MAZUR-ULAM PROPERTY OF THE SUM OF TWO STRICTLY CONVEX BANACH SPACES

JIAN-ZE LI
(Received 2 July 2015; accepted 4 July 2015; first published online 11 November 2015)

Abstract

In this article, we study the Mazur-Ulam property of the sum of two strictly convex Banach spaces. We give an equivalent form of the isometric extension problem and two equivalent conditions to decide whether all strictly convex Banach spaces admit the Mazur-Ulam property. We also find necessary and sufficient conditions under which the ℓ^{1}-sum and the ℓ^{∞}-sum of two strictly convex Banach spaces admit the Mazur-Ulam property.

2010 Mathematics subject classification: primary 46B04, secondary 46B20.
Keywords and phrases: Mazur-Ulam property, isometric extension problem, strictly convex.

1. Introduction and preliminaries

In 1987, Tingley proposed the following problem in [12].
Problem 1.1 (Isometric extension problem). Let E and F be real Banach spaces and let V_{0} be a surjective isometry between the unit spheres $S_{1}(E)$ and $S_{1}(F)$. Is V_{0} necessarily the restriction of a linear isometry on the whole space?

The isometric extension problem is only considered in real Banach spaces, since the answer is clearly negative in the complex case. If it has a positive answer, the local geometric properties of a mapping on the unit sphere will determine the properties of the mapping on the whole space. This problem is related to the well-known MazurUlam theorem.

Theorem 1.2 (Mazur-Ulam theorem). Let E and F be real Banach spaces and let $V: E \rightarrow F$ be a surjective isometry. Then V is affine.

A Banach space E is said to admit the Mazur-Ulam property if, for any Banach space F, any surjective isometry V_{0} between the unit spheres $S_{1}(E)$ and $S_{1}(F)$ is the restriction of a linear isometry between E and F (see [1]). It is clear that the

[^0]isometric extension problem just asks whether all Banach spaces admit the MazurUlam property.

In the past decade, the isometric extension problem was mainly considered in various classical Banach spaces (see [4]). The problem has been solved affirmatively if E is a classical Banach space and F is a general Banach space. In other words, all the classical Banach spaces admit the Mazur-Ulam property. The isometric extension problem for the ℓ^{1}-sum of strictly convex Banach spaces was solved affirmatively (see [14]) and also for the ℓ^{∞}-sum of strictly convex Banach spaces (see [7]).

Recently, the isometric extension problem was considered in finite-dimensional polyhedral Banach spaces (see [9]) and somewhere-flat real Banach spaces (see [1]). 'Sharp corner points' on the unit ball of dual Banach spaces were applied to consider this problem in Gâteaux differentiable spaces (see [6]). The problem was also studied in \mathbb{R}^{2} with symmetric absolute normalised norms $[10,11]$.

We state two lemmas which will be useful in this article.
Lemma 1.3 [8, Theorem 2]. Let E, F be real Banach spaces and $V_{0}: S_{1}(E) \rightarrow S_{1}(F)$ be a surjective isometry. Suppose that

$$
\left\|V_{0}(u)-\lambda V_{0}(v)\right\| \leq\|u-\lambda v\| \quad \forall u, v \in S_{1}(E), \lambda \in \mathbb{R}^{+} .
$$

Then V_{0} can be extended to a linear isometry on the whole space.
Lemma 1.4 [2, Lemma 2.1]. Let E and F be real Banach spaces and let E be strictly convex. Suppose that V_{0} is a surjective mapping between $S_{1}(E)$ and $S_{1}(F)$ and

$$
\left\|V_{0}(u)-V_{0}(v)\right\| \leq\|u-v\| \quad \forall u, v \in S_{1}(E)
$$

Then $V_{0}(-u)=-V_{0}(u)$ for any $u \in S_{1}(E)$.
We consider the isometric extension problem between the sum of two strictly convex Banach spaces and a general Banach space. In Section 2, we give an equivalent form of the isometric extension problem and we give two equivalent conditions to decide whether all strictly convex Banach spaces admit the Mazur-Ulam property. In Section 3, we prove that a surjective isometry between the ℓ^{1}-sum of two strictly convex Banach spaces and a general Banach space has a linear isometric extension under a condition. In Section 4, we prove that a surjective isometry between the ℓ^{∞}-sum of two strictly convex Banach spaces and a general Banach space has a linear isometric extension under the same condition. In Section 5, we obtain necessary and sufficient conditions under which the ℓ^{1}-sum and the ℓ^{∞}-sum of two strictly convex Banach spaces admit the Mazur-Ulam property.

Before we start, we need some definitions and notation. In this article, all Banach spaces are over \mathbb{R}. Let E and F be Banach spaces and let V be a surjective mapping between them. We call V a sphere isometry if $\|V(u)-V(v)\|=\|u-v\|$ for any $u, v \in E$ with $\|u\|=\|v\|$. We say that V preserves spheres if $\|V(u)\|=\|u\|$ for any $u \in E$. For a subspace $E_{0} \subseteq E$, we say that V preserves the subspace E_{0} if $V\left(E_{0}\right) \subseteq F$ is also
a subspace. We call V positive (real) homogeneous if $V(\lambda u)=\lambda V(u)$ for any $u \in E$ and $\lambda>0(\lambda \in \mathbb{R})$.

Let E be a Banach space. We denote the unit sphere and the unit ball respectively by

$$
S_{1}(E):=\{u \in E:\|u\|=1\}, \quad B_{1}(E):=\{u \in E:\|u\| \leq 1\} .
$$

Let E_{1} and E_{2} be Banach spaces and let $E_{1} \oplus E_{2}$ be their direct sum. We denote by $E_{1} \oplus_{\ell^{1}} E_{2}$ and $E_{1} \oplus_{\ell^{\infty}} E_{2}$ the vector space $E_{1} \oplus E_{2}$ with the ℓ^{1}-norm and the ℓ^{∞}-norm, respectively. For $x \in E_{1}, y \in E_{2}$ and $u \in E_{1} \oplus E_{2}$, we write $u:=\left(u_{1}, u_{2}\right) \in E_{1} \oplus E_{2}$ and

$$
\hat{x}:=(x, 0) \in E_{1} \oplus E_{2}, \quad \hat{y}:=(0, y) \in E_{1} \oplus E_{2} .
$$

For any $\lambda, \mu \in \mathbb{R}$, we denote by $\max \{\lambda, \mu\}$ the larger one and write

$$
\operatorname{sgn}(\mu):= \begin{cases}\mu /|\mu| & \text { if } \mu \neq 0 \\ 0 & \text { if } \mu=0\end{cases}
$$

2. Equivalent forms of the isometric extension problem

In this section, we give an equivalent form of the isometric extension problem. In particular, we show that all the strictly convex Banach spaces admit the Mazur-Ulam property if and only if any surjective real homogeneous sphere isometry between a strictly convex Banach space and a general Banach space is linear.

Theorem 2.1. The following are equivalent.
(i) For Banach spaces E and F and a surjective mapping V between them, if V is a positive homogeneous sphere isometry and preserves the sphere, then V is linear.
(ii) All Banach spaces admit the Mazur-Ulam property.

Proof. If (i) holds and V_{0} is a surjective isometry between $S_{1}(E)$ and $S_{1}(F)$, we define \tilde{V}_{0} between E and F as follows:

$$
\tilde{V}_{0}(u)= \begin{cases}0 & \text { if } u=0 \\ \|u\| V_{0}\left(\|u\|^{-1} u\right) & \text { if } u \neq 0\end{cases}
$$

It is clear that \tilde{V}_{0} is positive homogeneous and preserves the sphere. Moreover, \tilde{V}_{0} is surjective since V_{0} is surjective. Now we prove that \tilde{V}_{0} is a sphere isometry. Take $u, v \in E$ with $\|u\|=\|v\|$. If we denote $\lambda:=\|u\|=\|v\|$, then

$$
\left\|\tilde{V}_{0}(u)-\tilde{V}_{0}(v)\right\|=\left\|\lambda V_{0}\left(\frac{u}{\lambda}\right)-\lambda V_{0}\left(\frac{v}{\lambda}\right)\right\|=\lambda\left\|\frac{u}{\lambda}-\frac{v}{\lambda}\right\|=\|u-v\| .
$$

Therefore, \tilde{V}_{0} is linear and thus an isometry on the whole space.
Conversely, suppose that all Banach spaces admit the Mazur-Ulam property. If V is a surjective positive homogeneous sphere isometry between Banach spaces E and F and preserves the sphere, define V_{0} to be the restriction of V on $S_{1}(E)$. It is clear that V_{0} is a surjective isometry between $S_{1}(E)$ and $S_{1}(F)$. Then V_{0} has a linear isometric extension \tilde{V}_{0} from E to F. Since V is positive homogeneous, we see that $V_{0}=V$ and thus V is linear.

Theorems 2.1 and 1.2 show why the isometric extension problem is a refinement of the Mazur-Ulam theorem. We consider other equivalent forms of this problem between a strictly convex Banach space and a general Banach space. In fact, it can be seen from Lemma 1.4 that (ii) implies (i) in Theorem 2.2.
Theorem 2.2. The following are equivalent.
(i) For any Banach spaces E and F and a surjective mapping V between them, if E is strictly convex and V is a positive homogeneous sphere isometry and preserves the sphere, then V is linear.
(ii) For any Banach spaces E and F and a surjective mapping V between them, if E is strictly convex and V is a real homogeneous sphere isometry, then V is linear.
(iii) All strictly convex Banach spaces admit the Mazur-Ulam property.

Proof. By similar methods to Theorem 2.1, we can prove that (i) is equivalent to (iii). Now we want to prove that (i) is equivalent to (ii).

Suppose that (i) holds and V is a surjective real homogeneous sphere isometry between Banach spaces E and F, where E is strictly convex. For any $u \in E$,

$$
\|V(u)\|=\left\|V\left(\frac{u}{2}\right)-V\left(-\frac{u}{2}\right)\right\|=\left\|\frac{u}{2}-\left(-\frac{u}{2}\right)\right\|=\|u\|
$$

and thus V preserves the sphere.
Conversely, suppose that (ii) holds and V is a surjective positive homogeneous sphere isometry between Banach spaces E and F and preserves the sphere, where E is strictly convex. For any $u \in E$, there exists $v \in E$ such that $V(v)=-V(u)$. Note that $\|u\|=\|V(u)\|=\|V(v)\|=\|v\|$ since V preserves the sphere. Then

$$
\|u-v\|=\|V(u)-V(v)\|=\|2 V(u)\|=\|2 u\|=\|u\|+\|v\|
$$

and so $u=-v$ since E is strictly convex. Since V is positive homogeneous, we see that V is real homogeneous. This completes the proof.

3. Mazur-Ulam property of $E_{1} \oplus_{\boldsymbol{\ell}^{1}} \boldsymbol{E}_{2}$

We first reproduce a lemma in [13] and give the proof.
Lemma 3.1. Let E and F be Banach spaces and let $V_{0}: S_{1}(E) \rightarrow S_{1}(F)$ be a surjective isometry. Then

$$
\|u+v\|=2 \Longleftrightarrow\left\|V_{0}(u)+V_{0}(v)\right\|=2 \quad \forall u, v \in S_{1}(E) .
$$

Proof. Note that V_{0} is surjective. We only need to prove the ' \Longrightarrow ' part. By the HahnBanach theorem, there exists $f \in S\left(E^{*}\right)$ such that $f(u+v)=\|u+v\|=2$. Then

$$
2=\|u+v\|=|f(u+v)| \leq|f(u)|+|f(v)| \leq 2
$$

and thus

$$
\begin{equation*}
f(u)=f(v)=1 . \tag{3.1}
\end{equation*}
$$

For $n \in \mathbb{N}$, set $u_{n}=\left(1-n^{-1}\right) u+n^{-1} v$. By (3.1), we have $\left\{u_{n}\right\} \subseteq S_{1}(E)$. Let $n \in \mathbb{N}$ and $w \in S_{1}(E)$ and suppose that

$$
\begin{equation*}
\left\|u_{n}+w\right\|=2 \tag{3.2}
\end{equation*}
$$

By the Hahn-Banach theorem and a similar argument, there exists $f_{(n, w)} \in S\left(E^{*}\right)$ such that $f_{(n, w)}\left(u_{n}+w\right)=2$, which implies that

$$
f_{(n, w)}(w)=f_{(n, w)}(v)=f_{(n, w)}\left(u_{n}\right)=1 .
$$

Therefore,

$$
\begin{equation*}
\|v+w\|=2 \tag{3.3}
\end{equation*}
$$

since $w=f_{(n, w)}(v+w) \leq\|v+u\| \leq 2$. Note that

$$
\left\|u_{n}-V_{0}^{-1}\left(-V_{0}\left(u_{n}\right)\right)\right\|=\left\|V_{0}\left(u_{n}\right)+V_{0}\left(u_{n}\right)\right\|=\left\|2 V_{0}\left(u_{n}\right)\right\|=2 \quad \forall n \in \mathbb{N} .
$$

By a similar method to the one we used to deduce (3.3) from (3.2),

$$
\left\|v-V^{-1}\left(-V\left(u_{n}\right)\right)\right\|=2 \quad \forall n \in \mathbb{N}
$$

and thus

$$
\left\|V_{0}(v)+V_{0}\left(u_{n}\right)\right\|=2 \quad \forall n \in \mathbb{N}
$$

Letting $n \rightarrow \infty$ gives $\left\|V_{0}(v)+V_{0}(u)\right\|=2$ and completes the proof.
Now, we begin to consider the isometries between $S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$ and $S_{1}(F)$, where E_{1} and E_{2} are strictly convex. In the following result, we prove that any surjective isometry between $S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$ and $S_{1}(F)$ necessarily maps antipodal points to antipodal points.

Proposition 3.2. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. Then $V_{0}(-u)=-V_{0}(u)$ for any $u \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$.

Proof. We first prove that $V_{0}(-\hat{x})=-V_{0}(\hat{x})$ for any $x \in S\left(E_{1}\right)$. Since V_{0} is surjective, there exists $u \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$ such that $V_{0}(u)=-V_{0}(\hat{x})$. Then

$$
\left\|u_{1}-x\right\|+\left\|u_{2}\right\|=\|u-\hat{x}\|=\left\|V_{0}(u)-V_{0}(\hat{x})\right\|=\left\|-2 V_{0}(\hat{x})\right\|=2
$$

and thus $\left\|u_{1}-x\right\|=\left\|u_{1}\right\|+\|x\|$. Since E_{1} is strictly convex, $u_{1}=-\left\|u_{1}\right\| x$. For any $y \in S\left(E_{2}\right)$,

$$
\left\|V_{0}(\hat{y})+V_{0}(u)\right\|=\left\|V_{0}(\hat{y})-V_{0}(\hat{x})\right\|=\|\hat{y}-\hat{x}\|=2 .
$$

By Lemma 3.1,

$$
\left\|u_{1}\right\|+\left\|y+u_{2}\right\|=\|\hat{y}+u\|=2
$$

and thus $\left\|y+u_{2}\right\|=\|y\|+\left\|u_{2}\right\|$. Since y is arbitrary, we have $u_{2}=0$ and thus $u=-\hat{x}$. Similarly, we can prove that $V_{0}(-\hat{y})=-V_{0}(\hat{y})$ for any $y \in S\left(E_{2}\right)$.

Next we prove that $V_{0}(-u)=-V_{0}(u)$ for all $u \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$. We can assume $u_{1}, u_{2} \neq 0$. Since V_{0} is surjective, there is a $v \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$ such that $V_{0}(v)=-V_{0}(u)$. Then

$$
\left\|u_{1}-v_{1}\right\|+\left\|u_{2}-v_{2}\right\|=\|u-v\|=\left\|V_{0}(u)-V_{0}(v)\right\|=\left\|2 V_{0}(u)\right\|=2
$$

and thus

$$
2=\left\|u_{1}-v_{1}\right\|+\left\|u_{2}-v_{2}\right\| \leq\left\|u_{1}\right\|+\left\|v_{1}\right\|+\left\|u_{2}\right\|+\left\|v_{2}\right\|=\|u\|+\|v\|=2 .
$$

It follows that $\left\|u_{1}-v_{1}\right\|=\left\|u_{1}\right\|+\left\|v_{1}\right\|$. Since E_{1} is strictly convex,

$$
v_{1}=-\frac{\left\|v_{1}\right\|}{\left\|u_{1}\right\|} u_{1}
$$

By the result of the previous part of this proof, for any $x \in S\left(E_{1}\right)$,

$$
\|\hat{x}-u\|=\left\|V_{0}(\hat{x})-V_{0}(u)\right\|=\left\|-V_{0}(-\hat{x})+V_{0}(v)\right\|=\|\hat{x}+v\| .
$$

Set $x=\left\|u_{1}\right\|^{-1} u_{1}$. Then

$$
1-\left\|u_{1}\right\|+\left\|u_{2}\right\|=\| \| u_{1}\left\|^{-1} u_{1}+v_{1}\right\|+\left\|v_{2}\right\|=1-\left\|v_{1}\right\|+\left\|v_{2}\right\|
$$

since $v_{1}=-\left(\left\|v_{1}\right\| /\left\|u_{1}\right\|\right) u_{1}$. Therefore, $\left\|u_{1}\right\|=\left\|v_{1}\right\|$ and $u_{1}=-v_{1}$. We can prove that $u_{2}=-v_{2}$ by a similar argument. This completes the proof.

The following lemma is a special case of [5, Lemma 5].
Lemma 3.3. Let F be a Banach space and $w_{1}, w_{2} \in S_{1}(F)$. Suppose that $\left\|w_{1} \pm w_{2}\right\|=2$. Then

$$
\left\|\lambda w_{1}+\mu w_{2}\right\|=|\lambda|+|\mu| \quad \forall \lambda, \mu \in \mathbb{R} .
$$

Proof. Assume that $\lambda \neq 0$ and $\mu \neq 0$. Let $\theta_{1}=\operatorname{sgn}(\lambda)$ and $\theta_{2}=\operatorname{sgn}(\mu)$. By the HahnBanach theorem, there exists $f \in S_{1}\left(F^{*}\right)$ such that

$$
\theta_{1} f\left(w_{1}\right)+\theta_{2} f\left(w_{2}\right)=f\left(\theta_{1} w_{1}+\theta_{2} w_{2}\right)=\left\|\theta_{1} w_{1}+\theta_{2} w_{2}\right\|=2 .
$$

Since $\left|\theta_{i} f\left(w_{i}\right)\right| \leq 1$ for $i=1,2$, we see that $\theta_{1} f\left(w_{1}\right)=\theta_{2} f\left(w_{2}\right)=1$ and so

$$
\begin{aligned}
|\lambda|+|\mu| & =|\lambda| \theta_{1} f\left(w_{1}\right)+|\mu| \theta_{2} f\left(w_{2}\right)=f\left(|\lambda| \theta_{1} w_{1}+|\mu| \theta_{2} w_{2}\right)=f\left(\lambda w_{1}+\mu w_{2}\right) \\
& \leq\left\|\lambda w_{1}+\mu w_{2}\right\| \leq|\lambda|+|\mu| .
\end{aligned}
$$

The case $\lambda=0$ or $\mu=0$ is clear. This completes the proof.
Proposition 3.4. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. If $x \in$ $S_{1}\left(E_{1}\right), y \in S_{1}\left(E_{2}\right)$ and $\lambda, \mu \in \mathbb{R}$ with $|\lambda|+|\mu|=1$, then $V_{0}(\lambda \hat{x}+\mu \hat{y})=\lambda V_{0}(\hat{x})+\mu V(\hat{y})$.

Proof. By Lemma 3.1, since V_{0} is an isometry,

$$
\left\|V_{0}(\hat{x}) \pm V_{0}(\hat{y})\right\|=\|\hat{x} \pm \hat{y}\|=2 .
$$

By Lemma 3.3,

$$
\left\|\lambda V_{0}(\hat{x})+\mu V_{0}(\hat{y})\right\|=|\lambda|+|\mu|=1 .
$$

Since V is surjective, there exists $u \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$ such that $V_{0}(u)=\lambda V_{0}(\hat{x})+\mu V_{0}(\hat{y})$. Now we prove that $u=\lambda \hat{x}+\mu \hat{y}$.

The case $|\lambda|=1$ is clear. After Proposition 3.2, we can assume that $0<\lambda<1$. Then

$$
\begin{aligned}
\left\|u_{1}+x\right\|+\left\|u_{2}\right\| & =\|u+\hat{x}\|=\left\|V_{0}(u)+V_{0}(\hat{x})\right\| \\
& =\left\|(1+\lambda) V_{0}(\hat{x})+\mu V_{0}(\hat{y})\right\|=1+\lambda+|\mu|=2
\end{aligned}
$$

by Proposition 3.2 and Lemma 3.3. Therefore, $\left\|u_{1}+x\right\|=\left\|u_{1}\right\|+\|x\|$. Since E_{1} is strictly convex, we get $u_{1}=\left\|u_{1}\right\| x$. It follows that

$$
\begin{aligned}
2-2\left\|u_{1}\right\| & =1-\left\|u_{1}\right\|+\left\|u_{2}\right\|=\left\|u_{1}-x\right\|+\left\|u_{2}\right\|=\|u-\hat{x}\|=\left\|V_{0}(u)-V_{0}(\hat{x})\right\| \\
& =\left\|(\lambda-1) V_{0}(\hat{x})+\mu V_{0}(\hat{y})\right\|=1-\lambda+|\mu|=2-2 \lambda .
\end{aligned}
$$

Therefore, $\left\|u_{1}\right\|=\lambda$ and $u_{1}=\lambda x$. Similarly, we can prove that $u_{2}=\mu y$. This completes the proof.

Remark 3.5. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. For $i=1,2$, we can define $V_{i}: S_{1}\left(E_{i}\right) \rightarrow S_{1}(F)$ by

$$
V_{i}(x)=V_{0}(\hat{x}) \quad \forall x \in S_{1}\left(E_{i}\right) .
$$

Then, by Proposition 3.4,

$$
V_{0}(\lambda \hat{x}+\mu \hat{y})=\lambda V_{1}(x)+\mu V_{2}(y)
$$

for any $x \in S_{1}\left(E_{1}\right), y \in S_{1}\left(E_{2}\right)$ and $\lambda, \mu \in \mathbb{R}$ with $|\lambda|+|\mu|=1$.
Proposition 3.6. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry and that

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right) \subseteq F
$$

are both subspaces. For $i=1,2$, the V_{i} defined in Remark 3.5 can be extended to a linear isometry on E_{i}.
Proof. Assume that $i=1$. We can define $\tilde{V}_{1}: E_{1} \rightarrow F$ by

$$
\tilde{V}_{1}(x)= \begin{cases}0 & \text { if } x=0 \\ \|x\| V_{1}\left(\|x\|^{-1} x\right) & \text { if } x \neq 0\end{cases}
$$

It is clear that $\tilde{V}_{1} \mid S_{1}\left(E_{1}\right)=V_{1}$. Now, we prove that

$$
\begin{equation*}
\left\|\tilde{V}_{1}\left(x_{1}\right)-\tilde{V}_{1}\left(x_{2}\right)\right\| \geq\left\|x_{1}-x_{2}\right\| \quad \forall x_{1}, x_{2} \in E_{1} . \tag{3.4}
\end{equation*}
$$

From Proposition 3.2, $\tilde{V}_{1}(\lambda x)=\lambda \tilde{V}_{1}(x)$ for any $x \in E_{1}$ and $\lambda \in \mathbb{R}$. To prove (3.4), we only need to prove that it holds for any $x_{1}, x_{2} \in B_{1}\left(E_{1}\right)$. For $y \in S_{1}\left(E_{2}\right)$, set $u:=\left(x_{1},\left(1-\left\|x_{1}\right\|\right) y\right)$ and $v:=\left(x_{2},\left(1-\left\|x_{2}\right\|\right) y\right)$. Note that $u, v \in S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$. From Proposition 3.4,

$$
\begin{aligned}
\left\|V_{0}(u)-V_{0}(v)\right\| & =\left\|\left(\left\|x_{1}\right\| V_{1}\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right)-\left\|x_{2}\right\| V_{1}\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right)\right)+\left(\left\|x_{2}\right\|-\left\|x_{1}\right\|\right) V_{2}(y)\right\| \\
& \leq\| \| x_{1}\left\|V_{1}\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right)-\right\| x_{2}\left\|V_{1}\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right)\right\|+\left|\left\|x_{2}\right\|-\left\|x_{1}\right\|\right|\left\|V_{2}(y)\right\| \\
& =\left\|\tilde{V}_{1}\left(x_{1}\right)-\tilde{V}_{1}\left(x_{2}\right)\right\|+\left|\left\|x_{2}\right\|-\left\|x_{1}\right\|\right|
\end{aligned}
$$

and

$$
\|u-v\|=\left\|x_{1}-x_{2}\right\|+\left|\left\|x_{2}\right\|-\left\|x_{1}\right\|\right| .
$$

This yields (3.4), since $\left\|V_{0}(u)-V_{0}(v)\right\|=\|u-v\|$.
Let $F_{1}:=\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right)$ be a subspace of F. Then V_{1} can be seen as a surjective isometry between $S\left(E_{1}\right)$ and $S\left(F_{1}\right)$. Define $V_{1}^{-1}: S_{1}\left(F_{1}\right) \rightarrow S_{1}\left(E_{1}\right)$ as the inverse of V_{1}. By (3.4), for any $w_{1}, w_{2} \in S\left(F_{1}\right)$ and $\lambda \in \mathbb{R}^{+}$,

$$
\left\|V_{1}^{-1}\left(w_{1}\right)-\lambda V_{1}^{-1}\left(w_{2}\right)\right\| \leq\left\|\tilde{V}_{1}\left(V_{1}^{-1}\left(w_{1}\right)\right)-\tilde{V}_{1}\left(\lambda V_{1}^{-1}\left(w_{2}\right)\right)\right\|=\left\|w_{1}-\lambda w_{2}\right\| .
$$

Then V_{1}^{-1} has a linear isomeric extension W_{1} from F_{1} to E_{1} by Lemma 1.3. It is clear that $W_{1} \circ \tilde{V}_{1}(x)=x$ for any $x \in E_{1}$ and thus \tilde{V}_{1} is also a linear isometry. We can prove the case $i=2$ similarly. This completes the proof.

Theorem 3.7. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry and

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right) \subseteq F
$$

are both subspaces. Then V_{0} can be extended to a linear isometry on the whole space. Proof. In Proposition 3.6, we have linear isometries $\tilde{V}_{i}: E_{i} \rightarrow F$ for $i=1,2$. Define

$$
\tilde{V}_{0}: E_{1} \oplus_{\ell^{1}} E_{2} \rightarrow F
$$

by $\tilde{V}_{0}(u)=\tilde{V}_{1}\left(u_{1}\right)+\tilde{V}_{2}\left(u_{2}\right)$ for $u \in E_{1} \oplus_{\ell^{1}} E_{2}$. By Proposition 3.4, $\left.\tilde{V}_{0}\right|_{S_{1}\left(E_{1} \oplus_{\ell} E_{2}\right)}=V_{0}$ and \tilde{V}_{0} is linear. This completes the proof.

4. Mazur-Ulam property of $\boldsymbol{E}_{\mathbf{1}} \oplus_{\boldsymbol{\ell}_{\infty}} \boldsymbol{E}_{\mathbf{2}}$

In this section, we begin to consider the isometries between $S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$ and $S_{1}(F)$, where E_{1} and E_{2} are strictly convex. In the following result, we prove that the surjective isometry between $S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$ and $S_{1}(F)$ necessarily maps antipodal points to antipodal points.

Proposition 4.1. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right) \rightarrow S_{1}(F)$ is an isometry and

$$
-V_{0}\left(S_{1}\left(E_{1} \oplus_{e^{\infty}} E_{2}\right)\right) \subseteq V_{0}\left(S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)\right)
$$

Then $V_{0}(-u)=-V_{0}(u)$ for any $u \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$.

Proof. We first prove that $V_{0}(-\hat{x})=-V_{0}(\hat{x})$ for any $x \in S_{1}\left(E_{1}\right)$. Note that

$$
-V_{0}\left(S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)\right) \subseteq V_{0}\left(S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)\right)
$$

There exists $u \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$ such that $V_{0}(u)=-V_{0}(\hat{x})$. Consequently,

$$
\|u-\hat{x}\|=\left\|V_{0}(u)-V_{0}(\hat{x})\right\|=\left\|-2 V_{0}(\hat{x})\right\|=2
$$

and thus $\left\|u_{1}-x\right\|=2$. Since E_{1} is strictly convex, we see that $u_{1}=-x$. For any $y \in S_{1}\left(E_{2}\right)$, there exists $v=\left(v_{1}, v_{2}\right) \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$ such that $V_{0}(v)=-V_{0}(\hat{y})$. By a similar argument, $v_{2}=-y$. Consequently,

$$
\|u-v\|=\left\|V_{0}(u)-V_{0}(v)\right\|=\left\|-V_{0}(\hat{x})+V_{0}(\hat{y})\right\|=\|-\hat{x}+\hat{y}\|=1
$$

and thus $\left\|u_{2}+y\right\|=\left\|u_{2}-v_{2}\right\| \leq 1$. Since y is arbitrary, we get $u_{2}=0$. Therefore, we have $u=-\hat{x}$ and $V_{0}(-\hat{x})=-V_{0}(\hat{x})$. We can prove that $V_{0}(-\hat{y})=-V_{0}(\hat{y})$ for any $y \in S_{1}\left(E_{2}\right)$ by a similar argument.

Now we prove that $V_{0}(-u)=-V_{0}(u)$ for any $u \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$. We can assume that $u_{1}, u_{2} \neq 0$. Since

$$
-V_{0}\left(S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)\right) \subseteq V_{0}\left(S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)\right)
$$

there exists $v=\left(v_{1}, v_{2}\right) \in S_{1}\left(E_{1} \oplus_{\ell_{\infty}} E_{2}\right)$ such that $V_{0}(v)=-V_{0}(u)$. It is clear that $v_{1}, v_{2} \neq 0$. Otherwise, $u_{1}=0$ or $u_{2}=0$ by the result of the previous part of this proof. Then, for any $x \in S\left(E_{1}\right)$,

$$
\|\hat{x}-u\|=\left\|V_{0}(\hat{x})-V_{0}(u)\right\|=\left\|-V_{0}(-\hat{x})+V_{0}(v)\right\|=\|\hat{x}+v\| .
$$

Let $x=\left\|v_{1}\right\|^{-1} v_{1}$. Then

$$
\begin{equation*}
1+\left\|v_{1}\right\|=\left\|\frac{v_{1}}{\left\|v_{1}\right\|}-u_{1}\right\| \leq 1+\left\|u_{1}\right\| \tag{4.1}
\end{equation*}
$$

and thus $\left\|v_{1}\right\| \leq\left\|u_{1}\right\|$. Similarly, if we let $x=-u_{1} /\left\|u_{1}\right\|$,

$$
1+\left\|u_{1}\right\|=\left\|-\frac{u_{1}}{\left\|u_{1}\right\|}+v_{1}\right\| \leq 1+\left\|v_{1}\right\|
$$

and thus $\left\|u_{1}\right\| \leq\left\|v_{1}\right\|$. Therefore, $\left\|u_{1}\right\|=\left\|v_{1}\right\|$. From (4.1), since E_{1} is strictly convex,

$$
1+\left\|u_{1}\right\|=\left\|\frac{v_{1}}{\left\|v_{1}\right\|}-u_{1}\right\|
$$

and thus $u_{1}=-v_{1}$. Similarly, we can prove that $u_{2}=-v_{2}$ to complete the proof.
The following lemma is a special case of [3, Lemma 2].
Lemma 4.2. Let F be a Banach space and $w_{1}, w_{2} \in S_{1}(F)$ with $\left\|w_{1} \pm w_{2}\right\|=1$. Then

$$
\left\|\lambda w_{1}+\mu w_{2}\right\|=\max \{|\lambda|,|\mu|\} \quad \forall \lambda, \mu \in \mathbb{R} .
$$

Proof. Assume that $\lambda \neq 0$ and $|\lambda| \geq|\mu|$. Since $\left\|w_{1} \pm w_{2}\right\|=1$, by the Hahn-Banach theorem, there exists $f \in S_{1}\left(F^{*}\right)$ such that $f\left(w_{1}\right)=\left\|w_{1}\right\|=1$ and $f\left(w_{2}\right)=0$. Then

$$
\max \{|\lambda|,|\mu|\}=|\lambda|=\left|f\left(\lambda w_{1}+\mu w_{2}\right)\right| \leq\left\|\lambda w_{1}+\mu w_{2}\right\| .
$$

By the Hahn-Banach theorem again, there exists $g \in S_{1}\left(F^{*}\right)$ such that

$$
\begin{aligned}
\left\|\lambda w_{1}+\mu w_{2}\right\| & =\left|g\left(\lambda w_{1}+\mu w_{2}\right)\right|=\left|\lambda g\left(w_{1}\right)+\mu g\left(w_{2}\right)\right| \\
& \leq \max \{|\lambda|,|\mu|\} \cdot \max \left\{\left|g\left(w_{1}+w_{2}\right)\right|,\left|g\left(w_{1}-w_{2}\right)\right|\right\} \\
& \leq \max \{|\lambda|,|\mu|\} \cdot \max \left\{\left\|w_{1}+w_{2}\right\|, w_{1}-w_{2} \|\right\}=\max \{|\lambda|,|\mu|\} .
\end{aligned}
$$

We can similarly handle the case $|\lambda|<|\mu|$. This completes the proof.
Proposition 4.3. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. If $x \in S\left(E_{1}\right)$, $y \in S\left(E_{2}\right)$ and $\lambda, \mu \in \mathbb{R}$ with $\max \{|\lambda|,|\mu|\}=1$, then $V_{0}(\lambda \hat{x}+\mu \hat{y})=\lambda V_{0}(\hat{x})+\mu V_{0}(\hat{y})$.

Proof. Since V_{0} is an isometry, by Proposition 4.1,

$$
\left\|V_{0}(\hat{x}) \pm V_{0}(\hat{y})\right\|=\|\hat{x} \pm \hat{y}\|=1 .
$$

By Lemma 3.1,

$$
\left\|\lambda V_{0}(\hat{x})+\mu V_{0}(\hat{y})\right\|=\max \{|\lambda|,|\mu|\}=1 .
$$

Since V_{0} is surjective, there is $u \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$ such that $V_{0}(u)=\lambda V_{0}(\hat{x})+\mu V_{0}(\hat{y})$. Now we prove that $u=\lambda \hat{x}+\mu \hat{y}$.

The case $\lambda=0$ or $\mu=0$ is clear. After Proposition 4.1, we can assume that $\lambda=1$ and $\mu \neq 0$. Then

$$
\|u+\hat{x}\|=\left\|V_{0}(u)+V_{0}(\hat{x})\right\|=\left\|2 V_{0}(\hat{x})+\mu V_{0}(\hat{y})\right\|=2
$$

by Proposition 4.1 and Lemma 3.1. Therefore, we have $\left\|u_{1}+x\right\|=2$. Since E_{1} is strictly convex, $u_{1}=x$. It is clear that

$$
\left\|u_{2}\right\|=\|u-\hat{x}\|=\left\|V_{0}(u)-V_{0}(\hat{x})\right\|=\left\|\mu V_{0}(\hat{y})\right\|=|\mu| .
$$

Let $\theta=\operatorname{sgn}(\mu)$. It is clear that $|\mu+\theta|>1$ and so

$$
\|u+\theta \hat{y}\|=\left\|V_{0}(u)+\theta V_{0}(\hat{y})\right\|=\left\|V_{0}(\hat{x})+(\mu+\theta) V_{0}(\hat{y})\right\|=|\mu+\theta|,
$$

by Lemma 3.1, and

$$
\left\|u_{2}+\theta y\right\|=|\mu+\theta|=|\mu|+1 .
$$

Since $\left\|u_{2}\right\|=|\mu|$ and E_{2} is strictly convex, $u_{2}=\theta|\mu| y=\mu y$. Then $u=\hat{x}+\mu \hat{y}$, which completes the proof.

Remark 4.4. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. For $i=1,2$, define $V_{i}: S_{1}\left(E_{i}\right) \rightarrow S_{1}(F)$ by

$$
V_{i}(x)=V_{0}(\hat{x}), \quad \forall x \in S_{1}\left(E_{i}\right) .
$$

Then, by Proposition 4.3,

$$
V_{0}(\lambda \hat{x}+\mu \hat{y})=\lambda V_{1}(x)+\mu V_{2}(y)
$$

for any $x \in S_{1}\left(E_{1}\right), y \in S_{1}\left(E_{2}\right)$ and $\lambda, \mu \in \mathbb{R}$ with $\max \{|\lambda|,|\mu|\}=1$.

Proposition 4.5. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry and

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right) \subseteq F
$$

are both subspaces. For $i=1,2$, the V_{i} defined in Remark 4.4 can be extended to a linear isometry on E_{i}.

Proof. Assume that $i=1$. We can define $\tilde{V}_{1}: E_{1} \rightarrow F$ by

$$
\tilde{V}_{1}(x)= \begin{cases}0 & \text { if } x=0 \\ \|x\| V_{1}\left(\|x\|^{-1} x\right) & \text { if } x \neq 0\end{cases}
$$

We first prove that \tilde{V}_{1} is an isometry. From Proposition 4.1,

$$
\tilde{V}_{1}(\lambda x)=\lambda \tilde{V}_{1}(x) \quad \forall \lambda \in \mathbb{R}
$$

and $\tilde{V}_{1} \mid s_{1}\left(E_{1}\right)=V_{1}$. Therefore, we only need to prove that $\left\|\tilde{V}_{1}\left(x_{1}\right)-\tilde{V}_{1}\left(x_{2}\right)\right\|=\left\|x_{1}-x_{2}\right\|$ for any $x_{1}, x_{2} \in B_{1}\left(E_{1}\right)$. In fact, for any $y \in S_{1}\left(E_{2}\right)$, write $u:=\left(x_{1}, y\right)$ and $v:=\left(x_{2}, y\right)$. Since $u, v \in S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right)$, by Proposition 4.3,

$$
\begin{aligned}
\left\|\tilde{V}_{1}\left(x_{1}\right)-\tilde{V}_{1}\left(x_{2}\right)\right\| & =\| \| x_{1}\left\|V_{1}\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right)-\right\| x_{2}\left\|V_{1}\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right)\right\| \\
& =\left\|V_{0}(u)-V_{0}(v)\right\|=\|u-v\|=\left\|x_{1}-x_{2}\right\| .
\end{aligned}
$$

By hypothesis, $F_{1}:=\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right)$ is a subspace of F. So, \tilde{V}_{1} can be seen as a surjective isometry between E_{1} and F_{1}. By Theorem 1.2, \tilde{V}_{1} is linear. The case $i=2$ is similar.

Theorem 4.6. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{\infty}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry and

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right) \subseteq F
$$

are both subspaces. Then V_{0} can be extended to a linear isometry on the whole space.
Proof. In Proposition 4.5, we have defined linear isometries $\tilde{V}_{i}: E_{i} \rightarrow F$ for $i=1,2$. Then we can define

$$
\tilde{V}_{0}: E_{1} \oplus_{\ell^{\infty}} E_{2} \rightarrow F
$$

by $\tilde{V}_{0}(u)=\tilde{V}_{1}\left(u_{1}\right)+\tilde{V}_{2}\left(u_{2}\right)$ for any $u \in E_{1} \oplus_{\ell^{\infty}} E_{2}$. From Proposition 4.5, it is clear that $\left.\tilde{V}_{0}\right|_{S_{1}\left(E_{1} \oplus \infty E_{2}\right)}=V_{0}$ and \tilde{V}_{0} is linear. This completes the proof.

5. Main results

In this section, we prove the main results, which give necessary and sufficient conditions under which the ℓ^{1}-sum and the ℓ^{∞}-sum of two strictly convex Banach spaces admit the Mazur-Ulam property.

Theorem 5.1. Let E_{1} and E_{2} be strictly convex Banach spaces and let F be a Banach space. Suppose that $V: E_{1} \oplus_{\ell^{1}} E_{2} \rightarrow F$ is a surjective positive homogeneous sphere isometry and preserves the sphere. If V preserves the subspaces E_{1} and E_{2}, then V is linear. The same result holds if we replace ℓ^{1} by ℓ^{∞}.

Proof. We prove the assertion for ℓ^{1}. Let

$$
V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)
$$

be the restriction of V to $S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right)$. Since V preserves the subspaces E_{1} and E_{2},

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right)=V\left(E_{1}\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right)=V\left(E_{2}\right) \subseteq F
$$

are both subspaces. The desired result follows from Theorem 3.7. The proof of the second part is similar by means of Theorem 4.6.

The following result is a straightforward deduction from Theorems 2.1 and 5.1.
Theorem 5.2. Let E_{1} and E_{2} be strictly convex Banach spaces. The following assertions are equivalent.
(i) $\quad E_{1} \oplus_{\ell^{1}} E_{2}$ admits the Mazur-Ulam property.
(ii) Suppose that F is a Banach space and $V: E_{1} \oplus_{\ell^{1}} E_{2} \rightarrow F$ is a surjective positive homogeneous sphere isometry and preserves the sphere. Then V preserves the subspaces E_{1} and E_{2}.
(iii) Suppose that F is a Banach space and $V_{0}: S_{1}\left(E_{1} \oplus_{\ell^{1}} E_{2}\right) \rightarrow S_{1}(F)$ is a surjective isometry. Then

$$
\mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{1}\right)\right) \subseteq F, \quad \mathbb{R} \cdot V_{0}\left(S_{1}\left(E_{2}\right)\right) \subseteq F
$$

are both subspaces.
Moreover, the assertions (i^{\prime}), (ii') and (iii') obtained by replacing ℓ^{1} by ℓ^{∞} in (i), (ii) and (iii) are also equivalent.

Acknowledgements

The author would like to show his sincere gratitude to Professor Ding for his guidance. The author also wants to thank Xiao Chen and Zi-Ran Liu for their discussions. The suggestions from the referee are appreciated.

References

[1] L. X. Cheng and Y. B. Dong, 'On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces', J. Math. Anal. Appl. 377 (2011), 464-470.
[2] G. G. Ding, 'The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space', Sci. China Ser. A 45(4) (2002), 479-483.
[3] G. G. Ding, 'The isometric extension of the into mapping from the $\mathcal{L}^{\infty}(\Gamma)$-type space to some normed space E ', Illinois J. Math. 51(2) (2007), 445-453.
[4] G. G. Ding, 'On isometric extension problem between two unit spheres', Sci. China Ser. A 52(10) (2009), 2069-2083.
[5] G. G. Ding, 'The isometric extension of an into mapping from the unit sphere $S[\ell(\Gamma)]$ to the unit sphere $S(E)$ ', Acta Math. Sci. 29B(3) (2009), 469-479.
[6] G. G. Ding and J. Z. Li, 'Sharp corner points and isometric extension problem in Banach spaces', J. Math. Anal. Appl. 405(1) (2013), 297-309.
[7] G. G. Ding and J. Z. Li, 'Isometries between unit spheres of ℓ^{∞}-sum of strictly convex normed spaces', Bull. Aust. Math. Soc. 88(3) (2013), 369-375.
[8] X. N. Fang and J. H. Wang, 'On linear extension of isometries between the unit spheres', Acta Math. Sinica (Chin. Ser.) 48 (2005), 1109-1112.
[9] V. Kadets and M. Martin, 'Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces', J. Math. Anal. Appl. 396 (2012), 441-447.
[10] R. Tanaka, 'A further property of spherical isometries', Bull. Aust. Math. Soc. 90(2) (2014), 304-310.
[11] R. Tanaka, 'Tingley's problem on symmetric absolute normalized norms on \mathbb{R}^{2}, Acta Math. Sin. (Engl. Ser.) 30(8) (2014), 1324-1340.
[12] D. Tingley, 'Isometries of the unit sphere', Geom. Dedicata 22 (1987), 371-378.
[13] R. S. Wang and A. Orihara, 'Isometries on the ℓ^{1}-sum of $C_{0}(\Omega, E)$ type spaces', J. Math. Sci. Univ. Tokyo 2 (1995), 131-154.
[14] R. S. Wang and A. Orihara, 'Isometries between the unit spheres of ℓ^{1}-sum of strictly convex normed spaces', Acta Sci. Natur. Univ. Nankai 35(1) (2002), 38-42.

JIAN-ZE LI, Department of Mathematics, Tianjin University, Tianjin 300072, PR China
e-mail: lijianze@tju.edu.cn

[^0]: This work was supported by the National Natural Science Foundation of China (11371201).
 (c) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

