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Monoidal Categories, 2-Traces, and Cyclic
Cohomology

Mohammad Hassanzadeh, Masoud Khalkhali, and Ilya Shapiro

Abstract. In this paper we show that to a unital associative algebra object (resp. co-unital co-
associative co-algebra object) of any abelian monoidal category (C,⊗) endowed with a symmet-
ric 2-trace, i.e., an F ∈ Fun(C, Vec) satisfying some natural trace-like conditions, one can attach
a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra
“with coeõcients in F”. Furthermore, we observe that ifM is aC-bimodule category and (F ,M) is
a stable central pair, i.e., F ∈ Fun(M, Vec) andM ∈M satisfy certain conditions, thenC acquires a
symmetric 2-trace. _e dual notions of symmetric 2-contratraces and stable central contrapairs are
derived as well. As an application we can recover all Hopf cyclic type (co)homology theories.

1 Introduction

One of the major advances in cyclic cohomology theory in recent years was the intro-
duction of a new cohomology theory for Hopf algebras by Connes and Moscovici
[CM1, CM2], and its extension to a cohomology theory for (co)algebras endowed
with an action or coaction of a Hopf algebra and with coeõcients in a local sys-
tem [HKRS1, HKRS2]. In their original one dimensional case, these local systems
are called modular pairs in involution (MPI) in [CM1, CM2], and stable anti-Yetter–
Drinfeld modules (SAYD) in the general case in [HKRS1,HKRS2]. _ey are closely re-
lated to, and in a sense they are a mirror image of, the Yetter–Drinfeld modules over a
Hopf algebra. _e latter play an important role in the theory of quantum groups and
its applications in low dimensional topology [Y]. Beyond Hopf algebras, one o�en
encounters interesting algebraic objects, for example, quasi Hopf algebras and weak
Hopf algebras, that only possess some of the axioms of Hopf algebras. Developing a
Hopf cyclic theory for these Hopf-like objects is an interesting problem. _e point is
that unless one reaches to a totally new deûnition of Hopf cyclic cohomology, it is not
clear how one can deûne a Hopf cyclic theory for these new objects. We believe that
this paper provides at least one solution to this problem.

We ûnd that the language ofmonoidal categories is a suitable framework to discuss
this question and in fact to formulate our answer. _e key point, for us, of the cat-
egorical machinery is the notion of a categorical trace. More precisely, in this paper
we use the notion of a symmetric 2-trace for an abelian monoidal category to show
that in a monoidal category endowed with such a trace one can attach a cyclic mod-
ule to any unital associative algebra object. We also introduce the notion of stable
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central pair in a monoidal category, which gives a practical way of obtaining a sym-
metric 2-trace. We should mention that despite the “symmetric” in the name, there is
no symmetric group action in the background, rather “cyclic” trace would have been
more appropriate from that point of view. We chose symmetric to mirror the braided
versus symmetric in the monoidal categories terminology.
Admittedly, the categoriûcation of the notion of trace is not a novel idea and has

been around for many decades. In [DP] the categorical deûnition of ordinary traces
of square matrices are used for endomorphisms of a dualizable object in a symmet-
ric monoidal category. In the derived category of a ring, traces are called Lefschetz
numbers. Categorical traces are also used to study ûxed-point theory [P]. _e authors
in [JSV] showed that traces can be deûned for dualizable objects in a monoidal cat-
egory. On the other hand, if we think of a monoidal category as a bicategory with
one object, then the notion of trace that we want is similar to the generalized traces
of [PS]. _e authors in [FSS] found a relationship between the category-valued traces
and the twisted center of a monoidal category. In particular, we point to an equiva-
lent to our symmetric trace notion, called a trace functor, as deûned in [K1]. Even the
application of the trace to the deûnition of cyclic cohomology with coeõcients has
been done in [K1] (see also [K2]) and applied to the case of the monoidal category of
A-bimodules for A some unital associative algebra in vector spaces. _e trace functor
there sends a bimodule to its 0-th Hochschild homology. Our contribution in this pa-
per is to independently study an equivalent but more simply deûned notion of a trace
and to apply it to the Hopf algebra setting, which contains a much greater abundance
of these traces. We should also mention the appearance [BFO,HPT] of trace functors
for monoidal categories that take values in categories other than vector spaces.

Our notion of trace relies on that of a center. For a monoidal category C, let us
denote the center of a C-bimodule category M by ZCM. Let Vec be the category of
vector spaces over a given ûeld, and letM be aC-bimodule category. _en the functor
category Fun(M, Vec) is a C-bimodule category with canonical le� and right actions.
By a 2-trace on a monoidal category C we mean a functor F ∈ ZC Fun(C, Vec). We
also deûne a notion of symmetric 2-trace (Sect. 3.1). A good source of symmetric 2-
traces is found as follows. If F ∈ ZC Fun(M, Vec) and M ∈ ZC(M), then the pair
(F ,M) is called a stable central pair if it satisûes one additional mutual compatibility
condition given in Deûnition 3.11. We show that any such pair gives us a symmetric
2-trace.
As an example we see that the monoidal category HM of le� modules over a Hopf

algebraH can be endowedwith a stable central pair and therefore a symmetric 2-trace.
To construct this pair, we consider the C bimodule category #−1

H M, where the right
C-action is given by the monoidal tensor product and the le� action is twisted by S−2,
where S is the antipode of H, as we will explain in Section 2.2. _en if we start with a
central element M ∈ ZC(#−1

H M), and take F ∶= HomH(1,−) ∈ ZC Fun(#−1

H M, Vec), we
observe that (F ,M) is a stable central pair (provided that an extra stability condition
is satisûed). More interestingly, we prove that the elements of the center of the C-
bimodule category #−1

H M are nothing but the “duals” of the well-known anti Yetter–
Drinfeld modules over H. On the other hand, if we pursue a contravariant theory,
then the bimodule category of interest is #

HM, and we show that (F ,M) is a stable
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central contrapair if F ∶= HomH(−, 1), M is the usual anti Yetter–Drinfeld module,
and the stability condition is the usual one [HKRS1].

_e main result of this paper then states that given an abelian monoidal category
C, for any A ∈ Alg(C) and any symmetric 2-trace F∶C → Vec, we have a cyclic object
C●(A) = F(A⊗●+1) in Vec. In Section 4 we show that all examples of Hopf cyclic
cohomology are covered by this result.

_e technical aspects of this paper would have been much more involved and
would have required much delicacy, had the notions of bimodule categories and their
centers not been already extensively studied. In particular, as we realized, the cen-
ter of a certain bimodule category of the monoidal category of (le�) modules over a
Hopf algebra (sometimes called the twisted center of themonoidal category) provides
the suitable coeõcients for Hopf cyclic cohomology. _ese coeõcients were already
known, called (stable) anti Yetter–Drinfeld modules [HKRS1], but were deûned much
less conceptually. We use these (or dual) central elements to form a suitable categori-
cal trace to deûne the desired homological objects.

We recall that the center of a monoidal category has been studied for diòerent rea-
sons. It is known that the elements of the center of the monoidal category of modules
over a Hopf algebra, a weak Hopf algebra, and a quasi Hopf algebra are in fact the
Yetter–Drinfeld modules that are the solutions of the quantum Yang–Baxter equa-
tions. If we consider this monoidal category as a bimodule category over itself by the
le� and right actions given by the monoidal tensor product, then the Yetter–Drinfeld
modules do indeed form the center of this bimodule category.

_e realization of anti Yetter–Drinfeld modules and contramodules as centers of
appropriate bimodule categories allows one to generalize the cyclic cohomology co-
eõcients to other settings. _e power of this approach becomes evident already in
the quasi-Hopf setting (contained in the upcoming paper [KS1]) where unpacking
the conceptual deûnitions into formulas results in expressions that are nightmarish
in their complexity. One can already witness a small preview of this phenomenon in
[M2] where the simple notion of a center of a category of modules over a quasi-Hopf
algebra is unpacked into a quasi analogue of the notion of the Yetter–Drinfeld mod-
ule. In fact, [KS1,KS2] can be viewed as the end of the line of the formulaic approach
to cyclic cohomology as the formulas become unwieldy to the point of uselessness,
while the categorical approach remains valid and manageable.

One notes that the language of monoidal categories is fundamental to the study of
Hopf-like objects. More precisely, for such an object, the category of le�modules over
it is a monoidal category. O�en the axioms that specify the type of the Hopf-like ob-
ject are themselves dictated by exactly this requirement. _ere are a greatmany results
about recovering the original Hopf-like object from its associated monoidal category
provided that some extra structure (a variation on the ûber functor theme) is pro-
vided. _is explains the important relation between monoidal categories and Hopf
algebras. _ere are also other categorical approaches to cyclic homology [BS, KP].
We observe that our categorical machinery can be applied to the monoidal categories
associated with interesting Hopf-like objects such as weak Hopf algebras, Hopf alge-
broids, quasi-Hopf algebras, and Hopûsh algebras to obtain homological construc-
tions such as cyclic homology.
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_e ideas in this paper have already been extended and modiûed to state and
prove higher Morita invariance results in [Sh1]. Similarly, the relationship between
anti Yetter–Drinfeld modules and contramodules has been investigated in [Sh2]. An
exciting connection between anti Yetter–Drinfeld modules and TFTs can now be un-
derstood in light of this paper and [DSPS]. More precisely, the twice categoriûed
1-dimensional ûeld theory associated with a tensor category seems to yield precisely
the structures involved in the category of coeõcients for cyclic cohomology theories.
Namely, in the case of a Hopf algebra H, considering its category of modules as the
tensor category above, we obtain anti Yetter–Drinfeld modules as the value of the
theory on the circle. Furthermore, the map m ↦ m⟨1⟩m⟨0⟩ that determines stability
is nothing but the natural automorphism of the identity endofunctor of anti Yetter–
Drinfeld modules obtained from the 2-dimensional homotopy class in BDiò(S1). Of
course all of these considerations are applicable to any tensor category obtained from
a suitable Hopf-like object.

1.1 Motivation

_eauthors in [HKRS1] introducedHopf cyclic cohomologywith coeõcients for four
types of symmetries. In the case of a H-module coalgebra C, for a right-le� stable
anti Yetter–Drinfeld module (SAYD) over H, they assign a cocyclic module structure
to Cn = HomH(k,M ⊗ C⊗n+1). _is theory generalizes Connes-Moscovici’s Hopf
cyclic cohomology theory [CM1]. In the case of a H-module algebra A, and also for
a right-le� stable anti Yetter–Drinfeld module (SAYD) over H, they assign a cocyclic
module structure to Cn = HomH(M ⊗ A⊗n+1 , k). _e comodule part of the anti-
Yetter–Drinfeld (AYD)module structure appears in the cyclic map τ. _emysterious
AYD structure has not been conceptually well-understood in the literature, although
it is known that this structure is obtained by replacing the antipode S by S−1 in the
deûnition of a Yetter–Drinfeld (YD) module. On the other hand, the YD modules
are well-understood as they form the center of the monoidal category of H-modules,
HM. Not only was the categorical meaning of AYDmodules not understood, but also
it was not clear why such amysterious structure is needed to obtain a cocyclic module
and therefore cyclic cohomology.

1.1.1 Contravariant Cohomology Theory

To answer this question, one can start from scratch and try to deûne the cyclic map
τ on Cn = HomH(M ⊗ A⊗n+1 , k) directly. _is is the only signiûcant addition to the
already apparent cosimplicial structure (in the case that A is an algebra, unital and
associative of course). More precisely, we need to slide the ûrst copy of A past M and
then to the back. To understand the idea better let us consider a special case when the
monoidal category is rigid, such is the category of ûnite dimensional le�modules over
a Hopf algebra H. Later we will see that the ûniteness assumption can be removed.
Using the standard adjunction properties of rigidity, for any V ,W ∈ HM, we have

HomH(V ⊗W , 1) ≃ HomH(V , 1⊗W∗)
≃ HomH(V ,W∗ ⊗ 1) ≃ HomH(W∗∗ ⊗ V , 1).
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_us, for an M ∈ HM and an algebra object A (though the algebra structure plays
no role at this stage) in HM, we obtain

(1.1) HomH(M ⊗ A⊗n+1 , 1) ≃ HomH(A∗∗ ⊗M ⊗ A⊗n , 1).
If we have an extra condition on M, namely that

(1.2) A∗∗ ⊗M ≃ M ⊗ A,
then we obtain the desired τ, i.e.,

τn ∶ HomH(M ⊗ A⊗n+1 , 1) ≃ HomH(A∗∗ ⊗M ⊗ A⊗n , 1) ≃ HomH(M ⊗ A⊗n ⊗ A, 1),
where we ûrst use (1.2), followed by the inverse of (1.1). _is suggests that for a rigid
monoidal category C

AYD(C) = {M ∈ C∶A∗∗ ⊗M
∼Ð→ M ⊗ A, ∀A ∈ C},

with some compatibility conditions.
Knowing that YD modules form the center of the monoidal category, i.e., YD =

Z(C), we see that AYD is to YD as A∗∗ ⊗ M
∼Ð→ M ⊗ A is to A ⊗ M

∼Ð→ M ⊗ A.
_e stability condition in the case of the usual stable anti Yetter–Drinfeld modules
ensures that τn+1

n = Id . To obtain the same conclusion in our general case leads us to
the requirement that the single cyclic map τ0 be the identity. In summary, from the
above considerations, we guess that whereas YD = Z(HM f d) (center of a monoidal
category), AYD = Z(∗∗H M f d) (center of a bimodule category) where ∗∗H M f d is simply
HM f d with the le� actionmodiûed by (−)∗∗. _is guess turns out to be correct. Note
that both τn and AYD(C) = ZC(∗∗C) make sense for any rigid category.

1.1.2 Covariant Cohomology Theory

If instead we consider Cn = HomH(k,M ⊗ C⊗n+1) and try to deûne τ directly, we
need to slide the ûrst copy of C past M and then to the back. Again let us consider the
ûnite dimensional le�modules over a Hopf algebraH. Using the standard adjunction
properties of rigidity, for any V ,W ∈ HM, we have:

HomH(1,V ⊗W) ≃ HomH(1⊗∗W ,V) ≃ HomH(∗W⊗ 1,V) ≃ HomH(1, ∗∗W⊗V).
_us, for an M ∈ HM and a coalgebra object C (though the coalgebra structure

plays no role at this stage) in HM, we obtain

(1.3) HomH(1,M ⊗ C⊗n+1) ≃ HomH(1, ∗∗C ⊗M ⊗ C⊗n).
If we have an extra condition on M, namely that

(1.4) ∗∗C ⊗M ≃ M ⊗ C ,
then we obtain the desired τ, i.e.,

τn ∶ HomH(1,M ⊗ C⊗n+1) ≃ HomH(1, ∗∗C ⊗M ⊗ C⊗n) ≃ HomH(1,M ⊗ C⊗n ⊗ C),
where we ûrst use the inverse of (1.4) followed by the inverse of (1.3). _is suggests
that for a rigid monoidal category C, we also need

YD1(C) = {M ∈ C∶ ∗∗C ⊗M
∼Ð→ M ⊗ C , ∀C ∈ C},
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with some compatibility conditions, to serve as coeõcients. Note that YD1 is not the
same as AYD; it is “dual” to it.

2 Preliminaries

Here we collect some background material that should facilitate the reading of this
paper. _e content of Sections 2.2 and 2.3 is new. _e discussion involving Yetter–
Drinfeld modules, anti-Yetter–Drinfeld modules, and their generalizations contained
in Section 2.2 is especially important. _e conceptual reinterpretation of these objects
and their associated complicated formulas was one of the motivations for this paper.

2.1 (Co)cyclic Modules

_e main goal of this paper is to introduce a suitable categorical language to unify
diòerent notions of cyclic homology under a single theory. _erefore, we need to
recall the deûnitions of cyclic and cocyclic modules from [Co] and [Lo].

Recall that the simplicial category ∆ has as its objects non-negative integers consid-
ered as totally ordered sets [n] = {0, 1, . . . , n}, and its morphisms are non-decreasing
functions [n] → [m]. A simplicial module is a contravariant functor from ∆ to Vec.
Similarly, a cosimplicial module is a covariant functor. By keeping the same objects
and adding cyclic permutations, we obtain Connes cyclic categoryC. A cyclicmodule
is again a contravariant functor from C to Vec, while a cocyclic module is a covariant
one.

More explicitly, a cosimplicial module is given by the data (Cn , δ i , σi), where {Cn},
n ≥ 0 is a sequence of vector spaces over the ûeld k. _e maps δ i ∶Cn → Cn+1 are
called cofaces, and σi ∶Cn → Cn−1 are called codegeneracies. _ese are k-linear maps
satisfying the following cosimplicial relations:

δ jδ i = δ iδ j−1 , i < j,
σ jσi = σiσ j+1 , i ≤ j,

σ jδ i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ iσ j−1 , i < j
Id, i = j or i = j + 1,
δ i−1σ j , i > j + 1.

A cocyclic module is a cosimplicial module equipped with the extra morphisms
τn ∶Cn → Cn , called cocyclic maps such that the following relations hold:

τnδ i = δ i−1τn−1 , 1 ≤ i ≤ n, τnσi = σi−1τn+1 , 1 ≤ i ≤ n,

τnδ0 = δn , τn+1
n = Id .

In a dual manner, one can deûne a cyclic module as a simplicial module with extra
cyclic maps. One notes that the relation σ0τn = τ2

n+1σn that is usually listed along with
the above is an extra relation [Lo, section 5.2] that can be obtained from τn+1

n = Id and
σiτn = τn+1σi−1. Similarly for a cocyclic module τnσ0 = σnτ2

n+1 can be obtained from
the other relations. From a (co)cyclic module, one can deûne Hochschild, cyclic and
periodic cyclic (co)homology [Lo].
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2.2 H-modules, H-comodules, and Compatibility Conditions

Recall that the center of the monoidal category of le� H-modules, HM, is equivalent
to the category of le�-right Yetter–Drinfeld modules. For ûnite dimensional Hopf
algebras the center Z(HM) is also equivalent to the representations of the quantum
double D(H)M. For details, we refer the reader to [Kassel]. We recall from [Sch,M1]
that for a Hopf algebra (or a bialgebra) H, a le� H-module, right H-comodule M is
called a Yetter–Drinfeld module if

h
(1)

m⟨0⟩ ⊗ h
(2)

m⟨1⟩ = (h
(2)

m)⟨0⟩ ⊗ (h
(2)

m)⟨1⟩h
(1)

.

For Hopf algebras with an invertible antipode, this is equivalent to

(hm)⟨0⟩ ⊗ (hm)⟨1⟩ = h
(2)

m⟨0⟩ ⊗ h
(3)

m⟨1⟩S−1(h
(1)

).

_e isomorphism giving the central structure of a le� right YD module M is

V ⊗M
∼Ð→ M ⊗ V

v ⊗m z→ m⟨0⟩ ⊗m⟨1⟩v

and the YD condition simply ensures that the map above is that of H-modules.
We recall from [HKRS2] that a le�-right anti Yetter–Drinfeld module M over a

Hopf algebra H is a le� H-module and a right H-comodule satisfying

(hm)⟨0⟩ ⊗ (hm)⟨1⟩ = h
(2)

m⟨0⟩ ⊗ h
(3)

m⟨1⟩S(h
(1)

).

We denote the category of le�-right AYDmodules over a Hopf algebraH by HAYD
H .

Note that there are three additional �avors of AYD modules: le�-le�, right-le�, and
right-right. All of them are equivalent, and thus we focus only on the le�-right variety.
We will need to generalize.

Deûnition 2.1 Let M be a le� module and a right comodule over H, and let i ∈ Z.
We say that M ∈ HYD

H
i if

(2.1) (h
(2)

m)⟨0⟩ ⊗ (h
(2)

m)⟨1⟩S−2i(h
(1)

) = h
(1)

m⟨0⟩ ⊗ h
(2)

m⟨1⟩ .

We say that M is a generalized Yetter–Drinfeld module.

_e following lemma gives a characterization of the generalized Yetter–Drinfeld
modules akin to the one above for the Yetter–Drinfeld modules.

Lemma 2.2 For aHopf algebra H the generalized i-th YD condition (2.1) is equivalent
to

(2.2) ρ(hm) = (hm)⟨0⟩ ⊗ (hm)⟨1⟩ = h
(2)

m⟨0⟩ ⊗ h
(3)

m⟨1⟩S−1−2i(h
(1)

).

_us, HYD
H
0 = HYD

H , while HYD
H
−1 = HAYD

H , and we will also need HYD
H
1 to

serve as coeõcients of the covariant theory. Note that if instead of HM we consider
HM f d , then YD1 = AYD

∗ = AYD as contramodules.
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Proof First, we show that (2.2)⇒ (2.1):

(h
(2)

m)⟨0⟩ ⊗ (h
(2)

m)⟨1⟩S−2i(h
(1)

) = h
(3)

m⟨0⟩ ⊗ h
(4)

m⟨1⟩S−1−2i(h
(2)

)S−2i(h
(1)

)

= h
(2)

m⟨0⟩ ⊗ h
(3)

m⟨1⟩ε(h
(1)

) = h
(1)

m⟨0⟩ ⊗ h
(2)

m⟨1⟩ .

Now we show that (2.1)⇒ (2.2):

h
(2)

m⟨0⟩ ⊗ h
(3)

m⟨1⟩S−1−2i(h
(1)

) = (h
(3)

m)⟨0⟩ ⊗ (h
(3)

m)⟨1⟩S−2i(h
(2)

)S−1−2i(h
(1)

)

= (h
(2)

m)⟨0⟩ ⊗ (h
(2)

m)⟨1⟩ε(h
(1)

) = ε(h
(1)

)ρ(h
(2)

m)

= ρ(ε(h
(1)

)h
(2)

m) = ρ(hm).

If C is a monoidal category,M a C-bimodule category, and F∶M→M a monoidal
endofunctor, then we use MF and FM to denote the bimodule categories with the
right and respectively le� actions twisted by F. More precisely, for V ,W ∈ C and
M ∈ FM, we have

V ⋅new M ⋅new W = F(V) ⋅old M ⋅old W ,

with MF deûned analogously. Note that if F is an equivalence, then FM ≃MF−1
.

Let #∶ HM→ HM be the functor that takes a le� H-moduleM to M# ∈ HM where
M# is the same as M as a vector space but the le� action is modiûed by S2, i.e., is
now given by h ⋅ m = S2(h)m. If, as we always assume, S is invertible, then # is an
autoequivalence of HM. _us, for i ∈ Z, we can consider #i

HM, i.e.,

V ⋅M ⋅W = V #i
⊗M ⊗W .

We can now repeat verbatim the same arguments as in the usual, YD modules
Vs center, case. Roughly speaking, let M be in ZHM

#i

HM; then M is already a le� H
module and for every V ∈ HM we have an isomorphism Φ∶V #i ⊗ M

∼Ð→ M ⊗ V .
Take V = H and deûne the right comodule structure on M via ρ(m) = Φ(1 ⊗ m).
Conversely, suppose that M is in HYD

H
−i . _en for every V ∈ HM, deûne Φ by

(2.3) Φ(v ⊗m) = m⟨0⟩ ⊗m⟨1⟩v .

Note that the requirement that Φ be an H module map is exactly the equation (2.1).
Furthermore,

Φ−1(m ⊗ v) = S(m⟨1⟩)v ⊗m⟨0⟩ .

We have arrived at the following theorem.

_eorem 2.3 For a Hopf algebra H with an invertible antipode and i ∈ Z,

ZHM
#i

HM ≃ HYD
H
−i .

Remark 2.4 If we consider the action ofZ on HM via #, then HM⋊Z is aZ graded
monoidal category. If wewrite HM⋊Z = ⊕i Mi , thenMi = HM

#i
as an HM bimodule

category and⊕i HYD
H
i is a Z-equivariant Z-braided monoidal category.
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2.3 Stability

Recall that a le� H module and right H comodule M is called stable if m⟨1⟩m⟨0⟩ = m.
We will need a slightly more general notion for the covariant theory. _e classical
stability will be precisely correct for the contravariant version.

Deûnition 2.5 Let i ∈ Z. A le�H module and right H comoduleM is called i-stable
if S2i(m⟨1⟩)m⟨0⟩ = m.

_us, the usual stability is now 0-stability. _e following lemma shows what hap-
pens to the odd powers of the antipode.

Lemma 2.6 For a le� H module and right H comodule M, we have

S2i(m⟨1⟩)m⟨0⟩ = m ⇐⇒ S2i−1(m⟨1⟩)m⟨0⟩ = m.

Proof _is is a direct computation; however, in the instances where we see it, amore
conceptual explanation can be found in terms of the τ0 map and its inverse that play
a key role in our more conceptual understanding of stability. For the “⇒” direction,
we have

S2i−1(m⟨1⟩)m⟨0⟩ = S2i−1(m⟨2⟩)S2i(m⟨1⟩)m⟨0⟩
= S2i−1(S(m⟨1⟩)m⟨2⟩)m⟨0⟩ = ε(m⟨1⟩)m⟨0⟩ = m,

while for “⇐”, we have

S2i(m⟨1⟩)m⟨0⟩ = S2i(m⟨2⟩)S2i−1(m⟨1⟩)m⟨0⟩ = S2i−1(m⟨1⟩S(m⟨2⟩))m⟨0⟩
= ε(m⟨1⟩)m⟨0⟩ = m.

3 Monoidal Categories and 2-traces

_is section develops the core of the conceptual machinery that we need in order to
understand the Hopf-type cyclic homology theories. For convenience we start with
the covariant case and derive the contravariant case from it. We note that ignoring
the non-strictness of the monoidal category by suppressing the explicit formulas for
associators would have cleaned up the exposition. Our choice to include them was
motivated by future applications of this machinery to monoidal categories where the
associator appears as an explicit formula and so would have to appear in the deûni-
tions of the cyclic structure once it is unpacked from the conceptual deûnitions. _e
ease with which such laborious formulas are safely hidden from view demonstrates
the power of the categorical machinery.

Let (C,⊗) be a monoidal category, abelian, and k-linear for a ûxed ûeld k. We
will assume that all categories are abelian and k-linear and all functors respect this
structure. We will need the following conventions. Let A be an object in C; by A⊗n ,
we mean an object deûned inductively as

A⊗n = A⊗n−1 ⊗ A.
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For n⃗ = (n1 , . . . , nk) with n i non-negative integers, by A⊗n⃗ we denote an object de-
ûned inductively as

A⊗n⃗ = A⊗(n1 , . . . ,nk−1) ⊗ A⊗nk .

We interpret A⊗0 as the unit object 1. We apply a similar convention to morphisms.
Let ∣n⃗∣ = n1 + ⋅ ⋅ ⋅ + nk . _en for n⃗ and m⃗ with ∣n⃗∣ = ∣m⃗∣, denote by

am⃗
n⃗ ∶A⊗n⃗ Ð→ A⊗m⃗

the unique isomorphism ensured by the monoidal structure. Omitting the brackets
enclosing the vector components to reduce clutter, we thus have an ,1

n+1 = Id, while a1,n
n ,1 is

in general highly non-trivial andwill play a central role below. _ough a1,n
n ,1 is invisible

for Hopf algebras, it will be needed for quasi-Hopf algebras and similar objects that
lack “on the nose” coassociativity.

3.1 Symmetric 2-traces

Let Vec be the category of vector spaces over our ûeld k, and let M be a C-bimodule
category. _en the functor category Fun(M, Vec) is a C-bimodule category with the
le� and right actions deûned by

X ⋅ F(−) ∶= F(− ⋅ X) and F ⋅ X(−) ∶= F(X ⋅ −)

for all X ∈ C.
_e center of a C-bimodule categoryM is denoted by ZCM. We ought to mention

that being in the center is not a property of M ∈ M, but rather extra structure that
M comes equipped with. For a particular M it might be possible, or not, to deco-
rate it with this extra structure, and if possible, there might be more than one non-
isomorphic such collection of data. We refer the reader to [EGNO, p. 162] for the
precise deûnitions.

Since C is a C-bimodule category using its tensor product, we can set M = C. To
simplify the notation, the center of a monoidal category C will be denoted by Z(C).

Deûnition 3.1 Let (C,⊗) be a monoidal category.
● A functor F ∈ ZC Fun(C, Vec), is called a 2-trace. In particular, we are provided
with natural isomorphisms

ιX(−)∶ F(− ⊗ X) Ð→ F(X ⊗ −)

that satisfy some natural associativity conditions.
● A 2-trace F is called a symmetric 2-trace (compare with the shadow structure in
[PS]) if ιX(1) = F(a1,0

0,1).

Note that the symmetry condition is indeed worthy of its name as it ensures that

ιX(X′)ιX′(X) = IdF(X⊗X′) .

Example 3.2 Let A be an associative algebra and let C = Bimod(A) denote the
tensor category of A-bimodules. _en an example of a symmetric 2-trace is provided
by the functor HH0(A,−), the 0-th Hochschild homology of an A-bimodule [FSS].
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We note that for our purposes as outlined below, this example is not very interesting;
its only advantage is that it is easy to explain.

Recall that we denote the subcategory of unital associative algebras inC by Alg(C).
We denote the multiplication morphism of an algebra object A ∈ C by m∶A⊗ A→ A
and its unit morphism by u∶ 1 → A. Given an algebra A ∈ Alg(C) and a symmetric
2-trace F∶C→ Vec, we deûne a cyclic object in Vec as follows.

Deûnition 3.3 Let Cn(A) = F(A⊗n+1), n ≥ 0. We deûne the cyclic structure on
Cn(A) by

τn = F(an ,1
1,n) ○ ιA(A⊗n),

δ i = F(an−1,1
i ,1,n−i−1) ○ F(Id

⊗i ⊗m ⊗ Id⊗n−i−1) ○ F(ai ,2,n−i−1
n ,1 ), for 0 ≤ i ≤ n − 1,

δn = δ0 ○ τn ,

σi = F(an+1,1
i+1,1,n−i) ○ F(Id

⊗i+1 ⊗u ⊗ Id⊗n−i) ○ F(ai+1,0,n−i
n ,1 ), for 0 ≤ i ≤ n.

Note that for 0 ≤ i ≤ n − 1, we have δ i = F(δ(n)i ) and for 0 ≤ i ≤ n − 2 we have
δ i = F(δ(n−1)

i ⊗ Id). Similarly, for 0 ≤ i ≤ n, we have

σi = F(σ(n)i ) = F(an+1,1
1,n+1)F(Id ⊗ σ(n−1)

i−1 )F(a1,n
n ,1),

and observe that σ−1 makes sense and is useful. _ese observations become relevant
in the following proposition.

Proposition 3.4 For any A ∈ Alg(C) and any symmetric 2-trace F∶C→ Vec, we have
a cyclic object C●(A) = F(A⊗●+1) in Vec.

Proof To see the simplicial relations we apply the functor F to the simplicial re-
lations that are classically satisûed by δ(n)i ’s and σ(n)i ’s, with the exception of those
involving the special δn . One can check that the latter all follow formally from the
former simplicity relations and the cyclicity relations below.

Here we check the cyclicity relations. First, for any 1 ≤ i ≤ n, we show that δ iτn =
τn−1δ i−1. We begin with the case 1 ≤ i ≤ n − 1:

τn−1δ i−1 = F(an−1,1
1,n−1)ιA(A⊗n−1)F(δ(n−1)

i−1 ⊗ Id)

= F(an−1,1
1,n−1)F(Id⊗δ

(n−1)
i−1 )ιA(A⊗n)

= F(δ(n)i )F(an ,1
1,n)ιA(A⊗n) = δ iτn .

For i = n we observe that δnτn = τn−1δn−1 if and only if δ0τ2
n = τn−1δn−1, since

δn = δ0τn by deûnition, and so

τn−1δn−1 = F(an−1,1
1,n−1)ιA(A⊗n−1)F(Id⊗n−1 ⊗m)F(an−1,2

n ,1 )
= F(an−1,1

1,n−1)F(m ⊗ Id⊗n−1)ιA⊗2(A⊗n−1)F(an−1,2
n ,1 )

= F(an−1,1
1,n−1)F(m ⊗ Id⊗n−1)F(a2,n−1

n ,1 )F(an ,1
2,n−1)ιA⊗2(A⊗n−1)F(an−1,2

n ,1 )
= δ0τ2

n .
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Here we show that σiτn = τn+1σi−1 for all 0 ≤ i ≤ n:

σiτn = F(an+1,1
1,n+1)F(Id⊗σ(n−1)

i−1 )F(a1,n
n ,1)F(an ,1

1,n)ιA(A⊗n)

= F(an+1,1
1,n+1)F(Id⊗σ(n−1)

i−1 )ιA(A⊗n)

= F(an+1,1
1,n+1)ιA(A⊗n+1)F(σ(n−1)

i−1 ⊗ Id) = τn+1σi−1 .

Finally, we demonstrate that τn+1
n = Id:

τn+1
n = F(an ,1

n+1,0)ιA⊗n+1(1)F(a0,n+1
n ,1 ) = F(an ,1

n+1,0)F(an+1,0
0,n+1)F(a0,n+1

n ,1 )
= F(an ,1

n ,1) = Id .

Note that there was nothing special about Vec in the above considerations. _e re-
sults would still hold if Vecwere replaced by any target categoryT; that is, a symmetric
T-valued 2-trace would still produce cyclic objects in T from elements of Alg(C).

Let Cop denote the opposite monoidal category with only the arrows reversed.
_us, the associator is replaced by its inverse. Let M be a C bimodule category; then
Mop is a Cop bimodule category via

X′ ⋅M′ ⋅ Y ′ = (X ⋅M ⋅ Y)′ ,
where we use M′ to denote the element M ∈M when we consider it as an element of
Mop. Recall that for M ∈ ZC(M), we are given isomorphisms ιMX ∶X ⋅M

∼Ð→ M ⋅X. We
note that

ZCM ≃ ZCopMop

M z→ M′

ιMX z→ ι′M
′

X′ = ((ιMX )−1) ′ .

Consider T = Vecop and replace C by Cop. More precisely, let Coalg(C) denote the
subcategory of coassociative counital coalgebra objects of (C,⊗). _en

Fun(C, Vec) = Fun(Cop , Vecop)op ,
ZC Fun(C, Vec) ≃ ZCop Fun(C, Vec)op

= ZCop Fun(Cop , Vecop),
Coalg(C) = Alg(Cop)op .

Furthermore, a cyclic object in Vecop is the same as a cocyclic object in Vec, and we
have arrived at the following proposition.

Proposition 3.5 If C ∈ Coalg(C) and F a symmetric 2-trace, then C● = F(C⊗●+1) is
a cocyclic object in Vec.

Remark 3.6 Recall that for an algebra A, we had

τn = F(an ,1
1,n) ○ ιA(A⊗n).

However, a�er unravelling the above identiûcations, we have for a coalgebra C:

τn = ι−1
C (C⊗n) ○ F(a1,n

n ,1).
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3.1.1 The Contravariant Functor F

While the covariant theory discussed above is suitable for explaining the cocyclic
structure for the case Cn = HomH(k,M ⊗ C⊗n+1), if we want to deal with the case
of Cn = HomH(M ⊗ A⊗n+1 , k) and obtain a cocyclic structure on it, then we need a
contravariant F. _is is not hard to do in light of the above.

Deûnition 3.7 We say that a contravariant functor F from C to Vec is a symmetric
2-contratrace if F is a symmetric 2-trace on Cop.

By recalling that Coalg(C) = Alg(Cop)op we immediately obtain the following
proposition.

Proposition 3.8 If C ∈ Coalg(C) and F a symmetric 2-contratrace, then C● =
F(C⊗●+1) is a cyclic object in Vec.

While Alg(C) = Coalg(Cop)op implies the following proposition.

Proposition 3.9 If A ∈ Alg(C) and F a symmetric 2-contratrace, then C● = F(A⊗●+1)
is a cocyclic object in Vec.

Remark 3.10 Now for an algebra A, we have τn = ι−1
A (A⊗n)○F(an ,1

1,n). Furthermore,
for a coalgebra C we get τn = F(a1,n

n ,1) ○ ιC(C⊗n).

3.2 Stable Central Pairs

_e concept of a stable central pair introduced in the following deûnition arises nat-
urally in settings generalizing the Hopf-cyclic theory. _e Hopf-cyclic theory itself is
implicitly based on it. As the lemma below demonstrates the reason for its usefulness
is that it is a natural way of constructing symmetric 2-traces, which lead, as we saw
above, to cyclic objects.

Deûnition 3.11 Let (C,⊗) be a monoidal category, and let M be a C-bimodule
category. Let F ∈ Fun(M, Vec) and M ∈M. _e pair (F ,M) is called a central pair if

● F ∈ ZC Fun(M, Vec); in particular, it is equipped with ιFX(−) ∶ F(− ⋅ X) ≃ F(X ⋅ −).
● M ∈ ZC(M), in particular it is equipped with ιMX ∶ X ⋅M ≃ M ⋅ X.

_e central pair (F ,M) is called a stable central pair if

● F(ιMX )ιFX(M) = IdF(M⋅X).

Lemma 3.12 If (F ,M) is a (stable) central pair, then F(M ⋅ −) is a (symmetric)
2-trace.

Proof Deûne the structure of a 2-trace on F(M ⋅ −), i.e., an isomorphism

ιX ∶ F(M ⋅ (− ⊗ X)) ≃ F(M ⋅ (X ⊗ −))
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via the chain of isomorphisms:

F(M ⋅ (− ⊗ X)) Ð→ F((M ⋅ −) ⋅ X) Ð→ F(X ⋅ (M ⋅ −)) Ð→ F((X ⋅M) ⋅ −)
Ð→ F((M ⋅ X) ⋅ −) Ð→ F(M ⋅ (X ⊗ −))

For the symmetry condition, consult the following commutative diagram, with all
arrows being the obvious isomorphisms:

F(M ⋅ X) //

''

��

F(M ⋅ (1⊗ X))

��
F((M ⋅ 1) ⋅ X)

��
F(X ⋅M) //

''

��

F(X ⋅ (M ⋅ 1))

��
F((X ⋅M) ⋅ 1)

��
F(M ⋅ X) //

''

F((M ⋅ X) ⋅ 1)

��
F(M ⋅ (X ⊗ 1)).

_en the ûrst column composes to Id by stability, and the second column composes
to ιX(1) by deûnition, and the claim follows.

_is shows that a stable central pair gives us a symmetric 2-trace, and therefore
by Propositions 3.4 and 3.5 produces cyclic and cocyclic objects from algebras and
coalgebras. More precisely, F(M ⋅ A⊗●+1) and F(M ⋅ C⊗●+1) are cyclic and cocyclic
objects, for A an algebra and C a coalgebra respectively. Let us write out the cyclic
map for these cases. Roughly speaking, i.e., ignoring the associativity isomorphisms,
we have

τ∶ F(M ⋅ A⊗n+1)
ιFA(M⋅A⊗n

)

ÐÐÐÐÐ→ F(A ⋅M ⋅ A⊗n)
F(ιMA ⋅Id

⊗n
)

ÐÐÐÐÐ→ F(M ⋅ A⊗n+1),

while

τ∶ F(M ⋅ C⊗n+1)
F((ιMC )

−1
⋅Id⊗n

)

ÐÐÐÐÐÐÐÐ→ F(C ⋅M ⋅ C⊗n)
(ιFC)

−1
(M⋅C⊗n

)

ÐÐÐÐÐÐÐ→ F(M ⋅ C⊗n+1),

so that in the algebra case τ moves “last to ûrst”, while in the coalgebra case it does
the opposite.

3.2.1 Stable Central Contrapairs

Let us now mirror the above discussion for the contravariant case.
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Deûnition 3.13 Let (C,⊗) be a monoidal category, and let M be a C-bimodule
category. Let F ∈ Fun(Mop , Vec) and M ∈ M. _e pair (F ,M) is called a stable
central contrapair if (F ,M′) is a stable central pair for Cop.

We immediately obtain the following lemma.

Lemma 3.14 If (F ,M) is a stable central contrapair, then F(M ⋅ −) is a symmetric
2-contratrace.

_us as above, F(M ⋅A⊗●+1) and F(M ⋅C⊗●+1) are cocyclic and cyclic objects, for A
an algebra and C a coalgebra, respectively. Ignoring the associativity isomorphisms,
we have

τ∶ F(M ⋅ A⊗ A⊗n) Ð→ F(A ⋅M ⋅ A⊗n) Ð→ F(M ⋅ A⊗n ⊗ A),
while

τ∶ F(M ⋅ C⊗n ⊗ C) Ð→ F(C ⋅M ⋅ C⊗n) Ð→ F(M ⋅ C ⊗ C⊗n),
so that in the coalgebra case τ moves “last to ûrst”, while in the algebra case it does
the opposite.

4 The Monoidal Category of Left Modules Over a Hopf Algebra

In this section we apply our results from Section 3 to the monoidal category of le�
modules over a Hopf algebra H. Our aim is to construct a symmetric 2-trace via a
stable central pair. _e idea was sketched in Section 1.1 for module coalgebras; here
we brie�y recap for module algebras. _e only diòerence is that in the deûnition of τ
the order of what gets used ûrst: the centrality of the functor or the centrality of the
element gets reversed.

Let us consider a simpler version of what we want, namely HM f d , which is a rigid
monoidal category. Using the rigid structure, we have the isomorphism

(4.1) HomH(1,− ⊗ V) ∼Ð→ HomH(1, ∗∗V ⊗ −),
and furthermoreHomH(1,−) ∈ ZHM f d Fun(∗∗H M f d , Vec). In particular, if in addition
M ∈ ZHM f d (∗∗H M f d), we have

(4.2) ∗∗− ⊗M
∼Ð→ M ⊗ −,

then we can make a cyclic map τ as follows.
Consider an (algebra) object A in HM f d ; then we obtain

τ∶HomH(1,M ⊗ A⊗n+1) ∼Ð→ HomH(1, ∗∗A⊗M ⊗ A⊗n) ∼Ð→ HomH(1,M ⊗ A⊗ A⊗n),
where we ûrst used (4.1) and then (4.2) thus sliding the last copy of A to the front and
pastM. Of coursewe only need the algebra structure to deûne the simplicial structure;
the map τ above does not need it. _e resulting structure on HomH(1,M⊗A⊗n+1) is
that of a cyclic module, provided that

τ0∶HomH(1,M ⊗ A) ∼Ð→ HomH(1,M ⊗ A)
is the identity map. If the latter condition is dropped, then the result is a paracyclic
module.
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We note that the conditions on M as outlined above are equivalent to the 1-stable
YD1 condition; see below for details.

4.1 The Covariant Theory for HM

In this subsection we consider themonoidal category HM and show that ifM is a le�-
right YD1 module, then the functor HomH(1,−) paired with M forms a central pair
(HomH(1,−),M) for a suitable bimodule category, namelyM = #−1

H M. Furthermore,
if M is 1-stable, then (HomH(1,−),M) is a stable central pair.

Recall that to prove that (HomH(1,−),M) is a stable central pair for HM and its
bimodule category #−1

H M, we need to show that
● HomH(1,−) ∈ ZHM Fun(#−1

H M, Vec);
● If M ∈ YD1 then M ∈ ZHM(#−1

H M);
● 1-stability of M ensures that τ0 = Id and therefore the stability of the central pair.

_e second point is the content of _eorem 2.3. Now to address the ûrst point.
If A, B ∈ HM, then the le� H-module map f ∈ HomH(1,A⊗ B) is equivalent to

the data of an H-invariant element a ⊗ b ∈ A⊗ B. More precisely,

h
(1)
a ⊗ h

(2)
b = ε(h)a ⊗ b,

for all h ∈ H. Note that we write a⊗b when we actually mean a sum of such elements
in (A⊗ B)H .

Lemma 4.1 Let A, B ∈ HM and a ⊗ b ∈ A⊗ B. _en

h
(1)
a ⊗ h

(2)
b = ε(h)a ⊗ b⇐⇒ S(h)a ⊗ b = a ⊗ hb.

Proof If S(h)a ⊗ b = a ⊗ hb, then ε(h)a ⊗ b = h
(1)

S(h(2))a ⊗ b = h
(1)
a ⊗ h

(2)
b.

Conversely, if h
(1)
a ⊗ h

(2)
b = ε(h)a ⊗ b, then

S(h)a ⊗ b = S(h
(1)
ε(h

(2)
))a ⊗ b = S(h

(1)
)ε(h

(2)
)a ⊗ b

= S(h
(1)

)h
(2)
a ⊗ h

(3)
b = ε(h

(1)
)a ⊗ h

(2)
b = a ⊗ ε(h

(1)
)h
(2)
b = a ⊗ hb.

For the sake of reducing notational clutter, let us, for an element B ∈ HM, denote
by #B what was until now called B#−1

.

Proposition 4.2 HomH(1,−) ∈ ZHM Fun(#−1

H M, Vec).

Proof Since

S(h)a ⊗ b = a ⊗ hb ∀h ∈ H ⇐⇒ S−1(h)b ⊗ a = b ⊗ ha ∀h ∈ H,

so in view of Lemma 4.1, we see that

a ⊗ b ∈ (A⊗ B)H ⇐⇒ b ⊗ a ∈ (#B ⊗ A)H ,

i.e.,

(4.3) a ⊗ b z→ b ⊗ a
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obviously gives rise to the following natural isomorphisms

HomH(1,− ⊗ B) ∼Ð→ HomH(1, #B ⊗ −);
it is not hard to check the rest given that the map itself is very simple.

We move on to the third point, stability. We need to check that τ0 = Id if M is
1-stable. Note that strictly speaking τ0 depends on whether we want to use the theory
on algebras or coalgebras, otherwise we might need its inverse. Yet τ0 = Id if and only
if τ−1

0 = Id; this is not surprising, as the notion of a stable central pair does not depend
on what you intend to use it for.

Lemma 4.3 If M is 1-stable, then τ0 = Id.

Proof Using (4.3) followed by (2.3), we see that for m ⊗ v ∈ (M ⊗ V)H we have
τ0(m ⊗ v) = m⟨0⟩ ⊗m⟨1⟩v, which is S(m⟨1⟩)m⟨0⟩ ⊗ v by Lemma 4.1, and the latter is
m ⊗ v by the 1-stability of M in view of Lemma 2.6.

_us, (HomH(1,−),M) is a stable central pair. As usual, let A be an algebra and
let C be a coalgebra. We write out the formulas for the cyclic and cocyclic module
structures.
For Cn = HomH(1,M ⊗ A⊗n+1):

δ i(m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ a ia i+1 ⊗ ⋅ ⋅ ⋅ ⊗ an ,
δn(m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = m⟨0⟩ ⊗ (m⟨1⟩an)a0 ⊗ a1 ⊗ ⋅ ⋅ ⋅ ⊗ an−1 ,
σi(m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ a i ⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ an ,
τn(m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = m⟨0⟩ ⊗m⟨1⟩an ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an−1 .

For Cn = HomH(1,M ⊗ C⊗n+1):

δ i(m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1) = m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ c i
(1)
⊗ c i

(2)
⊗ ⋅ ⋅ ⋅ ⊗ cn−1 ,

δn(m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1) = m⟨0⟩ ⊗ c0
(2)
⊗ c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1 ⊗ S(m⟨1⟩)c0

(1)
,

σi(m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn+1) = m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ ε(c i+1) ⊗ ⋅ ⋅ ⋅ ⊗ cn+1 ,
τn(m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn) = m⟨0⟩ ⊗ c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn ⊗ S(m⟨1⟩)c0 .

4.2 The Contravariant Theory for HM

Here we redo the previous section for the case where HomH(−, 1). More precisely,
we show that if M is a le�-right YD−1 module (AYD module), then the functor
HomH(−, 1) paired with M forms a central contrapair (HomH(−, 1),M) for M =
#
HM. Furthermore, if M is 0-stable (classically stable), then (HomH(−, 1),M) is a
stable central contrapair.

We will need a characterization of H module maps from A ⊗ B to the monoidal
unit k.

Lemma 4.4 Let H be a Hopf algebra over a ûeld k, A, B ∈ HM and let f ∶A⊗ B → k
be a k-linear map. _en f (h(1)a ⊗ h

(2)
b) = ε(h) f (a ⊗ b) if and only if f (ha ⊗ b) =

f (a ⊗ S(h)b).
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Proof _ecomputation is similar to that of Lemma 4.1. If f (ha⊗b) = f (a⊗S(h)b),
then f (h(1)a⊗ h

(2)
b) = f (a⊗ S(h(1))h(2)b) = ε(h) f (a⊗ b). Conversely, if f (h(1)a⊗

h
(2)
b) = ε(h) f (a ⊗ b), then

f (a ⊗ S(h)b) = f (a ⊗ S(ε(h
(1)

)h
(2)

)b) = ε(h
(1)

) f (a ⊗ S(h
(2)

)b)

= f (h
(1)
a ⊗ h

(2)
S(h

(3)
)b) = f (h

(1)
a ⊗ ε(h

(2)
)b) = f (ha ⊗ b).

Proposition 4.5 HomH(−, 1) ∈ ZHMop Fun(#
HMop , Vec).

Proof _is boils down to observing that for f ∈ HomH(A# ⊗ B, 1), we have γ f ∈
HomH(B⊗ A, 1), where γ f (b⊗ a) = f (a⊗ b). _is is an immediate consequence of
Lemma 4.4.

We recall that by _eorem 2.3, if M ∈ AYD, i.e., M ∈ YD−1 then M ∈ ZHM(#
HM)

and the latter is equivalent to ZHMop(#
HMop). So all that remains is to investigate the

stability condition needed for τ0 = Id.

Lemma 4.6 If M is 0-stable (classically stable), then τ0 = Id.

Proof Let f ∈ HomH(M ⊗ V , 1); then

τ0 f (m ⊗ v) = f (m⟨0⟩ ⊗ S(m⟨1⟩)v) = f (m⟨1⟩m⟨0⟩ ⊗ v) = f (m ⊗ v).

_us, (HomH(−, 1),M) is a stable central contrapair. As usual, let A be an algebra
and C a coalgebra. We write out the formulas for the cocyclic and cyclic module
structures.
For Cn = HomH(M ⊗ A⊗n+1 , 1):

δ i f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ a ia i+1 ⊗ ⋅ ⋅ ⋅ ⊗ an),
δn f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = f (m⟨0⟩ ⊗ (m⟨1⟩an)a0 ⊗ a1 ⊗ ⋅ ⋅ ⋅ ⊗ an−1),
σi f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ a i ⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ an),
τn f (m ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = f (m⟨0⟩ ⊗m⟨1⟩an ⊗ a0 ⊗ ⋅ ⋅ ⋅ ⊗ an−1).

For Cn = HomH(M ⊗ C⊗n+1 , 1):

δ i f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1) = f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ c i
(1)
⊗ c i

(2)
⊗ ⋅ ⋅ ⋅ ⊗ cn−1),

δn f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1) = f (m⟨0⟩ ⊗ c0
(2)
⊗ c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn−1 ⊗ S(m⟨1⟩)c0

(1)
),

σi f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn+1) = f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ ε(c i+1) ⊗ ⋅ ⋅ ⋅ ⊗ cn+1),
τn f (m ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ cn) = f (m⟨0⟩ ⊗ c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn ⊗ S(m⟨1⟩)c0).

In this paper we have investigated the four (co)homology theories that arise nat-
urally in the consideration of the monoidal category of le� H-modules. _ese come
from the considerations of the covariant and the contravariant theories in the sense
of their behavior with respect to maps of (co)algebras. If we consider the contravari-
ant theory of the algebra case, we recover the type A cohomology theory of [HKRS2]
on the nose. By considering the covariant theory of the coalgebra case, we obtain a
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diòerent cohomology theory than that of [HKRS2]; this explains the need for new co-
eõcients of opposite “charge” than AYD. _e type C theory that generalizes Connes-
Moscovici Hopf cyclic cohomology [CM1] is actually obtained from the 2-contratrace
giving the type A theory by considering its predual which is a 2-trace. _e other
two possibilities considered are both homology theories, one requiring AYDs and the
other “anti” AYDs.

Our explicit calculations do not extend to the type B theory of [HKRS2], which is
a contravariant cohomology theory for H comodule algebras. However, we point out
that our machinery can be applied to the monoidal category HM of le� comodules
over H. In that case, the type B theory is a straightforward consequence, though with
modiûcations.

Let us summarize. If we are given a rigid monoidal category C, then there is a co-
variant cyclic theory with coeõcients in ZCC

∗∗ that turns algebras into cyclic mod-
ules and coalgebras into cocyclic modules. _ere is also a contravariant cyclic theory
with coeõcients in ZC

∗∗C that turns algebras into cocyclic modules and coalgebras
into cyclic modules. In the above, ∗∗ is the functor that sends c ∈ C to c∗∗. Note that
the coeõcients need to be more than just central in a correct bimodule category, they
have to be stable as well. If the category is no longer rigid, such as was the case of the
general HM with inûnite dimensional representations allowed, we can still proceed;
we would need a replacement for (−)∗∗, such as # was in the case of HM.
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