
Can. J. Math., Vol. XXIV, No. 5, 1972, pp. 930-943 

REARRANGEMENT INEQUALITIES 

P E T E R W. DAY 

1. In t roduc t ion . In recent years a number of inequalities have appeared 
which involve rearrangements of vectors in Kn and of measurable functions 
on a finite measure space. These inequalities are not only interesting in them
selves, but also are important in investigations involving rearrangement 
invariant Banach function spaces and interpolation theorems for these 
spaces [2; 8; 9]. 

The most famous inequality of this type for vectors is due to Hardy-
Littlewood and Polya [4, Theorem 368]: 

m m m 

(1.1) E o<*bt' è E aJ>t è E afbi* 
i=l i=l t = l 

with equality on the left (right) if and only if a = (ax, . . . , am) and 
b = (6i, . . . , bm) are oppositely (similarly) ordered. Here the a* (a/) are 
the numbers at in decreasing (increasing) order. 

An example involving more than two vectors is the following one of 
H. D. Ruderman [12]: 

m n m n 

(1.2) ,11 E a . . i è l i E «*.** 
1 j=l k=l 3=1 k=l 

where aktj > 0 for all k, j , and for each k the akfj* are the numbers 
#fc,i> • • • » ak,m in decreasing order. A condition for equality was not given. 

Other inequalities of these types are possible, and general theorems have 
been given by G. G. Lorentz [7] and D. London [6]. 

Workers with inequalities generally recognize that many inequalities which 
are proved for real numbers by real variable methods also hold in more general 
systems. In Section 3 we let <p : 7\ X T2~^ G where 7\, T2 are ordered sets, 
and G is a partially ordered abelian group, and we give a necessary and suffi
cient condition on cp so that 

n n n 

j=l j=l j=l 

for all chains a G 7Y*, b G T2
n. Also we give a necessary and sufficient condi

tion on <p so that equality holds on the right (left) if and only if a and b are 
similarly (oppositely) ordered. We give a sufficient condition so that 
v?(a*, b ') < <p(a, b) < <p(a*, b*), where < denotes a preorder relation of 
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REARRANGEMENT INEQUALITIES 931 

Hardy , Littlewood, and Polya. Similar results to these are given when ç is a 
function of n variables. 

W. A. J . Luxemburg [9] has proved analogs of discrete rearrangement 
inequalities for measurable functions on a finite measure space. In Section 5, 
all our discrete results are generalized for real valued essentially bounded 
measurable functions on a finite measure space. For specific choices of <p the 
inequalities are shown to hold for even larger classes of functions. T h e concept 
of "similarly ordered" is generalized for measurable functions to give a neces
sary and sufficient condition for equality. 

Finally in Sections 4 and 6 we give numerous examples to show how to 
obtain many known rearrangement inequalities. Our analysis gives conditions 
for equality, in many cases for the first t ime. 

2. Def in i t ions a n d n o t a t i o n . Let T be a partially ordered set. If a = 
(&i, . . . , am) £ T™, then a will be called a chain if {#i, . . . , am) is linearly 
ordered. If a is a chain, then a* = (#i*, . . . , a m *)(a ' = (&/> • • • » a>m')) 
denotes the vector obtained by rearranging the components of a in decreasing 
(increasing) order. If a and b are chains in a partially ordered abelian group G 
(written addit ively) , t h e n b < a means ^XJ)* ^ 2Z*=ia<* for all 1 ^ & ^ w ; 
and b < a means b < a and 2Z?=i^* = Z!?=i#z*- I t will be notat ionally 
simpler and should cause no confusion to denote every partial order under 
consideration by ^ . A partial order is understood to be anti-symmetric, and 
x < y is used to mean x ^ y and x ^ y. 

Let T\ and T2 be partially ordered sets. Chains a £ Ti71 and b Ç T2
m are 

said to be similarly (oppositely) ordered if for every 1 ^ i,j ^ m, at < % 
implies bx ^ bj (bj S bt). 

Let Tit • • • , Tn be partially ordered sets, and let 

a* = (a* t l l . . . , a*im) € (r f c)w . 

I t is sometimes necessary to subst i tute values for some of the variables xt in 
(xi, . . . , xn) and then consider the result as a function of the remaining xt. 
Let I , J , and i£ be disjoint subsets of N = {1, . . . , n\. T o denote the result 
of subst i tut ing aifj for xt when i 6 J, a*,* for x* when i Ç / , and a ^ for xt 

when 2 G K, we use the notat ion (aItj1 aJ>JC, aK>i). In addition, (ai, . . . , a n) 
denotes the sequence of vectors given by 7 i—> (aitjl . . . , an.y), and similarly 
for (a/*, a / ) when {/, J] is a part i t ion of {1, . . . , n}. 

Let <p : T\ X . . . X Tn —* G. When / and / are part i t ions of N = {1, . . . , n}, 
we define conditions 04) and 04*) on <p as follows. 

04) [04*)] If Xi, Ji 6 2"< with x% < yi} and fe ^ i, 

then ^(^ z ) — <p(xt) is [strictly] increasing in uk when & and 2 are in the same 
set / or J, and [strictly] decreasing in uk when k and i are in different sets / and 
/ , for all 1 ^ i, k ^ n. 
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932 PETER W. DAY 

If G = R, if Tk = [rkj sk] with rk < skl if the first partials of cp are separately 
continuous on T\ X . . . X Tnj and if the second partials of <p exist on 
T = ]ri, si[X . . . Xj/'m sn[, then [1, Theorems 5-7 and 5-10] implies that 
condition (̂ 4) is equivalent to: 

(A)' d2<p/dUidUj ^ 0, when i and j are in the same set I or J 
^ 0, when i and / are in different sets I and / 

on T for all 1 ^ i 9e j ^ n. 
A sufficient differentiability condition for (A*) is ^4*)': 

<p satisfies (A)' and in addition, {ut £ Jr*, s*[ : d2(p/dUidUj = 0} contains no 
open interval for all rk < uk < sk, and 1 ^ fe ^ i ^ w. 

Let (X, A, M) be a finite measure space with a = n(X) < oo, and let 
M = M(X, n) denote the set of all extended real valued measurable functions 
on X. If / 6 ikf, then the decreasing rearrangement 5f of/ is defined by 

0/(0 = inf{s e R : n({x :f(x) > s} ) S t] for 0 ^ / ^ a. 

Also t/(0 = 5/((a — 0"~) denotes the increasing rearrangement of / , 1# 
denotes the characteristic junction of £ £ A ; / | £ denotes the restriction of f 
to E] and we let 7/ = [ess. inf/, ess. s u p / ] . 

If / , g £ M then f ~ g means Ôf = ô0. This is equivalent to having 
/ * ( { / > * } ) = M({g > *}) for all £ £ R. Let (/i, . . . , 4) > (^i, • . . , un) mean 
î > ^i , 1 ^ i ^ w. For measurable f, g : X —» Rw we define f ^ g to mean 

M({f > t } ) = / i ( { g > t } ) f o r a l l t 6 Rw. 
We will say t h a t / , g G M are similarly ordered if ess. s u p / |̂ 4 < ess. inf/ |23 

implies ess. sup g\A S ess.inîg\B whenever 4 , 5 Ç A are disjoint and each 
has positive measure. Analogously, / , g £ M are called oppositely ordered if 
/ and — g are similarly ordered. 

3. The discrete case. This section is devoted to the proof of the following 
theorem. 

(3.1) THEOREM. Let <p : 7\ X . . . X Tn —> G, where each Tk (k = 1, . . . , n) 
is linearly ordered, and G is a partially ordered abelian group. Let {I, J} be a 
partition of N = {1, . . . , n\. 

(i) ip satisfies condition (A) if and only if 

m m 

(1) X) <P(fli,i, • • • > On.s) ^ ]C pfa/ .A aJ,/) 
3=1 j=l 

for all a* = (aktll . . . , akfTn) £ (7\)m , * = 1, . . . , n. 
(ii) <p satisfies condition (A*) if and only if the following are equivalent for all 

a* £ ( r , ) m , * = l , . . . , n . 
(a) Equality occurs in (1). 
(b) ap and ac are similarly ordered whenever p and q are in the same set 
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/ or J, and oppositely ordered when p and a are in different sets 
I and J, for all 1 S P, q ^ n. 

(c) <p(au . . . ,an) ~*>(a7*,a/). 
(iii) Suppose the range of <p ts linearly ordered. If <p satisfies condition (A) 

and is increasing (respectively decreasing) in uk for k Ç I and decreasing 
(respectively increasing) in ukfor k £ J, then 

(2) *>(ai, . . . ,a„) «<?(a7*, a / ) 

for all chains a^ G Tk
m (k = 1, . . . , n). 

Proof. T o prove necessity of 04) for (1), let 1 S k, i Û n, let xu yt G Tt 

with xt < yu let a* = (xu yu . . . , yt), let uk, vk G Tk with uk < vk, and for 
j 5* i, k let Uj G Tj and a ; = (uh . . . , z^). Case 1: k, i are in the same set 
/ or J. Le t 2Lk = (vk, uk, . . . , uk). After cancelling terms in (1) we obtain 

P ( * I , »*) + ^(y*» UJC) ^ ^(y*, »*) + <P(XU uk), 

so 

and hence (^4) is t rue in this case. Case 2: &, i are in different sets / and / . 
Let ak = (uk, vk, . . . , A*). The proof is similar to Case 1. This completes the 
proof of necessity. 

Before continuing we introduce some notat ion. For aA G Tk
m write 

bN = SifjaN if 1 ^ i < j ^ m are such tha t for P = \k G / : a*,* < aktj}, 
and (2 = {& G / : #&,* > fltj) we have: bk îor k £ P U Q is the sequence 
obtained from afc by interchanging a^* and akJ, while bfc = ak for other &. 

Assume b ^ = Sitj2LN with P and Q as above, and let \f/ — (p(aP>i, aQ>i) — 
<p(aPJ, aQJ). Also, for 0 S k ^ w let 

pk = p r\ {0, . . . ,&} and (?* = ( ? n {0, . . . , * } . 

Then 

n - l 

^ = 2^f \<P\aP,U aQ-Qk,U a>Qk,j) ~~ V\aP,U &Q-Qk+l,U aQk+l,j)\ 
k=0 

n-l 

—Pk.ii aPk,j' aQ, 

j) - <p(aP-Pk+lti, aPk+ltj, aQ)j)] 
k=0 

is a sum of differences like t ha t in (A), so 

(3 ) tiaj-p^aj-Q.i) ^tiaj-pjidj-Qj). 

On writing it out, this is the same as 

(4) <p(fl>N,i) + <p(a>Nj) S <pQ>N,i) + <p(bNtj), 

so 
m m 

(5) X) <p(aN,r) ^ X) <PQ>N,T). 
r==l y = l 
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If (A*) holds, inequali ty (3) and hence (5) will be str ict unless P U Q 9e 0 or 

o*.i = a*j for all k Ç (J - P ) U ( / - Q). 

There are b ( l ) , . . . , b (g) such t h a t b ( l ) = aN,b(q) = (a7*, a / ) and for 
each 1 ^ & ^ ^ — 1 there are i and j such t ha t b(& -f 1) = St 3b(k). Hence 
E 7 « i ? ( 6 ( l ) , ) ^ ^ T.7-MH2),), which proves (1). 

In (ii) it is clear t h a t (b) => (c) => (a) always. W e begin by assuming (A*) 
holds and show t h a t (a) => (b) . Suppose (b) does not hold. T h e n an examina
tion of cases shows there are 1 ^ i < j ^ m such t h a t for P and Q as above 
we have P VJ Q ^ 0, and there is a & Ç ( / - P ) U ( / - (?) such t h a t 
a*;,* 5* a * j . Hence lett ing b ^ = S^a^- we have S ? = i ^ ( a ^ , r ) < YA<P^N,T) ^ 
ET^(^ / , r* , &j , / ) = E i V O / . r * , a / f / ) , since b** = a**, fe = 1, . . . , n. Con
versely if (a) =» (b), then the arguments used in proving necessity of (A) for 
(1) show t h a t (A*) holds. 

We tu rn now to the proof of (iii). Since p(a 7 * , a / ) ^ <p(a/, a / ) , it 
suffices to prove (2) assuming ç is increasing in the / -var iables and decreasing 
in the / -var iab les . In this case let o^- — ô - ^a^y. 1 nen 

(6) <p(bNJ) ^ <p(aNti),<p(aNtj) g <p(bNti). 

W e call <p(aNyi) and <p(aNJ) the "old t e rms" , and y{bNii) and <p(bNJ) the 
"new t e rms" . These are the only terms where ^ ( a ^ ) and ^ ( b ^ ) differ. 

Le t 1 ^ k ^ m, define sequences 

« = (<p(aN)r* : 1 ^ r ^ k), 0 = fefc)r* : 1 ^ r ^ * ) , 

let X) « = Sr=i^(^iv)r* and define XI 5 similarly. W e show t h a t ]C « = 2Z (?• 
If exactly one of the old terms occurs in a, then (6) implies t h a t the only 

new term in (3 is <p(bNti). For if cp(bNJ) is in (3, then (6) implies t h a t (3 contains 
both new terms, so there are m — k terms of <p(a^) which are ^<p(bNtj), in 
which case (6) implies t h a t both old terms occur in a. Hence (3 is obtained 
from a by replacing an old term by the larger term <p(bNfi). T h u s ] L « = E (?• 

If both old terms occur in a, then (4) implies their sum is rg the sum of the 
new terms, which is S the sum of <p(bNji) and any term ^{p(bNtj), in case 
<p(bNJ) is not in (3. Hence ^ a ^ £ §. 

If none of the old terms occur in a, then either a = (3, or (3 is obtained from a 
by replacing one term of a by the larger term <p(bNti). T h u s ^ « ^ £ ^ T h e 
proof of (iii) is finished as in (i). This completes the proof of the theorem. 

When <p is a function of two variables, conditions (A) and (A*) simplify, 
and the a rguments proving (3.1) have a symmet ry wmich shows how small 
the sums can get. 

(3.2) COROLLARY. Let <p : Tx X T2-*G. 

(i) The inequality 

m m m 

(1) £ via,*, b/) ^ £ v(a„ b,) g Z vlfli*, b,*) 
3=1 3=1 3=1 
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holds for all a 6 (Ti)m andb £ (T2)
m if andonlyif ACÂcp(y) = <p(d, y) — <p(c, y) 

is increasing in y £ T2 whenever d > c, d, c £ Ti. 
(ii) ACjd<p is strictly increasing whenever d > c if and only if the following are 

equivalent: (a) Equality occurs in (1) on the left (right); (b) a andb are oppositely 
(similarly) ordered; (c) < (̂a*, b') ^ <p(a, b) (<£>(a*, b*) ~ <?(a, b)) . 

(iii) i j £/^ rawg£ of <p is totally ordered, and in addition to (i), <p is increasing 
(or decreasing) in both variables, then <p(a*, b') < <p(a, b) <S <£>(a*, b*). 

(3.3) Remarks, (i) In (3.2.i) above, replacing <p by — 99 gives the condition 
when the inequalities (1) reverse. The corresponding condition in (iii) is that 
(p be increasing in one variable and decreasing in the other, in which case, 
^ ( a * , b * ) « ^ ( a , b ) « ^ ( a * , b ' ) . 

(ii) The inequalities in (3.1), (3.2) and (3.3.i) may be written equivalently 
by interchanging primes and asterisks, since, for example, <p(a*, b') ~ <p(a'> b*). 

4. Examples for the discrete case. In this section we illustrate the previous 
theorems for particular choices of <p. In all cases, G = R. 

(4.1) Tl = T2 = R and <p(x, y) = x + y : a* + b ' < a + b < a* + b*. 

(4.2) Ti = T2 = R and <p(x, y) = x - y : a* - b* < a - b < a* - b \ 

(4.3) <p(x, y) = xy : For 7\ = T2 = R 

we obtain (1.1) with the indicated condition for equality. 
For 7\ = T2 = [0, 00 [or 7\ = T2 = ] - 0 0 , 0] we obtain a*b' « ab « a*b* 

whenever 

a , b £ [ 0 , 00 [W or a, b £ ] - 0 0 , 0]m. 

When r* = [0, 00 [ (k = 1, . . . , n), I = {1, . . . , n) and J = 0 then 
<£>(̂ i, . . . , un) = u\ . . . un satisfies (A) and we obtain a companion to (1.4), 
also proved by Ruderman: 

m n m n 

z nat.*âznat.*-
If all aitj > 0, then the inequality is strict unless all of the sequences 
a* = (akti, . . . , aktm) are similarly ordered. 

(4.4) <p(x, y) = log(l + xy) 

with Ti X T2 C. {(x, y) : xy > —1} gives: 
m m m 

n (i + a,*»/) è n a+oi6«) s n (i+««w 
t = i i = i i = i 

whenever #**&/ > — 1 for i = 1 and i = m. The inequality is strict except 
as indicated in (3.2.ii). The choice 7\ = T2 = [0, 00 [ or ] — 00, 0] gives: 

log(l + a*b') « log(l + ab) « log(l + a*b*) 
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whenever a, b Ç [0, oo [m or ] —oo , 0]m. 

(4.5) <p(x, y) = -\og(x + y), T± X T2 C {(x, y) : * + y > 0} : 

- log(a* + b ') « - l o g ( a + b) « - log(a* + b*) 

whenever am* + èm* > 0, and in particular we get an inequality of Mine [10]: 

m m m 

1=1 1=1 t = l 

The inequality is strict except as indicated by (3.2.i). The example 
a = (6, 5, 2, 1) b = ( — 3, — 4, —2, 1) shows this inequality may fail under 
the condition at-\- b%^ 0 for all i (but it will hold for vectors of length g 3). 
This inequality is also easily seen to hold for all au bt ^ 0. 

Analogously, <p(u\, . . . , un) = — \og(u\ + . . . + un) with 

Ti X . . . X Tn C {(wi, . . . , un) : ux + . . . + un > 0} 

gives Ruderman's Inequality (1.2) whenever X)^=i^,m* > 0. The inequality is 
strict unless all the afc are similarly ordered. 

(4.6) Suppose <p satisfies the hypotheses of (3.1.hi) and H is increasing and 
convex on an interval containing the range of <p. Then <pi = H o <p satisfies 
condition (^4). In this way [11, p. 165, Theorem 2] and (3.1.i) may be used to 
prove (3.1.hi). If in addition, <p satisfies (̂ 4*) and H is strictly convex, then 
cpi satisfies (A*). The proof follows easily from [11, p. 164, the third inequality 
from the bottom]. 

(4.7) Two theorems of D. London [6] may be obtained using (3.2) and (4.6). 
Replace â  by l/at, so that his results are stated without quotients. His 
conditions on F in both theorems are the same as saying that F is convex and 
increasing on [0, oo [. Hence let H = F, let <p(x,y) = log(l + xy) for 
Theorem 1, and let <p(x,y) = xy for Theorem 2. If F is strictly convex, we 
obtain his conditions for equality. 

(4.8) Ruderman [12] has observed that (1.2) generalizes the inequality 
between the arithmetic and geometric means. Using (3.1) we may obtain the 
following inequality for certain quasi-arithmetic symmetric means. Let U be 
an open interval of R, let / , g : U —» R be strictly monotone and let / o g - 1 

be convex on g[U]. If/ is increasing then 

r H b W + • • • + g(rn)]/n) S f-HLKn) + . . . +f(rn)]/n) 

for all ri, . . . , rn Ç U, while if / is decreasing, the inequality reverses. If 
/ o g~1 is strictly convex, the inequality is strict unless r\ = . . . = rn. To 
prove this, in (3.1.i.l) let 

ax = (ri, r2l . . . , r„-i, r„), 
a2 = (r2, r3> . . . , r„, fi), . . . , aw = (rn, rlt . . . , rn_2> rn_i) 

and note that 

*>(wi, . . . , un) = fo g-HteM + . . . + g(un)]/n) 
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satisfies (A) with / = {1, . . . , n}. If / o g~l is strictly convex, then <p satisfies 
(A*), and the inequality is strict unless all the a* are similarly ordered, in 
which case r\ = . . . = rn. 

(4.9) For cp(x, y) = (x + y)p with real ^ > 0 w e have: 

(i) (a* + h'f « (a + b)p « (a* + b*)27 if p > 1, 
m m m 

GO £ « + 6/)* ^ E (ot + b,)v ^ Z (a / + b/Y if />< 1, 
. 7 = 1 ; ' = 1 J ' = l 

whenever aw* + 6OT* ^ 0. The inequalities are strict except as indicated in 
(3.2) and (3.3). If p is an integer, then (i) holds for all a, b G Rw. The example 
a = (1, 2, 3), b = (3, 1, 2) shows that relation < cannot be used in (ii). 

5. The continuous case. In this section we show how to generalize Theorems 
(3.1) and (3.2) for L°° functions on a finite measure space (X, A, /x) when cp 
is jointly continuous. If / i , . . . , / » G Lœ and <p : Ifl X . . . X Ifn —» R is 
bounded, then the function <p(fi, . . . ,fn) defined by x »-> <p(fi(x), . . . ,fn(x)) 
is in L°°. If {/, J} is a partition of {1, . . . , n\ then (<5f/, ifj) denotes (gi, . . . , gn) 
where gt = ôfi for ^ G / and g* = ifi for i G / . 

(5.1) THEOREM. Let <p : 7\ X . . . X Tn —> R be continuous, where T±, . . . , Tn 

are intervals of R, and let {I, J} be a partition of {1, . . . , n). 
(i) If (p satisfies condition {A) then 

(1) JV( / l , • • • ,fn)d» ^ £ <p{btv If,) 

for all fi G L°° such that Ifi C Tu i = 1, . . . , n. If (X, A, ju) is non-atomic, 
^ew (̂ 4) w necessary for (1). 

(ii) i j ^ satisfies {A*) then the following are equivalent: 
(a) Equality holds in (1). 
(b) / Ï and fj are similarly ordered whenever i and j are in the same set I or 

J, and oppositely ordered whenever i and j are in different sets I and J 
for all 1 ^ i, j ^ n. 

(c) <p(fi, • • . ,/») ~ <p(ôfl, Lfj). 
(iii) / / <p satisfies (A) and is increasing (respectively decreasing) in Ui for 

i G / and decreasing irrespectively increasing) for i G J, then for all f t as in (i) 
we have 

<f(fi, • • • ,/n) « <p(àtr ttj). 

(5.2) COROLLARY. Let <p : 7\ X 2"2 —» R &e continuous, where T\ and T2 are 
intervals of R, and let f, g G L°° with If C T± and IQ C T2. 

(i) If ACjd<£>(;y) is increasing in y G T2 whenever d > c and d, c G 7\, £/£ê  
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(ii) If ACtd<p is strictly increasing, then the following are equivalent: (a) 
Equality occurs in (1) on the left (right); (b) / and g are oppositely (similarly) 
ordered; (c) <p(ôf, tg) ~ <p(f, g) (<p(ôf, ô9) ~ <p(f, g)). 

(iii) If in addition to (i) cp is increasing in both variables or decreasing in both 
variables, then 

(2) cp(ôflh)«<p(f,g)«(p(ôf,ôg). 

(5.3) Remark. T h e conditions t h a t the inequalities in (5.2) reverse are the 
same as in (3.3). If <p satisfies these conditions, then (5.2) may be applied to 
<Pi(x, y) = <p(x, r + s - y),f, and gx = r + s — g, where Ig = [r, s]. 

We begin by showing t h a t it suffices to prove (5.1) and (5.2) lor non-
atomic measure spaces by embedding (X, A, /x) in a non-atomic m.s. 
(X*, A#, M

# ) . (See [9] or [2] for details of this method.) If / Ç M(X, /x), then 
the corresponding member of M(X*, /x#) is denoted b y / ' # . T h e n <p(fi#, . . . ,fj) 
= <p(fi, . . . ,fnY ~ <p(fi, • • • ,fn)- I n addit ion it is not hard to see t h a t 

/ and g are similarly (oppositely) ordered if and only if / # and g# are similarly 
(oppositely) ordered. T h u s if (5.1) and (5.2) are t rue when (X, A, /x) is non-
atomic, then they are t rue for any finite m.s. 

Before proceeding with the proof when (X, A, /x) is non-atomic, we require 
some lemmas. T h e first two are needed when the measure space is not separable, 
for otherwise it is measure theoretically [0, a], 

(5.4) L E M M A . Let (X, A, /x) be non-atomic. Suppose {Dk}%=i is a partition of 
X by measurable sets. If e > 0, then there is a partition {Ei}n

i=,i of X by measurable 
sets such that ix(E~) = fi(X)/n (i — 1, . . . , n) and n(\J{Ei : Et intersects 
more than one Dk) ) < e. 

Proof. Let a = fx(X). If a = 0, the l emma is trivially true. Otherwise, 
rename the sets Dk so t h a t n(Dk) = 0 for 1 ^ k < p and fi(Dfc) > 0 for 
p ^ k ^ N. There is a <t> : [0, a] —> A such t h a t ix(<t>(t)) = t, t ^ u implies 
<t>(t) C <fW, 0(0) = Ui^jc<PDk, and < K E I ^ < Z M ( A ; ) ) = U i ^ A for 
q = p, . . . , N (use [2, (5.6)]). For any n such t h a t a/n ^ mm{n(Dk) : 
p ^ k ^ N} and for Et = <j>(ai/n) — (j>(a(i — l)/n) (i = 1, . . . , n) we 
have t h a t each Ei intersects a t most two sets Dk of positive measure, and a t 
most N — 1 of these Et intersect more than one Dk. T o finish the proof, choose 
n so t h a t also a(N — l)/n < e. 

(5.5) L E M M A . Suppose (X, A, /x) is non-atomic. Let {s(&)*}?=! (k = 1, . . . , n) 
be n sequences of simple functions. Then there are n sequences {/(fe)*}?=i, 
(k = 1, . . . , n) of simple functions such that 

(i) For each i, t(l)t, . . . , t(n)t have the same sets of constancy, and these 
sets have equal measure; 

(ii) For each k = 1, . . . , n, s(k)t — t(k)t —» 0 \x-almost everywhere as 
i —> co ; 

(iii) For each k = 1, . . . , n and i ^ 1, \t(k)t\ ^ | S ( & ) Î | . 
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Proof. For clarity of exposition, we prove the lemma in the case n = 2. 
T h e proof for larger n will be readily apparent . Before considering sequences, 
let s(l) = YX&aàAi and s(2) = Z?=iMi? / where {At} and {Bj} part i t ion X, 
and let {/?*}« = {At H B, : 1 = ^ n, 1 g j ^ />}. Le t e > 0. Then there 
is a measurable part i t ion {Eq}

r
q==i as in Lemma (5.4). For each q = 1, . . . , r, 

if Eg intersects only AiC\Bj then Eq<Z AtC\ Bjf and for k = 1, 2 we define 
/(fe)|Eff = s(&)|(,4, H S , ) ; we define t(k) = 0 elsewhere. Then \t{k)\ S \s(k)\ 
and ju({s(fe) 7e t(k)\) < e. Hence given {s(k)i}™=1 there are sequences 
{*(*)<}?-=i satisfying (i) and (hi) such tha t n({s(k)t j * t(k)t}) < 2~\ Then 

M ( W * ) i - / ( * ) , y > 0 } ) = 
/ CO CO CO \ CO 

M ( U n U {|s(*)« - *(*) , | > l/ f f} ) ^ Hm lim £ 2-* = 0, 

and the proof is finished. 

(5.6) PROPOSITION. Suppose (X, A, /z) is non-atomic, letfi, . . . ,fn £ -Mpf, M), 
/eJ {/, / } 6e a partition of {1, . . . , n\, and let Flf . . . , Fn £ [0, a] w//z F* right 
continuous and decreasing {increasing) when i € I (i £ J). Then the following 
three conditions are equivalent. 

(i) ( / i , . . ; , / , ) ~ ( F x , . . . , F , ) . 
(ii) There is a measure preserving map a : X —> [0, a] such that Ft o a = ft 

fi-almost everywhere, 1 ^ i ^ n. 
(iii) fi and f j are similarly ordered when i and j are in the same set I or J, 

oppositely ordered when i and j are in different sets I and J, and Ft = bfi for 
i G / , Fj = Lfj for j e J. 

Proof. Le t A C B[/JL] mean IJL(A\B) = 0, i.e., 1A ^ 1B ju-almost everywhere. 

Writ ing f = (flf . . . ,fn), F = (Flt . . . , Fn), and t = (h, . . . , tn), the proof 
given in [2, Theorem (6.2)] shows (i) => (ii). Also, (ii) ==> (iii) is s traight
forward . 

W e prove (iii) ==> (i) first in the case 7 = 0 . 
I. If / and g are similarly ordered, then for all / G R, e s s . s u p g | { / ^ t} S 

ess.inf g\{f> i\. This follows from ess.sup g\{f> t + 1/n] —> ess.sup g| {/ > £} 
as n —» oo . 

I I . I f / a n d g are similarly ordered, and t, u Ç R, then { / > t\ C\ {g > u\ = 
{/ > /} or {g > u\ [>]. Indeed, let 

A = {f^t}r\{g>u], B = {f>t}r\{g^u}, 

and suppose both ix(A), ix{B) > 0. Then ess.inf g\B ^ u < ess.supg|-4, 

while (I) implies ess.sup g\A ^ ess.inf g\B, a contradiction. Hence JJL(A) = 0 

or A * W = 0. 

I I I . If {/ > t] C {g > u\ M then {ôf > t] C {8g > u). Indeed, {ôf > t} = 

[ 0 , M { / > ^ } [ C [ 0 , M { ^ > «}[ = { 5 , > «} . 

IV. I t follows from (II) and ( I I I ) t ha t for all t £ Rw, /*{ f > t} = 

M ( H { / Z > M ) = w ( n {«/, > M ) = ^ { F > t } , s o f ~ F . 
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T o deduce the general case from this one, let <p(ti, . . . , tn) — (ui, . . . , un), 

where ut = tt if i G / , = —tt if i G / , let ( / / , . . . , / „ ' ) = <p(fh . . . , / n ) , and 
let TV = «,,/. By the / = 0 case, F ' ~ f, so F = *>(F') ~ *>(f) = f (because 
d-f = - t / ) . 

W e can now prove (5.1) and (5.2). For clarity of exposition we will only 
present a proof of (5.2). T h e proof of (5.1) will then be clear. Wi th regard to 
(5.1.ii) we remark t h a t (5.6) shows t h a t (b) => (c) =» (a) always. T h e proof 
of (5.2) will i l lustrate the proof of (a) => (b) when n = 2. 

Proof of (5.2). Le t v = Y!j=\ai^Ej and w = S7=iM#y> where dj G Tu 

bj G T2 (1 S j ^ m) and /z(-E^) = a/m. In case (i), (3.2.i) gives 

J ta s* r*a 

o «/ «/o 
while in case (ii), (3.2.hi) gives for t = ka/p (1 ^ k ^ w ) 

o */o «̂  o 

Now in (**) each of the integrands is cons tant on each of the intervals 
[{j — l)a/n, ja/n[, so the integrals are linear functions of t on these intervals, 
and hence (**) holds for all 0 S t ^ a. Using now (5.5) there are sequences vt 

and Wi of simple functions like v and w above such t h a t Vf—^f, Wi—>g, 
\Vi\ ^ | / | and \Wi\ S |g|, so 8vi —> of and 8wi —> 8g a lmost everywhere. Since <p 
is bounded on / / X I0, each integrand in (*) or (**) is bounded by a cons tant 
depending only on / a n d g. Tak ing limits and using the dominated convergence 
theorem, we have t h a t (*) or (**) holds with v and w replaced by / and g 
respectively. 

W e now show the condition for equal i ty on the r ight in (3.2.L1). Assume <p 
satisfies (A*), s u p p o s e / and g are not similarly ordered, and we will show t h a t 
the inequali ty on the r ight is strict. There are disjoint sets A and B of positive 
measure such t h a t 

ess .sup/ |^4 < ess.inf / \B and / = ess.sup g\A > ess.inf g\B = r. 

Let r < si < s2 < t and let 

D C {x e A : g(x) ^ s2} and E C {x G B : g(x) ^ ^ } 

with 0 < n(D) = fi(E) = p. Then let aD:D-> [0, /3[ and aE : E -+ [0, /3[ be 
measure preserving and define 

/ ' = à/\D o (TD on D, = bf\E o aE on £ , and = / elsewhere; 

g' — 8Ç\E o aD on Z), = dg\D o cr# on £ , and = g elsewhere. 
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T h e n / 7 ~ / , g' ~ g, ôflD < 8f\E, and bg\E < dg\D. Hence 

J <p(f,g)dv+ I <p(f,g)dn^ I [<p(ôf\Dt ô9\D) + <p(8f\Ei ôg\E)] 
D *J E *J Q 

< I [<p(àf\D, àg\E) + <p(8f\E, ôg\D)] 

= f v(f,g')dv+ ( <f(f ,g')dn. 
*sD vE 

Adding 

r <p(f,gw= f vu',?)*» 
*SX-(D U E) *SX-(D U E) 

we obtain 

Jv(f,g)dv < j<p(f',g')d» g J^ <p(5f>,5s>) = £<p{6f,B,), 

and the proof is finished. 

(5.7) Remark. Depending on the choice of <p and the intervals Tu Theorems 
(5.1) and (5.2) may hold for a larger set of functions than L°°. Indeed, the 
proof shows that in (5.2) inequalities (1) or (2) will hold whenever limit and 
integral can be interchanged in (*) or (**). The condition for equality holds 
if (5.2.1) holds for / \A and g\A for all A £ A whenever it holds for/ and g. 

For example, suppose / i , . . . ,fm 6 IP implies <p(fi, . . . ,fm) G L1. Now it 
follows from [9, p. 93] that \v\ S | / | implies \bv\ ^ \bf\ and \iv\ S |*/|, so we 
may use [3] and the dominated convergence theorem to conclude that (5.1.1) 
and (5.2.1) hold for all LP functions. Finally, since/i , . . . ,fm Ç LP implies 

fi\A, . . . ,fm\A G LP, the condition for equality also holds for all LP functions. 
Other illustrations appear in the following examples. 

6. Examples for the continuous case. 

(6.1) (i) df + i, < f + g < ôf + ôg for a l l / , g e L\ 

(ii) ôf- ôg <f- g < ôr- hfor a l l / , g £ LK 

The (i) and (ii) are easily seen to be equivalent using [9, p. 93]. While 
bf+0 <ôf+ôg is well-known (see [9, p. 108]), the fact that 8f — ôg < f — g 
is new. Then a theorem of Luxemburg [9, p. 107] implies \ôf — ôg\ < \f — g\, 
generalizing [8, Proposition 1, p. 34]. It then follows that \\fp — / | | i—>0 
implies ||<5//3 — 5/||i—»0, where {fp] is a net. Using [9, (9.1)], the inequality 
àf ~~" àg "< / "" g c a n be written equivalently: 

J
* /* /*m(E) 

8/ + «,(a - t)dt ^ 5. 
E *J E JO 

m(E) 
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for all Lebesgue measurable E C [0, a], where m denotes Lebesgue measure. 
This is an interesting generalization of [9, (10.1)]. 

(6.2) An inequality of Hardy-Littlewood-Polya-Luxemburg: 

fV, ^ (fgdnû f «A 
«/o «/ «/o 

holds for all / , g G £ œ , and, using monotone convergence, it is easily seen to 
hold for all 0 ^ / , g G M. T h e n as in [9, p . 102], it m a y be shown to hold 
whenever ô\f\ô\g\ G Lx[0, a ] . T h e inequalities are str ict except as indicated in 
(5.2). Similarly, bfig <</g « ôfôg for all 0 ^ / , g G ikT such t h a t <$A G L^O, a]. 

(6.3) (i) f l o g ( l + 5 , 0 ^ flog(l + /g)dM ^ f l o g ( l + ÔA) 

holds for all / , g G £°° satisfying both 

(ii) $r(0K(0) > - 1 and ^ ( a - ) i , ( a - ) > - 1 , 

because (ii) is equivalent to: IfXlgCZ {(x,y) : xy > —1}. In addition, 
using monotone convergence, (i) can be shown to hold if 0 S f, g G M or 
0 è / , g G iW. Then (i) can be shown to hold for all / , g G M satisfying (ii) 
using the following observations. First, log(l + fg) = log(l + / + g + ) + 
log(l ~ f+g~) + log(l -f~g+) + log(l + / - | T ) . Next, when (ii) holds for 
the pair / , g it also holds for each of the pairs: / + , g+\ / + , — g~\ —f~, g+; 
—f~, —g~. Finally, when (ii) holds, then: /unbounded above implies g ^ 0; 

/ unbounded below implies g ^ 0; and the same is true when/ and g are inter
changed. Clearly if / , g G M satisfy (ii) so do / \A and g\A for any A G A. 
Hence the inequalities are strict as indicated in (5.2). 

Similarly, log(l + bgh) « log(l + fg) « log(l + ôfôg) for all 0 ^ / , g G M 
or 0 ^ / , g G M such that log(l + «A) £ •L1["°J «]• 

(6.4) (i) f log(5, + ôg) ^ f log ( / + g)dix ^ f l o g t f , + i,) 
«/ o */ «/ o 

for all / , g G £°° such that 

(ii) */(«-) + « . ( « - ) > 0 , 

since (ii) is equivalent to If X Ig C. {(x, y) : x + y > 0}. Actually, (i) holds 
for al l / , g G M satisfying (ii) since/ and g are then bounded below, so we may 
approximate them by increasing sequences of bounded functions satisfying (ii) 
and use the B. Levi monotone convergence theorem [5, p. 172]. The inequalities 
are strict except as indicated in (5.3). Similarly, if / , g G M satisfy (ii) and 
log(ô, + i0) G -^[0, a] then -log(ôf + h) « - l o g ( / + g) « - l o g ( 5 , + «,). 

(6.5) We have the following continuous version of London's Theorems. 
Suppose 0 ^ / , ^ I o r 0 e / , ^ I . 
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(i) Ii H is convex, increasing and continuous on [0, oo[, then 

f H(8/Ls) S (H(fg)dn ^ f f f ( 5 A ) -

(ii) If H(ex) is convex, increasing and continuous on [0, OD[} then 

("H(I + bfh) g ('H(I +fg)d» ^ fH(i + SA). 
*) o «/ «/ o 

In either case, if H is strictly convex, then we have equality on the left (right) 
if and only if / and g are oppositely (similarly) ordered if and only if 

(6.6) For real p > 0 we have: 

0) («, + o* « (/ + gy « (8f + s,y ap>i, 

(ii) f («, + 5,r ^ f ( / + g)'«*„ ^ f (s, + hy if /»< l, 
•7 o «/ t / o 

whenever (a) ôf(a-) + èh(a-) ^ 0 and / , g <E Lp; or (b) 0 ^ / , g Ç if; or 
(c) >̂ is an integer and / , g G fA The (i) gives a lower bound to an inequality 
of Chong and Rice [2, p. 88]. The inequalities are strict except as indicated 
in (5.2) and (5.3). 

REFERENCES 

1. T. M. Apostol, Mathematical analysis (Addison-Wesley, 1957). 
2. K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queen's Papers 

in Pure and Applied Mathematics, No. 28 (Queen's University, Kingston, Ontario, 
Canada, 1971). 

3. P. R. Halmos, Functions of Integrable Functions, J. Indian Math. Soc. 11 (1947), 81-84. 
4. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge University Press, 

Cambridge, 1934). 
5. E. Hewett and K. Stromberg, Real and abstract analysis (Springer-Verlag, New York, 

1965). 
6. David London, Rearrangement inequalities involving convex functions, Pacific J. Math. 34 

(1970), 749-752. 
7. G. G. Lorentz, An Inequality for rearrangements, Amer. Math. Monthly 60 (1953), 176-179. 
8. G. G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, 

J. Functional Analysis 2 (1968), 31-51. 
9. W. A. J. Luxemburg, Rearrangement invariant Banach function spaces, Queen's Papers in 

Pure and Applied Math. 10 (1967), 83-144. 
10. Henryk Mine, Rearrangement theorems, Notices Amer. Math. Soc. 17 (1970), 400. 
11. D. S. Mitrinovic, Analytic inequalities (Springer-Ver lag, New York, 1970). 
12. H. D. Ruderman, Two new inequalities, Amer. Math. Monthly 59 (1952), 29-32. 

Carnegie-Mellon University, 
Pittsburgh, Pennsylvania 

https://doi.org/10.4153/CJM-1972-093-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-093-x

