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Abstract

File-sharing networks are distributed systems used to disseminate files among nodes of
a communication network. The general simple principle of these systems is that once a
node has retrieved a file, it may become a server for this file. In this paper, the capacity
of these networks is analyzed with a stochastic model when there is a constant flow of
incoming requests for a given file. It is shown that the problem can be solved by analyzing
the asymptotic behavior of a class of interacting branching processes. Several results of
independent interest concerning these branching processes are derived and then used to
study the file-sharing systems.
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1. Introduction

File-sharing networks are distributed systems used to disseminate information among some
nodes of a communication network. The general simple principle is the following: once a
node has retrieved a file it becomes a server for this file. An improved version of this principle
consists of splitting the original file into several pieces (called ‘chunks’) so that a given node
can retrieve simultaneously several chunks of the same file from different servers. In this case,
the rate to get a given file may thus increase significantly, as well as the global capacity of the
file-sharing system: a node becomes a server of a chunk as soon as it has retrieved it and not
only when it has the whole file. These schemes disseminate information efficiently as long as
the number of servers grows rapidly.

In this paper we investigate the maximal throughput of these file-sharing networks, i.e.
whether the system can or cannot cope with a constant flow of incoming requests for a given
file. Two cases are considered, either the file consists of one chunk or the file is split into two
chunks that are retrieved sequentially, which we will refer to as a linear file-sharing network.
It is assumed that arrival times are Poisson and chunk transmission times are exponentially
distributed. In this setting, the stability property of the file-sharing system is expressed as
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Figure 1: Transition rates outside the boundaries of the file-sharing network with two chunks.

the ergodicity property of the associated Markov process. Even in this simple framework,
mathematical studies are quite scarce; see [13], [17], [18], and the references therein.

The main technical difficulty in proving stability/instability results for this class of stochastic
networks is that, except for the input, the Markov process has unbounded jump rates, in fact
proportional to one of the coordinates of the current state. If x servers have a chunk, since
each of them can deliver this chunk, they globally provide this chunk at a rate proportional
to x. For this reason, the classical tools related to fluid limits cannot be used easily in this
setting. See [4], [5], and [14] for example. However, this class of processes is close to another
important class of stochastic processes, namely branching processes, where a population of
size x evolves at a rate proportional to x. As will be seen, a file-sharing system that splits files
into several chunks can be represented as a Markov process associated to multitype branching
processes with interaction.

1.1. Interacting branching processes

Consider the case of a file split into two chunks, and suppose that a new user arriving in the
network first requests chunk number 1 and then requests chunk number 2. Assume further that
a server of type 1, i.e. having chunk 1 only, distributes it at rate µ1, while a server of type 2,
having chunks 1 and 2, distributes only chunk 2 at rate µ2. For i = 0, 1, 2, let Xi(t) be the
number of type-i servers at time t . A type-0 server is simply a user without any chunk. The
crucial observation is that as long as there are requests for chunk i ∈ {1, 2}, then (Xi(t)) grows
similarly as a branching process where individuals give birth to one child at rate µi , since each
server offers a capacity µi for the requested chunk. On the other hand, a new arrival in X2
corresponds to a departure in X1, since the new type-2 server was a type-1 server; thus deaths
in X1 are governed by births in X2. See Figure 1.

The file-sharing network under consideration can thus be seen as a system of interacting
branching processes where the births and the deaths of individuals are correlated. In the simpler
case of one chunk, a description as a branching process (without interaction) has been used to
analyze the transient behavior of these file-sharing systems. See [17], [19], and [21].

In Sections 2 and 3 we present results of independent interest concerning branching processes
where individuals are killed at the instants (σn)of a random point process. In Section 2 a criterion
for the extinction of the branching process is obtained in terms of the sequence (σn), and an
asymptotic result is derived in this case. In Section 3 we consider the case where (σn) is the
sequence of birth instants of another independent branching process. Several useful estimates
are derived in this setting. These results are used to establish the stability results concerning
file-sharing systems with two chunks. The stability properties of a network with a single-chunk
file are analyzed in detail in Section 4. The case of file-sharing networks with two chunks is
detailed in Section 5.

2. Yule processes with killing

A Yule process (Y (t)) with rate µ > 0 is a Markovian branching process with Q-matrix

qY (x, x + 1) = µx for all x ≥ 0. (2.1)
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A Yule process is simply a pure-birth process, where each individual gives birth to a child at
rate µ.

Yule processes are the basic branching processes that appear in analyzing the two-chunk
network of Section 5. Actually, a variant of this stochastic model will be needed, where some
individuals are killed. In this section we study this model when killings are given by an
exogenous process and occur at fixed (random or deterministic) epochs; in Section 3 killings
result from the interaction with another branching process.

In terms of branching processes, this killing procedure amounts to pruning the tree, i.e. to
cut some edges of the tree, and the subtree attached to it. This procedure is fairly common
for branching processes, in the Crump–Mode–Jagers model for example; see [6]. See also [1]
or [11].

2.1. A Yule process killed at fixed instants

Until the end of this section, it is assumed that, provided that the population is nonempty,
at epochs σn, n ≥ 1, an individual is removed from the population of an ordinary Yule process
(Y (t)) with rate µW starting with Y (0) = w ∈ N individuals. It is assumed that (σn) is some
fixed nondecreasing sequence. It will be shown that the process (W(t)) obtained by killing one
individual of (Y (t)) at each of the successive instants (σn) survives with positive probability
when the series with general term (e−µW σn) converges.

We define
κ = inf{n ≥ 1 : W(σn) = 0}.

The process (W(t)) can be represented by

W(t) = Y (t) −
κ∑

i=1

Xi(t) 1{σi≤t}, (2.2)

where, for 1 ≤ i ≤ κ and t ≥ σi , Xi(t) is the total number of children at time t in the original
Yule process of the ith individual killed at time σi . In terms of trees, (W(t)) can be seen as a
subtree of (Y (t)): for 1 ≤ i ≤ κ , (Xi(t)) is the subtree of (Y (t)) associated with the ith particle
killed at time σi .

It is easily checked that (Xi(t − σi), t ≥ σi) is a Yule process starting with one individual
and, since a killed individual cannot have one of his descendants killed, that the processes

(X̃i(t)) = (Xi(t + σi), t ≥ 0), 1 ≤ i ≤ κ,

are independent Yule processes.
For any process (U(t)), we define

(MU(t)) := (e−µW tU(t)). (2.3)

If (X̃(t)) is a Yule process with rate µW , the martingale (MX̃(t)) converges almost surely and
in L2 to a random variable MX̃(∞) with an exponential distribution with mean X̃(0), and, by
Doob’s inequality,

E
(

sup
t≥0

MX̃(t)2
)

≤ 2 sup
t≥0

E(MX̃(t)2) < +∞.

See [3]. Consequently,

e−µW tW(t) = MY (t) −
κ∑

i=1

e−µW σi MX̃i
(t − σi) 1{σi≤t},
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and, for any t ≥ 0,

κ∑
i=1

e−µW σi MX̃i
(t − σi) 1{σi≤t} ≤

κ∑
i=1

e−µW σi sup
s≥0

MX̃i
(s).

Assume now that
∑

i≥1 e−µW σi < +∞: then the last expression is integrable, and Lebesgue’s
theorem implies that (MW(t)) = (e−µW tW(t)) converges almost surely and in L2 to

MW(∞) = MY (∞) −
κ∑

i=1

e−µW σi MX̃i
(∞).

Clearly, for some large enough w∗ and then for any w ≥ w∗, we have

Ew(MW(∞)) ≥ w −
+∞∑
i=1

e−µW σi > 0,

in particular Pw(MW(∞) > 0) > 0 and Pw(W(t) ≥ 1 for all t ≥ 0) > 0. If Y (0) = w < w∗
and σ1 > 0, then Pw(Y (σ1) ≥ w∗ + 1) > 0, and, therefore, by translation at time σ1, the same
conclusion holds when the sequence (e−µW σi ) has a finite sum. The following proposition has
thus been proved.

Proposition 2.1. Let (W(t)) be a process growing as a Yule process with rate µW and for
which individuals are killed at nondecreasing instants (σn) with σ1 > 0. If

+∞∑
i=1

e−µW σi < +∞

then as t gets large, and for any w ≥ 1, the variable (e−µW tW(t)) converges Pw-almost surely
and in L2 to a finite random variable MW(∞) such that Pw(MW(∞) > 0) > 0.

Proposition 2.1 establishes the minimal results needed in Section 5. However, Kolmogorov’s
three-series, see [20, p. 115], can be used in conjunction with Fatou’s lemma to show that (W(t))

dies out almost surely when the series with general term (e−µW σn) diverges.

3. Interacting branching processes

In this section we study theYule process of the previous section when killing times correspond
to the birth times of some other branching process. The other branching process can be seen
as a renewing Bellman–Harris process.

3.1. Renewing Bellman–Harris process

In the rest of this section, µZ, ν > 0 are fixed and (Z(t)) is a birth-and-death process whose
Q-matrix, QZ , is given by

qZ(z, z + 1) = µZ(z ∨ 1) and qZ(z, z − 1) = νz. (3.1)

In the rest of the paper n ∨ m denotes max(n, m) for n, m ∈ N. This process can be
described equivalently as a time-changed M/M/1 queue (see Proposition 3.1) or as a sequence of
independent branching processes (see Proposition 3.2). The time change is the discrete analog
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of the Lamperti transform between continuous-state branching processes and Lévy processes;
see [7]. As will be seen, these two viewpoints are complementary.

Let (σn) be the sequence of birth instants (i.e. positive jumps) of (Z(t)), and let (Bσ (t)), the
corresponding counting process of (σn), be given by, for t ≥ 0,

Bσ (t) =
∑
i≥1

1{σi≤t} .

Proposition 3.1. (Queueing representation.) If Z(0) = z ∈ N then

(Z(t), t ≥ 0)
d= (L(C(t)), t ≥ 0), (3.2)

where (L(t)) is the process of the number of jobs of an M/M/1 queue with input rate µZ and
service rate ν, and with L(0) = z and C(t) = inf{s > 0 : A(s) > t}, where

A(t) =
∫ t

0

1

1 ∨ L(u)
du.

Proof. It is not difficult to check that the process (M(t)) := (L(C(t))) has the Markov
property. Let QM be its Q-matrix. For z ≥ 0,

P(L(C(h)) = z + 1 | L(0) = z) = µZ E(C(h)) + o(h) = µZ(z ∨ 1)h + o(h);
hence, qM(z, z + 1) = µZ(z ∨ 1). Similarly, qM(z, z − 1) = νz. The proposition is proved.

Corollary 3.1. For any γ > (µZ − ν) ∨ 0 and z = Z(0) ∈ N,

Ez

(+∞∑
n=1

e−γ σn

)
< +∞.

Proof. Proposition 3.1 shows that, in particular, the sequences of positive jumps of (Z(t))

and of (L(C(t))) have the same distribution. Hence, if N µZ
= (tn) is the arrival process of

the M/M/1 queue, a Poisson process with parameter µZ , then, using the notation of the above
proposition, the relation

(σn)
d= (A(tn))

holds. By using standard martingale properties of stochastic integrals with respect to Poisson
processes, see [15], we obtain, for t ≥ 0,

Ez

(∑
n≥1

e−γA(tn)

)
= Ez

(∫ ∞

0
e−γA(s)NµZ

(ds)

)

= µZ Ez

(∫ ∞

0
e−γA(s) ds

)

= µZ

∫ ∞

0
e−γ u Ez(Z(u) ∨ 1) du, (3.3)

where relation (3.2) has been used for the last equality. Kolmogorov’s equation for the process
(Z(t)) gives

φ(t) := Ez(Z(t))

= µZ

∫ t

0
Ez(Z(u) ∨ 1) du − ν

∫ t

0
Ez(Z(u)) du

≤ (µZ − ν)

∫ t

0
φ(u) du + µZt;
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therefore, by Gronwall’s lemma,

φ(t) ≤ φ(0) + µZ

∫ t

0
ue(µZ−ν)u du ≤ z + µZ

µZ − ν
te(µZ−ν)t .

From (3.3), we conclude that

Ez

(∑
n

e−γ σn

)
= Ez

(∑
n

e−γA(tn)

)
< +∞.

The proposition is proved.

Before hitting 0, (Z(t)) can be seen as a Bellman–Harris branching process with Malthusian
parameter α = µZ −ν; see [3]. This Bellman–Harris branching process describes the evolution
of a population of independent particles: each particle, at rate λ := µZ +ν, either splits into two
particles with probability p := µZ/(µZ + ν) or dies with probability 1 − p. These processes
will be referred to as (p, λ)-branching processes in the sequel.

A (p, λ)-branching process survives with positive probability only when p > 1
2 , in which

case the probability of extinction is equal to q = (1 − p)/p = ν/µZ . The process (Z(t))

only differs from a (p, λ)-branching process insofar as it regenerates after hitting 0, after a time
exponentially distributed. When it regenerates, it again behaves as a (p, λ)-branching process
(started with one particle), until it hits 0 again.

Proposition 3.2. (Branching representation.) If Z(0) = z ∈ N and (Z̃(t)) is a (p, λ)-
branching process started with z ∈ N particles and T̃ its extinction time, then

(Z(t), 0 ≤ t ≤ T )
d= (Z̃(t), 0 ≤ t ≤ T̃ ),

where T = inf{t ≥ 0 : Z(t) = 0} is the hitting time of 0 by (Z(t)).

Corollary 3.2. Suppose that µZ > ν. Then, Pz-almost surely for any z ≥ 0, there exists a
finite random variable Z(∞) such that

lim
t→+∞ e−(µZ−ν)tZ(t) = Z(∞) and Z(∞) > 0.

Proof. When µZ > ν, the process (Z(t)) couples in finite time with a supercritical (p, λ)-
branching process (Z̃(t)) conditioned on nonextinction; this follows readily from Proposi-
tion 3.2 (or see Appendix A for details). Since, for any supercritical (p, λ)-branching process,
(exp(−(µZ − ν)t)Z̃(t)) converges almost surely to a finite random variable Z̃(∞), positive on
the event of nonextinction (see [10]), we obtain the desired result.

Due to its technicality, the proof of the following result is postponed to Appendix A; this
result is used in the proof of Proposition 3.4.

Proposition 3.3. Suppose that µZ > ν. If

η∗(x) = 2 − x − √
x(4 − 3x)

2(1 − x)
, 0 < x < 1, (3.4)

then, for any 0 < η < η∗(ν/µZ),

sup
z≥0

[
Ez

(
sup
t≥σ1

(eη(µZ−ν)tBσ (t)−η)
)]

< +∞.
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3.2. A Yule process killed at the birth instants of a renewing Bellman–Harris process

We now consider the main interacting branching processes: in addition to (Z(t)), we consider
an independent Yule process (Y (t)) with parameter µW (its Q-matrix is defined by (2.1) with
µ = µW ). We proceed similarly as in Section 2: a process (W(t)) is defined by killing one
individual of (Y (t)) at each of the birth instants (σn) of (Z(t)) (see [2] and the references
therein for related models). Recall that (W(t)) is given by (2.2). The following results are key
to analyzing the two-chunk network of Section 5.

Proposition 3.4. Assume that µZ − ν > µW , and let H0 be the extinction time of (W(t)), i.e.

H0 = inf{t ≥ 0 : W(t) = 0}.
Then the random variable H0 is almost surely finite and

(i) Z(H0) − Z(0) ≤ eµW H0M∗
Y , where

M∗
Y = sup

t≥0
(e−µW tY (t)),

(ii) there exists a finite constant C such that, for any z ≥ 0 and w ≥ 1,

E(w,z)(H0) ≤ C(log(w) + 1). (3.5)

In (3.5) the subscript (w, z) refers to the initial state of the Markov process (W(t), Z(t)).
More generally, in the rest of the paper we use the convention that if (U(t)) is a Markov process
then the index u of Pu and Eu will refer to the initial condition of this Markov process.

Proof of Proposition 3.4. Define α = µZ − ν. Concerning the almost-sure finiteness of
H0, note that (2.2) entails that W(t) ≤ Y (t) − Bσ (t) for all t ≥ 0 on the event {H0 = +∞}.
As t goes to ∞, both exp(−µW t)Y (t) and exp(−αt)Bσ (t) converge almost surely to positive
and finite random variables (see [10]), which implies, when α = µZ − ν > µW , that W(t)

converges to −∞ on {H0 = +∞}, and so this event is necessarily of probability 0.
Point (i) of the proposition comes from identity (2.2) evaluated at t = H0:

Z(H0) − Z(0) ≤ Bσ (H0) ≤ Y (H0) ≤ eµW H0M∗
Y . (3.6)

By using the relation exp(x) ≥ x, (3.5) follows from the following bound: for any η <

η∗(ν/µZ) (recall that η∗ is given by (3.4)),

sup
w≥1, z≥0

[w−η E(w,z)(e
η(α−µW )H0)] < +∞. (3.7)

So all that is left to prove is this bound. Under P(w,z), (Y (t)) can be represented as the sum of w

independent and identically distributed (i.i.d.)Yule processes, and so M∗
Y ≤ M∗

Y,1 +· · ·+M∗
Y,w

with (M∗
Y,i) i.i.d. distributed like M∗

Y under P(1,z); inequality (3.6) then entails that

e(α−µW )H0 ≤
( w∑

i=1

M∗
Y,i

)
sup
t≥σ1

(
eαt

Bσ (t)

)
.

By the independence of (M∗
Y,i) and (Bσ (t)), Jensen’s inequality gives, for any η < 1,

E(w,z)(e
η(α−µW )H0) ≤ wη(E(M∗

Y,1))
η Ez

(
sup
t≥σ1

(eηαtBσ (t)−η)
)
;

hence, bound (3.7) follows from Proposition 3.3.
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We conclude this section with a Markov chain which will be used in Section 5. Define
recursively the sequence (Vn) by V0 = v and

Vn+1=
An(Vn)∑
k=1

In,k, n ≥ 0, (3.8)

where, for each n, (In,k, k ≥ 1) are identically distributed integer-valued random variables
independent of Vn and An(Vn), and such that E(In,1) = p for some p ∈ (0, 1). For v > 0,
An(v) is an independent random variable with the same distribution as Z(H0) under P(1,v),
i.e. with the initial condition (W(0), Z(0)) = (1, v).

Equation (3.8) can be interpreted as a branching process with immigration, see [16], or also
as an autoregressive model.

Proposition 3.5. Under the condition µZ − ν > µW , if (Vn) is the Markov chain defined
by (3.8) and, for K ≥ 0,

NK = inf{n ≥ 0 : Vn ≤ K},
then there exist γ > 0 and K ∈ N such that

E(NK | V0 = v) ≤ 1

γ
log(1 + v) for all v ≥ 0. (3.9)

The Markov chain (Vn) is in particular positive recurrent.

Proof. For V0 = v ∈ N, Jensen’s inequality and (3.8) give the relation

Ev log

(
1 + V1

1 + v

)
≤ E(1,v) log

[
1 + pZ(H0)

1 + v

]
. (3.10)

From Proposition 3.4 and by using the same notation, we obtain, under P(1,v),

Z(H0) ≤ v + eµW H0M∗
Y ,

where (Y (t)) is a Yule process starting with one individual. By looking at the birth instants of
(Z(t)), it is easily checked that the random variable H0 under P(1,v) is stochastically bounded by
H0 under P(1,0). It follows from the integrability of H0 under P(1,0) (proved in Proposition 3.4)
and of M∗

Y that the expression

log

(
1 + p(v + eµW H0M∗

Y )

1 + v

)
bounding the right-hand side of (3.10) is also an integrable random variable under P(1,0).
Lebesgue’s theorem therefore gives

lim sup
v→+∞

[
Ev log

(
1 + V1

1 + v

)]
≤ log p < 0.

Consequently, we conclude that v 	→ log(1 + v) is a Lyapunov function for the Markov chain
(Vn), i.e. if γ = −(log p)/2, there exists K such that, for v ≥ K ,

Ev log(1 + V1) − log(1 + v) ≤ −γ.

Foster’s criterion, see Theorem 8.6 of [14], implies that (Vn) is indeed ergodic and that (3.9)
holds.
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4. The single-chunk network

This section is devoted to the study of a class of two-dimensional Markov jump processes
(X0(t), X1(t)), with corresponding Q-matrix 	r given, for x = (x0, x1) ∈ N

2, by⎧⎪⎨
⎪⎩

	r [(x0, x1), (x0 + 1, x1)] = λ,

	r [(x0, x1), (x0 − 1, x1 + 1)] = µr(x0, x1)(x1 ∨ 1) 1{x0>0},
	r [(x0, x1), (x0, x1 − 1)] = νx1,

(4.1)

where x 	→ r(x), referred to as the rate function, is some fixed function on N
2 with values in

[0, 1].
From a modeling perspective, this Markov process describes the following system. Requests

for a single file arrive at rate λ, the first component X0(t) is the number of requests which did
not get the file, whereas the second component is the number of requests having the file and
acting as servers until they leave the file-sharing network. The constants µ and ν can be viewed
as the file transmission rate and the rate at which servers having the file leave, respectively.
The term r(x0, x1) describes the interaction of downloaders and uploaders in the system. The
term x1 ∨ 1 can be interpreted so that there is one permanent server in the network, which is
contacted if there are no other uploader nodes in the system. A related system where there is
always one permanent server for the file can be modeled by replacing the term x1 ∨1 by x1 +1.
See the remark at the end of this section.

Several related examples of this class of models have been recently investigated. The case

r(x0, x1) = x0

x0 + x1

was considered in [9] and [12]; in this case the downloading time of the file is neglected.
Susitaival et al. [18] analyzed the rate function r(x),

r(x0, x1) = 1 ∧
(

α
x0

x1

)
,

where α > 0 and a ∧ b denotes min(a, b) for a, b ∈ R. This model allows us to take into
account the fact that a request cannot be served by more than one server. See also [13].

With a slight abuse of notation, for 0 < δ ≤ 1, the matrix 	δ will refer to the case when the
function r is identically equal to δ. Note that the boundary condition x1 ∨1 for departures from
the first queue prevents the second coordinate from ending up in the absorbing state 0. Other
possibilities are discussed at the end of this section. In the following (Xr(t)) = (Xr

0(t), X
r
1(t))

and (Xδ(t)) = (Xδ
0(t), X

δ
1(t)) will denote Markov processes with Q-matrices 	r and 	δ ,

respectively.

4.1. Free process

For δ > 0, Qδ denotes the following Q-matrix:⎧⎪⎨
⎪⎩

Qδ[(y, z), (y + 1, z)] = λ,

Qδ[(y, z), (y − 1, z + 1)] = µδ(z ∨ 1),

Qδ[(y, z), (y, z − 1)] = νz.

(4.2)

The process (Y δ(t)) = (Y δ
0 (t), Y δ

1 (t)), referred to as the free process, will denote a Markov
process with Q-matrix Qδ . Note that the first coordinate (Y δ

0 (t)) may become negative. The
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second coordinate (Y δ
1 (t)) of the free process is the birth-and-death process with the same

distribution as the process (Z(t)) introduced in Section 3. It is easily checked that if ρδ defined
as δµ/ν is such that ρδ < 1 then (Y δ

1 (t)) is an ergodic Markov process converging in distribution
to Y δ

1 (∞) and

λ∗(δ) := ν E(Y δ
1 (∞)) = δµ E(Y δ

1 (∞) ∨ 1) = δµ

(1 − ρδ)(1 − log(1 − ρδ))
. (4.3)

When ρδ > 1, then the process (Y δ
1 (t)) converges almost surely and in expectation to ∞. In

the sequel, λ∗(1) is simply denoted as λ∗.
In the following it will be assumed, see condition (4.6) below, that the rate function r

converges to 1 as the first coordinate goes to ∞; as will be seen, the special case r ≡ 1 then
plays a special role, and so before analyzing the stability properties of (Xr(t)), we begin with an
informal discussion when the rate function r is identically equal to 1. Since the departure rate
from the system is proportional to the number of requests/servers in the second queue, a large
number of servers in the second queue gives a high departure rate, irrespectively of the state of
the first queue. The input rate of new requests being constant, the real bottleneck with respect to
stability is therefore when the first queue is large. The interaction of the two processes (X1

0(t))

and (X1
1(t)) is expressed through the indicator function of the set {X1

0(t) > 0}. The second
queue (X1

1(t)) locally behaves like the birth-and-death process (Y 1
1 (t)) as long as (X1

0(t)) is
away from 0. The two cases ρ1 > 1 and ρ1 < 1 are considered.

If ρ1 > 1, i.e. µ > ν, the process (X1
1(t)) is a transient process as long as the first coordinate

is nonzero. Consequently, departures from the second queue occur faster and faster. Since, on
the other hand, arrivals occur at a steady rate, departures eventually outpace arrivals. The fact
that the second queue grows when (X0(t)) is away from 0 stabilizes the system independently
of the value of λ, and so the system should be stable for any λ > 0.

If ρ1 < 1, and as long as (X0(t)) is away from 0, the coordinate (X1
1(t)) locally behaves like

the ergodic Markov process (Y 1
1 (t)). Hence, if (X1

0(t)) is nonzero for long enough, the requests
in the first queue see, on average, E(Y 1

1 (∞) ∨ 1) servers which work at rate µ. Therefore, the
stability condition for the first queue should be

λ < µ E(Y 1
1 (∞) ∨ 1) = λ∗,

where λ∗ = λ∗(1) is defined by (4.3). Otherwise, if λ > λ∗, the system should be unstable.

4.2. Transience and recurrence criteria for (Xr(t))

Proposition 4.1. (Coupling.) If Xr(0) = Y 1(0) ∈ N
2, there exists a coupling of the processes

(Xr(t)) and (Y 1(t)) such that the relations

Xr
0(t) ≥ Y 1

0 (t) and Xr
1(t) ≤ Y 1

1 (t) (4.4)

hold for all t ≥ 0 and any sample path.
For any 0 ≤ δ ≤ 1, if

τδ = inf{t ≥ 0 : r(Xr(t)) ≤ δ} and σ = inf{t ≥ 0 : Xr
0(t) = 0},

and if Xr(0) = Y δ(0) ∈ N
2, then there exists a coupling of the processes (Xr(t)) and (Y δ(t))

such that, for any sample path, the relations

Xr
0(t) ≤ Y δ

0 (t) and Xr
1(t) ≥ Y δ

1 (t) (4.5)

hold for all t ≤ τδ ∧ σ .
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Proof. Let Xr(0) = (x0, x1) and Y 1(0) = (y, z) be such that x0 ≥ y and x1 ≤ z. We have
to prove that the processes (Xr(t)) and (Y 1(t)) can be constructed such that (4.4) holds at the
time of the next jump of one of them. See [8] for the existence of couplings using analytical
techniques.

The arrival rates in the first queue are the same for both processes. If x1 < z, a departure
from the second queue for (Y 1(t)) or (Xr(t)) preserves the order relation (4.4), and if x1 = z,
this departure occurs at the same rate for both processes and, thus, the corresponding instant can
be chosen at the same (exponential) time. For the departures from the first to the second queue,
the departure rate for (Xr(t)) is µr(x0, x1)(x1 ∨ 1) 1{x0>0} ≤ µ(z ∨ 1), which is the departure
rate for (Y 1(t)); hence, the corresponding departure instants can be taken in the reverse order
so that (4.4) also holds at the next jump instant. The first part of the proposition is proved.

The rest of the proof is done in a similar way. The initial states Xr(0) = (x0, x1) and
Y δ(0) = (y, z) are such that x0 ≤ y and x1 ≥ z. With the killing of the processes at time τδ ∧σ

we can assume additionally that x0 �= 0 and that the relation r(x0, x1) ≥ δ holds. Under these
assumptions, we can check by inspecting the next transition that (4.5) holds. The proposition
is proved.

Proposition 4.2. Under the condition µ < ν, the relation

lim inf
t→+∞

Xr
0(t)

t
≥ λ − λ∗

holds almost surely. In particular, if µ < ν and λ > λ∗, then the process (Xr(t)) is transient.

Proof. By Proposition 4.1 we can assume that there exists a version of (Y 1(t)) such that
Xr

0(0) = Y 1
0 (0) and that the relation Xr

0(t) ≥ Y 1
0 (t) holds for any t ≥ 0. From definition (4.2)

of the Q-matrix of (Y 1(t)), we have, for t ≥ 0,

Y 1
0 (t) = Y 1

0 (0) + Nλ(t) − A(t),

where (Nλ(t)) is a Poisson process with parameter λ and (A(t)) is the number of arrivals (jumps
of size 1) for the second coordinate (Y 1

1 (t)): in particular,

E(A(t)) = µ E

(∫ t

0
Y 1

1 (s) ∨ 1 ds

)
.

Since (Y 1
1 (t)) is an ergodic Markov process under the condition µ < ν, the ergodic theorem in

this setting gives

lim
t→+∞

1

t
A(t) = lim

t→+∞
1

t
E(A(t)) = µ E(Y 1

1 (∞) ∨ 1) = λ∗,

by (4.3); hence, (Y 1
0 (t)/t) converges almost surely to λ − λ∗. The proposition is proved.

The next result establishes the ergodicity result of this section.

Proposition 4.3. If the rate function r is such that, for any x1 ∈ N,

lim
x0→+∞ r(x0, x1) = 1, (4.6)

and if µ ≥ ν, or if µ < ν and λ < λ∗ with

λ∗ = µ

(1 − ρ)(1 − log(1 − ρ))
,

and ρ = µ/ν, then (Xr(t)) is an ergodic Markov process.
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Note that condition (4.6) is satisfied for the functions r considered in the models of Núñez-
Queija and Prabhu [12] and Susitaival et al. [18]. See above.

Proof of Proposition 4.3. If x = (x0, x1) ∈ R
2, |x| denotes the norm of x, |x| = |x0|+ |x1|.

The proof uses Foster’s criterion as stated in [14, Theorem 9.7]. If there exist constants K0,
K1, t0, and t1 such that

sup
x1≥K1

E(x0,x1)(|Xr(t1)| − |x|) < 0, (4.7)

sup
x1<K1,x2≥K2

E(x0,x1)(|Xr(t0)| − |x|) < 0, (4.8)

then the Markov process (Xr(t)) is ergodic.
Relation (4.7) is straightforward to establish: if x1 ≥ K1, we obtain, by considering only

K1 of the x1 initial servers in the second queue and the Poisson arrivals,

E(x0,x1)(|Xr(1)| − |x|) ≤ λ − K1(1 − e−ν);
hence, it is enough to take t1 = 1 and K1 = (λ + 1)/(1 − e−ν) to establish relation (4.7).

Now we establish inequality (4.8). Let τδ and σ be the stopping times introduced in
Proposition 4.1. We first prove an intermediate result: for any t > 0 and any x1 ∈ N,

lim
x0→+∞ P(x0,x1)(σ ∧ τδ ≤ t) = 0. (4.9)

Fix x1 ∈ N and t ≥ 0. For ε > 0, there exists D1 such that

Px1

(
sup

0≤s≤t

Y 1
1 (s) ≥ D1

)
≤ ε;

from Proposition 4.1, this gives the relation valid for all x0 ≥ 0:

P(x0,x1)

(
sup

0≤s≤t

Xr
1(s) ≥ D1

)
≤ ε.

By condition (4.6), there exists γ ≥ 0 (that depends on x1) such that r(x0, x1) ≥ δ when
x0 ≥ γ . As long as (Xr(t)) stays in the subset {(y0, y1) : y1 ≤ D1}, the transition rates of the
first component (Xr

0(t)) are uniformly bounded. Consequently, there exists K such that, for
x0 ≥ K ,

P(x0,x1)

(
sup
s≤t

Xr
0(s) ≤ γ, sup

s≤t
Xr

1(s) ≤ D1

)
≤ ε.

Relation (4.9) follows from the last two inequalities and the identity

P(x0,x1)(σ ∧ τδ ≤ t) ≤ P(x0,x1)

(
sup
s≤t

Xr
0(s) ≤ γ

)
.

We return to the proof of inequality (4.8). By definition of the Q-matrix of the process
(Xr(t)),

E(x0,x1)(|Xr(t |) − |x|) = λt − ν

∫ t

0
E(x0,x1)(X

r
1(u)) du, x ∈ N

2, t ≥ 0.
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For any x ∈ N
2, there exists a version of (Y δ(t)) with initial condition Y δ(0) = Xr(0) = x,

and such that relation (4.5) holds for t < τδ ∧ σ ; in particular,

Ex(X
r
1(t)) ≥ Ex(X

r
1(t); t < τδ ∧ σ)

≥ Ex(Y
δ
1 (t); t < τδ ∧ σ)

= Ex(Y
δ
1 (t)) − Ex(Y

δ
1 (t); t ≥ τδ ∧ σ).

The Cauchy–Schwarz inequality shows that, for any t ≥ 0 and x ∈ N
2,∫ t

0
Ex(Y

δ
1 (u); τδ ∧ σ ≤ u) du ≤

∫ t

0

√
Ex((Y

δ
1 (u))2)

√
Px(τδ ∧ σ ≤ u) du

≤ √
Px(τδ ∧ σ ≤ t)

∫ t

0

√
Ex((Y

δ
1 (u))2) du.

By gathering these inequalities, and by using the fact that the process (Y δ
1 (t)) depends only on

x1 and not x0, we finally obtain the relation

1

t
Ex(|X(t)| − |x|) ≤ λ − ν

t

∫ t

0
Ex1(Y

δ
1 (u)) du + c(x1, t)

√
Px(τδ ∧ σ ≤ t) (4.10)

with

c(x1, t) = ν

t

∫ t

0

√
Ex1((Y

δ
1 (u))2) du.

Two cases are considered.

(i) If µ > ν, and if δ < 1 is such that δµ > ν, the process (Y δ
1 (t)) is transient, so that

lim
t→+∞

1

t

∫ t

0
Ex1(Y

δ
1 (u)) du = +∞

for each x1 ≥ 0.

(ii) If µ < ν, we take δ = 1, or if µ = ν, we take δ < 1 close enough to 1 so that λ < λ∗(δ).
In both cases, λ < λ∗(δ) and the process (Y δ

1 (t)) converges in distribution; hence,

lim
t→+∞

ν

t

∫ t

0
Ex1(Y

δ
1 (u)) du = ν E(Y δ

1 (∞)) = λ∗(δ) > λ

for each x1 ≥ 0.

Consequently, in both cases, there exist constants η > 0, δ < 1, and t0 > 0 such that, for any
x1 ≤ K1,

λ − ν

t0

∫ t0

0
Ex1(Y

δ
1 (u)) du ≤ −η. (4.11)

With relation (4.10), we find that if x1 ≤ K1 then

1

t0
Ex(|X(t0)| − |x|) ≤ −η + c∗√Px(τδ ∧ σ ≤ t0),

where c∗ = max(c(n, t0), 0 ≤ n ≤ K1). By identity (4.9), there exists K0 such that, for all
x0 ≥ K0 and x1 ≤ K1, the relation

c∗√P(x0,x1)(τδ ∧ σ ≤ t0) ≤ η

2
holds. This relation and inequalities (4.10) and (4.11) give inequality (4.8). The proposition is
proved.
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4.3. Another boundary condition

The boundary condition x1 ∨ 1 in the transition rates of (X(t)), (4.1), prevents the second
coordinate from ending up in the absorbing state 0. It amounts to supposing that a permanent
server gets activated when no node may offer the file. Another way to avoid this absorbing
state is to suppose that a permanent node is always active, which gives transition rates with
x1 + 1 instead. This choice was, for instance, made in [12]. All our results apply for this other
boundary condition: the only difference is that, when ν > µ, the value of the threshold λ∗
in (4.3) is given by the quantity λ∗ = µν/(ν − µ).

5. The two-chunk network

In this section it is assumed that a file of two chunks is distributed by the file-sharing system
corresponding to Figure 1. Chunks are delivered in sequential order. The analysis of this simple
file-sharing system gives a hint of the difficulties one can encounter when dealing with multiple
chunks, in particular with nodes distributing and receiving chunks.

For k = 0, 1 and t ≥ 0, the variable Xk(t) denotes the number of requests downloading
the (k+1)th chunk; for k = 2, X2(t) is the number of requests having all the chunks. When
taking into account the boundaries in the transition rates described in Figure 1, we obtain the
following Q-matrix for the three-dimensional Markov process (X(t)) = (Xk(t), k = 0, 1, 2):

Q(f )(x) = λ[f (x + e0) − f (x)] + µ1(x1 ∨ 1)[f (x + e1 − e0) − f (x)] 1{x0>0}
+ µ2(x2 ∨ 1)[f (x + e2 − e1) − f (x)] 1{x1>0} +νx2[f (x − e2) − f (x)],

where x ∈ N
3, f : N

3 → R+ is a function and, for 0 ≤ k ≤ 2, ek ∈ N
3 is the kth unit vector.

Note that, as before, to avoid absorbing states, it is assumed that there is a server for the kth
chunk when xk = 0.

The stability behavior of (X(t)) depends on the values of the parameters µ1, µ2, and ν.
Three cases need to be distinguished: (i) µ1 > µ2 − ν > 0, (ii) µ2 − ν > µ1, and (iii) µ2 < ν.
In each case, the method of proof is similar to the one used in the proof of Proposition 4.3 and
relies on Foster’s criterion, as stated in [14, Theorem 9.7]. We investigate the case when the
size x0 + x1 + x2 of the initial state X(0) = x = (x0, x1, x2) is large. We briefly discuss the
three situations which will be analyzed in the following.

(i) If x2 is large then the total number of customers decreases instantaneously.

(ii) If x1 is large and x2 is small, then the last queue (X2(t)) behaves like the birth-and-death
process (Z(t)) of Section 3, which is transient if µ2 > ν and stable otherwise.

(iii) If x0 is large, and x1 and x2 are small, the two last queues (X1(t), X2(t)) behave like the
system (XS(t)) = (XS

1 (t), XS
2 (t)), defined by its generator

QS(f )(z) = µ1(z1 ∨ 1)[f (z + e1) − f (z)]
+ µ2(z2 ∨ 1)[f (z + e2 − e1) − f (z)] 1{z1>0} +νz2[f (z − e2) − f (z)],

where z ∈ N
2 and f : N

2 → R+ is an arbitrary function.

Since (XS(t)) corresponds to the two last queues when the first queue is saturated, we call it
the saturated system: it plays a crucial role in the stability of (X(t)), in particular the asymptotic
behavior of E(XS

2 (t)) determines the output of the system when the first queue is saturated.
The properties of (XS(t)) that will be needed are gathered in the next proposition.
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Proposition 5.1. (Saturated system.) Let x ∈ N
2.

(i) If µ1 > µ2 − ν > 0 then Ex(X
S
2 (t)) → +∞ as t → +∞.

(ii) If µ2 − ν > µ1 then (XS(t)) is positive recurrent.

(iii) If ν > µ2 then ν Ex(X
S
2 (t)) → λ∗ as t → +∞, with λ∗ given by

λ∗ = µ2

(1 − µ2/ν)(1 − log(1 − µ2/ν))
. (5.1)

Proof. The crucial observation is that as long as XS
1 (t) > 0, the process (XS(t)) can be

coupled with the process (W(t), Z(t)) of the last part of Section 3, i.e. (XS
2 (t)) behaves like

a birth-and-death process and (XS
1 (t)) is a Yule process with particles killed at the instants of

birth of (XS
2 (t)).

More formally, in the sequel let (Z(t)) be the process with Q-matrix defined by relation (3.1)
with µZ = µ2, and define (σn) to be its sequence of birth times. Let (W(t)) be a Yule process
with parameter µ1 killed at (σn). Then (XS(t)) and (W(t), Z(t)) can be coupled so that

(XS
1 (t), XS

2 (t), 0 ≤ t ≤ T ) = (W(t), Z(t), 0 ≤ t ≤ T )

with T = inf{t ≥ 0 : XS
1 (t) = 0}. We give a full proof of the two first cases; the last case uses

similar techniques and so we leave the details to the reader.
Proof of case (i). Since µ2 > ν, the process (e−(µ2−ν)tZ(t)) converges almost surely to a

finite and positive random variable MZ(∞) by Corollary 3.2. Moreover, since µ1 > µ2−ν > 0,
Corollary 3.1 entails that ∑

n≥1

e−µ1σn < +∞ almost surely.

By Proposition 2.1, this shows that (W(t)) survives with positive probability. In this event,
say E , it holds that W(t) ≥ 1 at all times and limt→+∞ Z(t) = +∞. In the event E , W(t) ≥ 1
and, therefore, (XS

1 (t), XS
2 (t)) = (W(t), Z(t)); in particular, we have exhibited an event of

positive probability where XS
2 (t) → +∞, which proves the claim. Note that we implicitly

assumed that no coordinate of the initial state is 0, these cases being dealt with easily.
Proof of case (ii). This is the most delicate case. By Proposition 3.4 and since µ2 −ν > µ1,

(XS
1 (t)) returns infinitely often to 0. When (XS

1 (t)) is at 0, it jumps to 1 after an exponential time
with parameter µ1. We define the sequences (H0,n), (Eµ,n), and (Sn) by induction: S0 = 0 by
convention, and, for n ≥ 1,

Sn =
n∑

k=1

(H0,k + Eµ,k),

H0,n = inf{t ≥ Sn−1 : XS
1 (t) = 0}, and Eµ,n = inf{t ≥ Sn−1 + H0,n : XS

1 (t) = 1}.

The sequence (Eµ,n) represents the successive times at 0, (Sn) represents the times at which
(XS

1 (t)) hits 0, and (H0,n) represents the times needed for (XS
1 (t)) to hit 0. On the time intervals

[Sn, Sn + H0,n+1], (XS(t)) can be coupled with a version of (W(t), Z(t)). This shows that,
with the notation of Proposition 3.4, XS

2 (Sn) is equal in distribution to Z(H0) with the initial
condition (W(0), Z(0)) = (XS

1 (Sn−1), X
S
2 (Sn−1)). Then while XS

1 is at 0, the dynamics of XS
2
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are simple, since it just empties. These two remarks show that X2(Sn+1) is equal in distribution
to

(XS
2 (Sn+1) | XS(Sn) = x)

d=
(Z(H0)∑

i=1

1{Eν,i>Eµ1 }
∣∣∣∣ (W(0), Z(0)) = x

)
,

with (Eν,i) i.i.d., exponentially distributed with parameter ν, and independent of Eµ1 . For
i ≥ 1, Eν,i represents the residence time of the ith customer present in the second queue at
time Sn + H0,n+1.

Consequently, and since XS
1 (Sn) = 1 for n ≥ 1, (XS

2 (Sn), n ≥ 1) is a Markov chain whose
transitions are defined by relation (3.8) with p = ν/(ν + µ1); note that (XS

2 (Sn), n ≥ 0) has
the same dynamics only when XS

1 (0) = 1. In the sequel, define, for any K > 0, the stopping
TK :

TK = inf{n ≥ 0 : XS
2 (Sn) ≤ K, XS

1 (Sn) = 1}.
The ergodicity of (XS(t)) will follow from the finiteness of E(x1,x2)(TK) for some large
enough K and arbitrary x = (x1, x2) ∈ N

2; indeed, TK is greater than the time needed to
return to the finite set {x1, x2 : x1 = 1, x2 ≤ K}. The strong Markov property of (XS(t))

applied at time S1 gives

E(x1,x2)(TK) ≤ 2 E(x1,x2)(S1) + E(x1,x2)(E(1,XS
2 (S1))

(TK)),

and so we need to study only TK conditioned on {XS
1 (0) = 1} since E(x1,x2)(S1) is finite in view

of Proposition 3.4. Thus, we can assume that (XS
2 (Sn), n ≥ 0) is a time-homogeneous Markov

chain whose transitions are defined by relation (3.8), and, with NK defined in Proposition 3.5,
the identity

TK =
NK∑
i=1

(H0,i + Eµ1,i ) (5.2)

holds. For i ≥ 0, the Markov property of (XS
2 (Sn), n ≥ 0) gives, for any x2 ≥ 0,

E(1,x2)(H0,i 1{i≤NK }) = E(1,x2)(E(1,XS
2 (Si ))

(H0) 1{i≤NK }).

With the same argument as in the proof of Proposition 3.5, we have

E(1,XS
2 (Si ))

(H0) ≤ E(1,0)(H0) < +∞;

with (5.2) and (3.9) of Proposition 3.5, we obtain, for some γ > 0 and some K > 0,

E(x1,x2)(TK) ≤ 2 E(x1,x2)(S1) + C E(x1,x2)[log(1 + XS
2 (S1))],

where the constant C = (E(1,0)(H0)+1/µ2)/γ . This last term is finite for any (x1, x2) in view
of Proposition 3.4, which proves the proposition.

Sketch of the proof of case (iii). Since µ1 > 0 > µ2 − ν, Corollary 3.1 shows that∑
n≥1 e−µ1σn is finite almost surely, and Proposition 2.1 implies that (XS

1 (t)) survives with
positive probability. Using the fact that the process (Z(t)) is stable since µ2 < ν, together with
similar arguments as before, we can show that the process (XS

1 (t)) actually survives almost
surely. Thus, after some time (XS

2 (t)) can be coupled forever with (Z(t)), and λ∗ is precisely
the value of ν E(Z(∞)) in the stationary regime.
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Proposition 5.2. Let (X(t)) = (X0(t), X1(t), X2(t)) be the Markov process describing the
linear file-sharing network with parameters λ, µ1, µ2, and ν.

(i) If µ1 > µ2 − ν > 0 then (X(t)) is ergodic for any λ > 0.

(ii) If µ2 −ν > µ1, let λS be the value of the expectation of νXS
2 at equilibrium, which exists

by Proposition 5.1. Then (X(t)) is ergodic for λ < λS and transient for λ > λS .

(iii) If ν > µ2 then (X(t)) is ergodic for λ < λ∗ and transient for λ > λ∗, with λ∗ given
by (5.1).

In the second case, preliminary investigations seem to suggest that λS = +∞ is possible.
In such situations, the stability region would actually be infinite. The intuitive reason is that
(XS

2 (t)) grows exponentially fast in periods where XS
1 (t) > 0, and for a duration H0. Thus,

when (XS
1 (t)) hits 0, XS

2 (H0) ≈ e(µ2−ν)H0 , and although some exponential moments of H0 are
finite by (3.7), it seems plausible that E(e(µ2−ν)H0) = +∞ sometimes.

Proof of Proposition 5.2. In all three cases the proof relies on Foster’s criterion, as stated in
Theorem 9.7 of [14]. Let X(0) = x = (x0, x1, x2) ∈ N

3, and assume that ‖x‖ = x0 + x1 + x2
is large. First we inspect the case when x2 is large, which is common to all three cases.

Since the last queue serves each request at rate ν, for t ≥ 0,

Ex(‖X(t)‖) ≤ ‖x‖ + λt − x2(1 − e−νt ).

Define t2 = 1, and let K2 be such that λ − K2(1 − e−ν) ≤ −1. Then the relation

Ex(‖X(t2)‖) − ‖x‖ ≤ −1

holds when x2 ≥ K2 for all x0, x1 ≥ 0. In the sequel, the constants t2 and K2 are fixed, and
the process (Z(t)) is defined similarly as in the proof of Proposition 5.1. We give a full proof
of case (i); the other cases use similar techniques and so we leave the details to the reader.

Proof of case (i). Assume that µ1 > µ2 − ν > 0: in particular, (Z(t)) is transient; thus
there exists some t1 such that, for any x2 < K2,

ν

∫ t1

0
Ex2(Z(u)) du ≥ λt1 + 2.

The two processes (Z(t)) and (X(t)) can be built on the same probability space such that if
they start from the same initial state then the two processes (Z(t)) and (X2(t)) are identical
as long as X1(t) stays positive. Since, moreover, the hitting time inf{t ≥ 0 : X1(t) = 0} goes
to ∞ as x1 goes to ∞ for any x2 < K2, there exists K1 such that if x1 ≥ K1 and x2 < K2, then
the relation

Ex(‖X(t1)‖) − ‖x‖ = λt1 − ν

∫ t1

0
Ex(X2(u)) du

≤ λt1 −
(

ν

∫ t1

0
Ex2(Z(u)) du − 1

)
≤ −1

holds.
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In a similar way, by saturating the first queue and coupling the two last queues (X1(t), X2(t))

with the saturated system (XS(t)), we find in view of Proposition 5.1(i) that there exist constants
t0 and K0 such that if x2 < K2, x1 < K1, and x0 ≥ K0, then

Ex(‖X(t0)‖) − ‖x‖ ≤ −1,

which completes the proof of this case.
Sketch of the proof of case (ii). Since µ2 > ν, the process (Z(t)) is still transient and we

can choose the same constants, t1 and K1, as in the previous case to deal with the case x1 ≥ K1
and x2 < K2. When x0 ≥ K0, x1 < K1, and x2 < K2, then we can justify for large enough
K0 and t0 the approximation

Ex(‖X(t0)‖) − ‖x‖ ≈ λt0 − ν

∫ t0

0
E(x1,x2)(X

S
2 (u)) du ≈ (λ − λS)t0.

Hence, for λ < λS , the stability result follows. For λ > λS , this suggests that the first
coordinated (X0(t)) builds up, and similarly as in the proof of Proposition 4.2 we can show
that indeed in this case

lim inf
t→+∞

X0(t)

t
≥ λ − λS > 0 almost surely.

Sketch of the proof of case (iii). Since ν > µ2, the process (Z(t)) is stable, and it acts as
a bottleneck on the system. When x0 < K0 and x1 ≥ K1, then we can, as before, justify the
approximation, for large enough K1 and t1,

Ex(‖X(t1)‖) − ‖x‖ ≈ λt1 − ν

∫ t1

0
Ex2(Z(u)) du ≈ (λ − λ∗)t1.

Similarly, the third case of Proposition 5.1 shows that when x0 ≥ K0 and x1 < K1, x2 < K2,
again for large enough K0 and t0,

Ex(‖X(t0)‖) − ‖x‖ ≈ λt0 − ν

∫ t0

0
E(x1,x2)(X

S
2 (u)) du ≈ (λ − λ∗)t0.

This shows that the system is ergodic for λ < λ∗. Transience in the case λ > λ∗ follows easily
from the fact that the last queue (X2(t)) is stochastically dominated by (Z(t)); thus, λ∗ is the
maximal output rate of the system.

Appendix A. Proof of Proposition 3.3

Here the notation of Section 3 is used. Since the random variable (Bσ (t) | Z(0) = 0) is
stochastically smaller than (Bσ (t) | Z(0) = z) for any z ∈ N, it is enough to show that, for
η < η∗(ν/µZ),

E0

(
sup
t≥σ1

(eηαtBσ (t)−η)
)

< +∞,

where α = µZ − ν > 0.
Note that the process (Bσ (t + σ1), t ≥ 0) under P0 has the same distribution as (Bσ (t) + 1,

t ≥ 0) under P1, and by the independence of σ1, an exponentially random variable with
parameter µZ , and (Bσ (t + σ1), t ≥ 0), we obtain

E0

(
sup
t≥σ1

(eηαtBσ (t)−η)
)

= E0(e
ηασ1) E1

(
sup
t≥0

(eηαt (Bσ (t) + 1)−η)
)
.
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Since α < µZ and η∗(ν/µZ) < 1, then E0(eηασ1) is finite, and all we need to prove is that the
second term is finite as well.

Define τ as the last time Z(t) = 0:

τ = sup{t ≥ 0 : Z(t) = 0},
with the convention that τ = +∞ if (Z(t)) never returns to 0. Recall that, because of the
assumption that µZ > ν, with probability 1, the process (Z(t)) returns to 0 a finite number of
times.

Conditioned on the event {τ = +∞}, the process (Z(t)) is a (p, λ)-branching process
conditioned on survival, with λ = µZ+ν and p = µZ/λ. Such a branching process conditioned
on survival can be decomposed as Z = Z(1) + Y , where (Y (t)) is a Yule process (Y (t)) with
parameter α. See [3, Theorem 1, p. 48]. Consequently, for any 0 < η < 1,

E1

(
sup
t≥0

(eηαt (Bσ (t) + 1)−η)

∣∣∣ τ = +∞
)

≤ E1

(
sup
t≥0

(eηαtY (t)−η)
)
.

Since the nth split time tn of (Y (t)) is distributed like the maximum of n i.i.d. exponential
random variables, Y (t) for t ≥ 0 is geometrically distributed with parameter 1 − e−αt ; hence,

sup
t≥0

[
eηαt E1

(
1

Y (t)η

)]
= sup

t≥0

[
e−(1−η)αt

∑
k≥1

(1 − e−αt )k−1

kη

]

≤ sup
0≤u≤1

[
(1 − u)1−η

∑
k≥1

uk−1

kη

]
.

For 0 < u < 1, the relation

(1 − u)1−η
∑
k≥1

uk−1

kη
≤ (1 − u)1−η

∫ ∞

0

ux

(1 + x)η
dx

=
(

1 − u

− log u

)1−η ∫ ∞

0

e−x

(x − log u)η
dx,

holds; hence,

sup
t≥0

[
eηαt E1

(
1

Y (t)η

)]
< +∞.

The process (e−αtY (t)) being a martingale, by convexity, the process (eηαtY (t)−η) is a non-
negative submartingale. For any η ∈ (0, 1), Doob’s Lp inequality gives the existence of a finite
q(η) > 0 such that

E1

(
sup
t≥0

(eηαtY (t)−η)
)

≤ q(η) sup
t≥0

[
eηαt E1

(
1

Y (t)η

)]
< +∞.

The following result has therefore been proved.

Lemma A.1. For any 0 < η < 1,

E1

[
sup
t≥0

(eηαt (Bσ (t) + 1)−η)

∣∣∣ τ = +∞
]

< +∞.
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On the event {τ < +∞}, (Z(t)) hits 0 a geometric number of times and then couples with
a (p, λ)-branching process conditioned on survival. On this event,

sup
t≥0

(eηαt (Bσ (t) + 1)−η) = max
(

sup
0≤t≤τ

(eηαt (Bσ (t) + 1)−η), sup
t≥τ

(eηαt (Bσ (t) + 1)−η)
)

≤ eηατ
(

1 + sup
t≥0

(eηαt (B ′
σ (t) + 1)−η)

)
,

where B ′
σ (t) for t ≥ τ is the number of births in (τ, t] of a (p, λ)-branching process conditioned

on survival and independent of the variable τ ; consequently,

E1

(
sup
t≥0

(eηαt (Bσ (t) + 1)−η)

∣∣∣ τ < +∞
)

≤ E1(e
ηατ | τ < +∞)

(
1 + E1

(
sup
t≥0

(eηαt (Bσ (t) + 1)−η)

∣∣∣ τ = +∞
))

.

In view of Lemma A.1, the proof of Proposition 3.3 will be complete if we can prove that

E1(e
ηατ | τ < +∞) < +∞,

which actually comes from the following decomposition: under P1(· | τ < +∞), the random
variable τ can be written as

τ =
1+G∑
k=1

(Tk + EµZ,k),

where G is a geometric random variable with parameter q = ν/µZ , (Tk) is an i.i.d. sequence
with the same distribution as the extinction time of a (p, λ)-branching process starting with one
particle and conditioned on extinction, and the (EµZ,k) are i.i.d. exponential random variables
with parameter µZ .

Since q is the probability of extinction of a (p, λ)-branching process started with one particle,
G + 1 represents the number of times (Z(t)) hits 0 before going to ∞. This representation
entails

E1(e
ηατ | τ < +∞) = E(γ (η)G+1), where γ (η) = E(eηα(T1+EµZ,1)).

A (p, λ)-branching process conditioned on extinction is actually a (1 − p, λ)-branching
process. See again [3, Theorem 3, p. 52]. Thus, T1 satisfies the following recursive distributional
equation:

T1
d= Eλ + 1{ξ=2}(T1 ∨ T2),

where P(ξ = 2) = 1 − p and Eλ is an exponential random variable with parameter λ. This
equation yields

P(T1 ≥ t) ≤ e−λt + 2λ(1 − p)

∫ t

0
P(T1 ≥ t − u)e−λu du,

and Gronwall’s lemma applied to the function t 	→ eλt P(T1 ≥ t) gives

P(T1 ≥ t) ≤ e(λ−2λp)t = e(ν−µZ)t ;
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hence, for any 0 < η < 1,

E1(e
ηαT1) ≤ 1

1 − η
.

Since G is a geometric random variable with parameter q, E(γ (η)G) is finite if and only if
γ (η) < q. Since, finally,

γ (η) = µZ

µZ − ηα
E(eηαT1) ≤ µZ

(1 − η)(µZ − ηα)
,

we can easily check that γ (η) < q for η < η∗(ν/µZ) as defined by (3.4), which concludes the
proof of Proposition 3.3.
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