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0. Introduction

In (2) Bruhat has developed a theory of differentiable functions and distributions
on a locally compact group in order to apply it to the study of the irreducible
representations of the p-adic groups. Later, Whyburn (8) defined differentiable forms
on a locally compact group and proved an analog of the de Rham theorem concerning
the relationship between the Cech cohomology and the De Rham cohomology. In (4) I
have introduced the notions of "generalised manifold" (roughly speaking a projective
limit of smooth manifolds) and of "differentiable forms" on it, extending some of the
results due to Bruhat and Whyburn.

The aim of the present paper is to prove for generalised manifolds a de Rham type
theorem and then to extend in this context a theorem due to Chevalley and Eilenberg
concerning the computation of the de Rham cohomology with the aid of the G-
invariant forms, G being a compact connected group acting on the given manifold. As
an application I show that the Cech cohomology of a compact connected Lie group is
isomorphic to the cohomology of its Lie algebra (the Lie algebra of a locally compact
group has been defined in (6)). For sake of completeness I have included in the first
part of the paper some of the results proved in (4).

1. Smooth maps on generalised manifolds

Let / be an ordered set directed to the right and {Vh irj},je/ be a projective system
of C""-manifolds and C°°-maps (all manifolds are assumed to be paracompact and with
a countable basis). We shall assume that all the maps TTJ : V, -» V), / 3= /, are proper
submersions.

Definition 1.1. V = lim V, endowed with the usual topology will be called the
generalised manifold associated to the projective system {Vh 7rj},-j-e/.

From now on we shall fix a projective system {V,, TT)} as above and let V = lim V,
be the associated generalised manifold. '

Remarks 1.2. (i) V is locally compact and the canonical projections IT,- : V -» V-,
are proper and surjective (1,4).

(ii) Let i E I ; then V, = U ™=\Kn Kr being compact subsets of V,. According to the
above remark V = U %\irj\Kr) and Trj\Kr) are compact. Being also locally compact, it
follows that V is paracompact, hence normal.
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(iii) A basis for the topology of V is given by the family {irj\Di); D, open in Vh

Definition 1.3. Let D C V be an open subset. A map f:D->R is called smooth if
for every x G D there exists an open neighborhood Dx C D of x and g G C°°( V,) for
some i £ / such that / | Dx = g ° ir{\\ Dx. The set of all such maps will be denoted

Clearly C°(D) is an algebra over R; moreover, given a family {fa}aeA of smooth
maps with {supp fa}a£A locally finite, then 2afa is smooth.

Lemma 1.4. Let KCDCV, K compact and D open. Then there exists f G C"(V)
such that f\K = 1, s u p p / C D a / u / 0 « / = s l .

Proof. For every x G K there exists i(x) G / and Dx open in ViM such that
xGD'x= 7r^i)(A) C D. Since_ V is locally compact there exists an open set D"x

containing x and such that D"x is compact and contained in D'x. Since 7ri(x)(D'JD C A is
compact, there exists &GC"(Viw) such that g°7r,(x)(D3= 1, supp g^cD* and 0=£
gx « 1. Let fx = gxo iriM; then / , e C°°( V), /,|DS = 1, supp /^ C D'x and 0 ̂ / x =£ 1. K
being compact there exist X\,...,xaE.K such that K = U ?=|Di,. Let /f = /X(; then
/ = 1 — (1 — /i) . . . (1 — /„) has the required properties.

Proposition 1.5. (Partition of unity). Let {Da}aeA be an open covering of V. Then
there exist smooth maps fa on V, fa s=0, such that: (i) supp/„ C D ; (ii) {suppfa}aeA

is locally finite; (iii) Sa /„ = 1.

The proof of this proposition follows from Lemma 1.4 by standard arguments and
we shall omit it (see (4)).

If DC D' are open subsets of V, by restriction we obtain an algebra homomor-
phism C(D') -» C"(£>). It is easy to see that in this way the family {C°(D), D open in
V} together with the restriction maps becomes a sheaf of algebras over R. We shall
denote it by 2)°. Let also 3>1 be the sheaf of C°-maps on V,. For any /, j G /, i =s /, the
composition with TT, (resp. TT|) induces a IT, (resp. 7rj)-cohomomorphism (p,:3?-»S°
(resp. pij:2l°->£d<j). Clearly {2>°, pj}ije/ is an inductive system of sheaves and
cohomomorphisms and the cohomomorphisms <p, induce a sheaf homomorphism
<p: lim 9)°->@°. It follows from our definitions that <p is in fact an isomorphism. In
general C°(V) is not isomorphic to lim C°°(V,), but if we restrict ourselves to C"(V)
and C™( Vi) (maps with compact support) we obtain an isomorphism <pc: lim C"( V() -»

(see (4)). To summarise we have

Proposition 1.6. (i) <p : lim 3)°-* 2)° is an isomorphism of sheaves such that for any
i s£ / the diagram
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commutes;
(ii) <p induces an isomorphism <pc: lim C"( V/) -* C"( V).

We shall conclude this section with an approximation theorem which follows from
Lemma 1.4 by standard arguments.

Theorem 1.7. C"( V) is dense in C( V), the space of all real continuous maps on V
endowed with the compact open topology.

2. Tangent vectors and forms, de Rham theorem

Let x = (Xj) G V and TXV be the vector space of all linear maps v: C"( V)-+R such
that v(fg)= v(J)g(x) + f(x)v(g), for all f,gEC°(V). TXV is called the tangent space
of V at x.

We denote by 3^ the ideal of C"( V) consisting of all maps / such that f(x) = 0. As
usual we have an isomorphism 0: Hom(^J^l,R)^TxV defined by (0(A))(J} =
A((J-f(x)y) for A EHom(&J&l,R) and f£C°(V), where g* denotes the class of
g G SFX in SFJS^. Let also ^x. be the ideal of C°( Vt) consisting of all maps / such that

i = 0. Clearly pj(^x,-) C ^ . for / =s / and thus we obtain an inductive system
\, afiijei, aj being induced by p\.

Lemma 2.1. S'JS'x and lim ^xJ^2
Xl are isomorphic vector spaces.

Proof. It is easy to see that the assignment / -»(/ ° TT,) gives rise to an injection
a :lim ^XJ^2

X.-* tFJ&l. It remains to check the surjectivity of the map so denned. Let
/ 6 f , and choose <p G C°c( V) with <p(x) = 1; then fo G C°c( V) and / - /<p = /(I - <p) G ^ ,
hence /" = (/(p) . According to Proposition 1.6 there exists / G 7 and /, G C™(V,) such that
f<p=fi° IT; and /,(*,) = 0. It follows that a(fi) = / * ( " "" denotes the class in lim &XJ&%).

If we view Tx.(Vi) as the vector space of all R-valued derivations of C°°(V,) at xh

we can define a linear map Tx(iri):TxV-^ TX.V; by (Tx(trd(v))(J) = v(f ° TT,), / G C°°(V,),
i; G TXV. In this way we obtain a linear map i/>: TxV-» lim TXi( V{).

Proposition 2.2. ifi: TXV-* lim r,.V, is an isomorphism.

Proof. It suffices to observe that ip is the composition of the following sequence
of isomorphisms: TxV = Hom(f] /^, I?) == Hom(lim PJ&l,, R) == lim Hom(&xJ&2

X., K)
- lim rx, V/, where the second one is induced by a, the third one is canonical and the last
one is induced by the isomorphisms 3f

xJ9f\— Tx.Vi.

Endowed with the usual topology lim TXV, becomes a complete locally convex

https://doi.org/10.1017/S0013091500016242 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016242


130 MARIA ELENA VERONA

topological vector space. We consider on TXV the unique topology such that i// is an
isomorphism of topological vector spaces. Then TXV is also complete and locally
convex.

In what follows we shall denote the space fFJ&l by 2)J( V) and call it the space of
1-forms of V at x.

Let iE I and define 3>,;:@x.( V,)-> L(TXV, R) as follows: <&,-(«) = o> ° Tx(ff,-), wG
®i,-( V<) being viewed as a linear map Tx.Vj ->R. For i=s/ the diagram

commutes. Hence by Lemma 2.1 the maps <J>, induce a linear map <t>: Si J( V)

Proposition 2.3. $>:3)x(V)-*L(TXV, R) is an isomorphism.

Proof. Let w £ S j ( V ) be such that <&(&>) = 0; if w is the image of w,-G 2>if( V,)
under the canonical injection (7r,)x :®X|.( V,)-»2>x( V), then 0 = *(w) = *f(<uf) =
a), ° TX(T7-,). Since T^TT,) is surjective, «,- = 0, hence a> = 0. This proves the injectivity
of 4>. Let now 0 G L(TXV, R); then 0" '(- l , 1) is a neighborhood of 0G TXV, hence
there exist / £ / and an open neighborhood Dof 0 £ rx.V/ such that (^(ir.Or'C^C
0~'(- l , l ) . Let wGTxV be such that TI(ir,-)(w) = 0; then any multiple of H> lies in
0" ' ( - l , l ) and thus 6(w) = 0. This remark enables us to define 6>:TX/V/->/J by
w(t)) = 0(w), where w G TXV is chosen such that Tx(ir{){w) = «;. There are no problems
in proving that a> is linear (hence a> G 2> x.( V,)) and that <J>((7r,)*(&>)) = 0. It follows that
<J> is also surjective.

Let D C V be an open set, / G C°°(Z>) and x G D. We shall denote by d/(x) the
1-form of V at x given by df(x) = (J - f(x))'

Definition 2.5. A map <w : D ^ Uxev®i(^) is called a 1-form on D if for every
x G D there exist a neighborhood U of JC in D and / , , . . . , /„, # ! , . . . ,& ,£ C°°(£>) such
that w(y) = 2"=i g,(y)d/,(y) for any y £ U. The set of all 1-forms on D will be denoted
2>'(£>).

For any i £ I and any w G 2)\ Vt) there exists a 1-form (7r,)*(w) 6 3'(V) given by
((7r,)*(w))(x) = (7r,-)x(<w(jc,-))- Using Proposition 1.6 it is not difficult to prove the
following lemma.

Lemma 2.6. A map <o :D-> Ux e D &AD) is a l-form on D if and only if it
coincides locally with a l-form of the form (n-,)*(6J) for some i G / and w G 3l(Vj).
Moreover if it has compact support it coincides everywhere with such a l-form.

It is clear that the family {2>'(D); D open in V} together with the obvious
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restriction maps 3)\D)-*3)\D') if D'CD is a sheaf; more precisely a @°-module.
Now, for any / E / let 3>) denote the sheaf of 1-forms on V, and let (TT,)* be the
obvious 17-,-cohomomorphism of 3>\ into 3>].

Definition 2.7. For any p > I let 3>" = A P2>' (as @°-modules). A section of 3>" will
be called a p-form.

Let 3)1 be the sheaf of p-forms on V,, i G /. Since 3>f = Ap2)j, the Tj-.-cohomomor-
phisms (7Ti)*:3l)-*3ll induce 7r,-cohomomorphisms of 3)1 into 3s", denoted again by
(TT,)*. For / 3= / the following diagram commutes

3)"

hence we obtain a sheaf homomorphism ip" : lim 3)1 -> 3>".

Proposition 2.8. For any p > 0, i/>p is an isomorphism.

Proof. For p = \ this follows immediately from Lemma 2.6. For p > 1 the
assertion follows by standard arguments.

Remark 2.9. As in the case of the smooth maps, there exists a canonical
isomorphism ipp

c: Mm 3)p
c(Vi)^>3)p

c(V) induced by ip" (here ®p( V,-) and Sp(V) stand for
the p-forms on V-, and V respectively with compact support).

Let ps=l , DCV open, /«,,/ , , . . . ,fp G3)°(D) and w =/od/iA . . . Ad/P G 2>"(D).
Denote d"(w) = d/0 A d/, A . . . Ad/P G ®P+I(Z>). It is not hard to see that d" so defined
induces a sheaf homomorphism d": 3>" -+3)p+' with the following properties:

(ii) d° = d as defined before;
(ii) rfp+1 - dp = 0;

(iii) for every i G / the following diagram commutes

3>" *2>p+1

where di is the usual exterior differential;
(iv) the above property together with Proposition 2.8 imply that in fact d'

corresponds via the isomorphisms ip" and ipp+> to lim di. The "inductive limit" being

an exact functor, it follows immediately that 0-»<%-»S0-»@'-»2>2-».. .is a resolu-
tion of 91, the trivial sheaf over V with fibre R.
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Now let Zr(V) = {(oE.3>r(V)\dr(<o) = 0} and Br(V) = dr-\2)r-\V)); then by (ii)
Br(V)CZr(V) and thus we can consider H'DR(V) = Z'(V)IBr(V). Also let H*(V) =

denote the Cech cohomology of V with value in R.

Theorem 2.10. H'DK(V) = @%0H'DR(V) is isomorphic to H*(V).

Proof. By Proposition 1.5, 3>° is a fine sheaf. Since for any r5*0 3)' is a
2>°-module, it follows that 2)' is soft. Combining this remark with (iv) above, the
assertion of the theorem follows from a well known result in the theory of sheaves
(see (5)).

Remark 2.11. One can define in an obvious way a multiplication on the graded
vector space 2)* = (B%0@>r(V) such that 2>* becomes a graded differential algebra.
Then H'DR(V) inherits a structure of graded algebra and the isomorphism in Theorem
2.10 is an isomorphism of graded algebras.

Remark 2.12. We shall give here an equivalent definition for the sheaf of p -forms
on V. First let 3>"x{ V) = A"2)J( V). As in the case p = 1 we have an inductive system
{©;,.( V,), (ir{)*}ye/ and canonical linear maps (ir,)5:9£(V,)= Ap9j»(Vi)->9;(V).
From Lemma 2.1 we obtain that the maps (TT,)*, / £ / , induce an isomorphism of
lim 3>^(Vi) onto 3>"x(V). Now it is easy to check that for any open subset DC V, any
(o G <2)P{D) can be viewed as a map 6:D-»Uxeo®?(V') such that for any xGD there
exist an open neighborhood U of x, iGl and cu,-e@p(V;) verifying tS(y) =
(«•,-)* (<u,-(y,-)) for any y G U D D. Conversely any such a map 6> corresponds to a
unique p-form w G 3>P(D).

Remark 2.13. Let AW(TXV,R) denote the vector space of all continuous skew
symmetric multilinear maps of TxVx...xTxV (p times) into R. Since ®;,(V,) is
canonically isomorphic to A\t"(Tx.Vi,R). The projections T^TT,): TXV^ TXlVi induce
maps *p:®;.(Vf)-»Altp(rxV,/?) which give rise to a linear map 3>":lim @P..(yf)-»
AlfCT^V, /?). Exactly as in Proposition 2.3 we can prove that 4>p is an isomorphism of
vector spaces. Thus 2)X(V) and Alt"(TXV,R) are isomorphic vector spaces.

3. Invariant de Rham cohomology

Let G be a compact connected topological group. We shall assume that there exist
left continuous actions through diffeomorphisms G x V,-» Vh (g,x)*->gXj, such that
the diagrams

G x V,

G x

commute for any i'3=/. Then G x V-* V, (g,(x,)) 1-»(gx,)determines a continuous left
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action of G on V. For any g G G the homeomorphism (resp. diffeomorphism)* >-»gJC of
V onto V (resp. V,- onto V,) will be denoted by g.

Given / G 2>°( V) it is easy to see that /* = / ° g is also smooth. Thus (g, /)•-»/* is a
linear action of G on 3)°(V); it extends to unique linear actions (g, <w) "-»£</ of G on
®P(V), p = 1,2, . . . .wi th the properties dp(a»«) = (</"(«))* and wf A wf = (o>, A w2)

g.
With obvious notation we have ((7r,)*M)* = (ir,)*(«o8), o> G ®p( V,).

Let 3g(V) = {(oE3>p(V)\u)g = w,gG G}. Clearly dp(2>g(V))C 3>"G
+XV) and hence

we can consider Zg(V) = Z"(V)C\ Dg(V), Bg(K) = </""'(©&"'(V)) and Hg(V) =
Zg(VO/Bg(K). The inclusions Zg(YOcZp(VO induce a linear map J:.H£(V) =

Theorem 3.1. I :H$(V)^>H%R(V) is an isomorphism of graded vector spaces
(and even of graded algebras).

Proof. It is known (3) that for any / 6 / there exist linear maps mp:®p(V,)-»
®g(^;) with the following properties:

(1) mp(a>) = <0, if o»G96(V,);
(2) mf+ I°dp = d p ° m p ;
(3) if supp <oCU, U open in V,, then supp mp(w) C GU = {gx \ g G G, x G [/};
(4) if supp w C U, U open in Vh there exists w ' e 9 H ( V i ) with supp <o'C GU,

such that w - mp(«) = dp"'(a>') (in (3) it is not proved that supp w' C GU, but one can
see this is indeed so);

(5) for any i 5* / , (IT))* ° mp = m* ° (TT})*.

The last property implies the existence of unique maps m" :3)P
C(V)-*2^(V) such

that

mp((7r,)*(w)) = (ir,)*(m?(»)), <o G ®p( V,).

According to Remark 1.2. (ii) we can construct a sequence 0 =
Do C Dj C D2 C . . . of open and relatively compact subsets of V such that Dn C Dn+1

and Do U D, U £>2 U . . . = V. Let us denote Kn = GDn and En = int(Kn). Then 0 =
£ o C £ | C £ 2 C . . . , every En is open and relatively compact, En C £n+i, GEn = £„ and
E 0 UE, U£ 2 U . . . = V. Finally let Un = En+]\En-u n G N. Clearly {t/n}nGN is a
locally finite covering of V with open, relatively compact and G-invariant subsets. Let
W*}n£N be a partition of the unity with smooth maps subordinate to {Un}neN (see
Proposition 1.5). Then denoting t/rn = wi°(e/£) we obtain another partition of the unity
with smooth maps subordinate to the same covering.

Given <uG3p(V) let wn = iffnw. Then supp(wn)C Un and thus 2Bwn makes sense
and is equal to u>. By (3), supp m"(a>n) C Un and again S,,mp(a>n) makes sense. We shall
define m"(oi) = 2nmp(wn). An easy computation shows that m" verifies the properties
( l ) - (4) with V, replaced by V.

Let now prove the injectivity of /. Assume w G Zg( V) and o> = dp~\a>') for some
w'G2>p-'(V). Then <o = m"(a>) = m p W H ( W ' ) )= dp-'(m""'(«')) and B ' - ' M E

3&~'( V). It follows that w G Bc(V), hence / is injective. Since the surjectivity of / is
an immediate consequence of (4), the theorem is completely proved.
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4. Cohomology of homogeneous spaces

Let G be a locally compact group such that GIG0 is finite (Go denotes the identity
component of G) and let H be a closed topological subgroup of G. It is known (7) that
there exists a family {#,},<=; of compact subgroups of G verifying:

(i) if i,j G / there exists k G / such that Ki D Kt D Kk; thus if we put / « ; if
Ki D Kj, I becomes an ordered set directed to the right;

(ii) G, = GIKi is a Lie group for any i £ / ;
(iii) the canonical map G -»lini G, is an isomorphism of topological groups.
Let Li = H D X, and //, = H/L,-; according to (1, chap. Ill, §7, Proposition 3) the

canonical map G/H -* lim GJHi is a homeomorphism. Thus we can view GIH as a
generalised manifold (it should be verified that the maps n): GJHi -* GjlHj induced by
the canonical projections G, -* Gjt i ^ j , are proper submersions, but this is obvious
since the Kt's are compact). Our results in Sections 1 and 2 can be applied and thus
we obtain, in the case H = {e}, the results from (8) and some of the results from (2).

Assume now that G is connected and consider the canonical action of G on GIH.
Let weSS tG/H) ; we can view <o as a map w :G/tf-> \JxSGIH3lp

x(GIH). Being G-
invariant io is determined by w(e) G S^iG/H), where e G GIH is the class of the
identity element e G G. Since e is left fixed by H, we have also an action of H on
2>P

€(GIH); let 2>p
eM(GIH) be the set of all p-forms at € fixed by H. Clearly w(e)G

2P.H(G/H). Conversely, every element <oe G 3>P,H{GIH) determines a unique G-
invariant form w£Sg(G/H) such that <o(e) = u>e. Indeed, the isomorphism
3>P(GIH)^ lim 3)p

fl(GJHi) gives rise to an isomorphism 2)P
M(GIH) - lim ®J,H.(Gi/f/,),

hence there exist i G /, a)t. G 2p.M.(GJHi) such that wf corresponds (through the above
isomorphism) to the class of wc. in lim 3)P

iiH,(GJHj). Now extend «e. to a G,-invariant
smooth form «, on GJH and let « be its pull-back to GIH. Clearly w G °dp

G(GIH) and
w(e) = a)f. Thus w'-^w(e) determines an isomorphism of 3)l(GlH) onto 2dP

yH(GIH).
Let now ^ = TeG be the tangent space of G at c and A = TeH. Since G = lim G,

and H = lim //,, it follows that $ = lim # and ^ = lim Ah where $, (resp. A{) is the Lie
algebra of G, (resp. if,). Using the fact that the canonical projections &-*& are
(continuous) Lie homomorphisms, it follows that ^ is topological Lie algebra and A is
a closed Lie subalgebra of ^. The complex of vector spaces C*(^, A) of the continuous
real cochains on ^ relative to A can be defined as usual (see for example (3); the only
difference consists in that we consider continuous cochains). We shall denote its
cohomology by H*(#, A).

Identifying 2"(GIH) to Alt"(T€(G/H), R) (cf. Remark 2.13) and observing that
T€(GIH) is isomorphic to #/A, we obtain an isomorphism of 3)P(GIH) onto
Alt"(?IA, R) which sends Sdp

-H(GIH) onto C{?, A) C A\tp(9/A, R) (the easiest way to
check this is to consider the canonical isomorphisms @)P,H(GIH) — lim 9>p

itH.(GjHj),
A\f(PIA, R) = lim AWitJ/L,, R), Cp{9, A)~\\m Cp(9h A,) and 2)P

iMi{GjHi) = Cp(gh *,)).
Finally, combining all the above remarks we obtain an isomorphism a : 3)%(GIH)-+

C*(#, A) and one can see without difficulty that it commutes with the differentials.

Theorem 4.1. Let G be a compact and connected topological group and H be a
closed subgroup of G. Then the real Cech cohomology of GIH is isomorphic to

, A).

https://doi.org/10.1017/S0013091500016242 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016242


A DE RHAM THEOREM FOR GENERALISED MANIFOLDS 135

Proof. The assertion follows from Theorems 2.11 and 3.1 and the above remark.

Corollary 4.2. / / G is a compact and connected topological group, then its Cech
cohomology is isomorphic to H*(g), the cohomology of its Lie algebra g.
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