have ‖u1 + x‖ = 2. Since E1 is
strictly convex, u1 = x. It is clear that

‖u2‖ = ‖u − x̂‖ = ‖V0(u) − V0(x̂)‖ = ‖µV0(ŷ)‖ = |µ|.
Let θ = sgn(µ). It is clear that |µ + θ| > 1 and so

‖u + θŷ‖ = ‖V0(u) + θV0(ŷ)‖ = ‖V0(x̂) + (µ + θ)V0(ŷ)‖ = |µ + θ|,
by Lemma 3.1, and

‖u2 + θy‖ = |µ + θ| = |µ| + 1.
Since ‖u2‖ = |µ| and E2 is strictly convex, u2 = θ|µ|y = µy. Then u = x̂ + µŷ, which
completes the proof. �

Remark 4.4. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`∞ E2)→ S1(F) is a surjective isometry. For i = 1, 2,
define Vi : S1(Ei)→ S1(F) by

Vi(x) = V0(x̂), ∀x ∈ S1(Ei).

Then, by Proposition 4.3,

V0(λx̂ + µŷ) = λV1(x) + µV2(y)

for any x ∈ S1(E1), y ∈ S1(E2) and λ, µ ∈ R with max{|λ|, |µ|} = 1.
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Proposition 4.5. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`∞ E2)→ S1(F) is a surjective isometry and

R · V0(S1(E1)) ⊆ F, R · V0(S1(E2)) ⊆ F

are both subspaces. For i = 1, 2, the Vi defined in Remark 4.4 can be extended to a
linear isometry on Ei.

Proof. Assume that i = 1. We can define Ṽ1 : E1 → F by

Ṽ1(x) =

0 if x = 0,
‖x‖V1(‖x‖−1x) if x , 0.

We first prove that Ṽ1 is an isometry. From Proposition 4.1,

Ṽ1(λx) = λṼ1(x) ∀λ ∈ R

and Ṽ1|S1(E1) = V1. Therefore, we only need to prove that ‖Ṽ1(x1) − Ṽ1(x2)‖ = ‖x1 − x2‖

for any x1, x2 ∈ B1(E1). In fact, for any y ∈ S1(E2), write u := (x1, y) and v := (x2, y).
Since u, v ∈ S1(E1 ⊕`∞ E2), by Proposition 4.3,

‖Ṽ1(x1) − Ṽ1(x2)‖ =

∥∥∥∥∥ ‖x1‖V1

( x1

‖x1‖

)
− ‖x2‖V1

( x2

‖x2‖

)∥∥∥∥∥
= ‖V0(u) − V0(v)‖ = ‖u − v‖ = ‖x1 − x2‖.

By hypothesis, F1 := R · V0(S1(E1)) is a subspace of F. So, Ṽ1 can be seen as a
surjective isometry between E1 and F1. By Theorem 1.2, Ṽ1 is linear. The case i = 2
is similar. �

Theorem 4.6. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V0 : S1(E1 ⊕`∞ E2)→ S1(F) is a surjective isometry and

R · V0(S1(E1)) ⊆ F, R · V0(S1(E2)) ⊆ F

are both subspaces. Then V0 can be extended to a linear isometry on the whole space.

Proof. In Proposition 4.5, we have defined linear isometries Ṽi : Ei → F for i = 1, 2.
Then we can define

Ṽ0 : E1 ⊕`∞ E2 → F
by Ṽ0(u) = Ṽ1(u1) + Ṽ2(u2) for any u ∈ E1 ⊕`∞ E2. From Proposition 4.5, it is clear that
Ṽ0|S1(E1⊕`∞E2) = V0 and Ṽ0 is linear. This completes the proof. �

5. Main results

In this section, we prove the main results, which give necessary and sufficient
conditions under which the `1-sum and the `∞-sum of two strictly convex Banach
spaces admit the Mazur–Ulam property.
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Theorem 5.1. Let E1 and E2 be strictly convex Banach spaces and let F be a Banach
space. Suppose that V : E1 ⊕`1 E2 → F is a surjective positive homogeneous sphere
isometry and preserves the sphere. If V preserves the subspaces E1 and E2, then V is
linear. The same result holds if we replace `1 by `∞.

Proof. We prove the assertion for `1. Let

V0 : S1(E1 ⊕`1 E2)→ S1(F)

be the restriction of V to S1(E1 ⊕`1 E2). Since V preserves the subspaces E1 and E2,

R · V0(S1(E1)) = V(E1) ⊆ F, R · V0(S1(E2)) = V(E2) ⊆ F

are both subspaces. The desired result follows from Theorem 3.7. The proof of the
second part is similar by means of Theorem 4.6. �

The following result is a straightforward deduction from Theorems 2.1 and 5.1.

Theorem 5.2. Let E1 and E2 be strictly convex Banach spaces. The following
assertions are equivalent.

(i) E1 ⊕`1 E2 admits the Mazur–Ulam property.
(ii) Suppose that F is a Banach space and V : E1 ⊕`1 E2 → F is a surjective positive

homogeneous sphere isometry and preserves the sphere. Then V preserves the
subspaces E1 and E2.

(iii) Suppose that F is a Banach space and V0 : S1(E1 ⊕`1 E2)→ S1(F) is a surjective
isometry. Then

R · V0(S1(E1)) ⊆ F, R · V0(S1(E2)) ⊆ F

are both subspaces.

Moreover, the assertions (i′), (ii′) and (iii′) obtained by replacing `1 by `∞ in (i), (ii)
and (iii) are also equivalent.
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