REARRANGEMENT INEQUALITIES

PETER W. DAY

1. Introduction. In recent years a number of inequalities have appeared which involve rearrangements of vectors in \mathbb{R}^n and of measurable functions on a finite measure space. These inequalities are not only interesting in themselves, but also are important in investigations involving rearrangement invariant Banach function spaces and interpolation theorems for these spaces [2; 8; 9].

The most famous inequality of this type for vectors is due to Hardy-Littlewood and Polya [4, Theorem 368]:

(1.1)
$$\sum_{i=1}^{m} a_i^* b_i' \leq \sum_{i=1}^{m} a_i b_i \leq \sum_{i=1}^{m} a_i^* b_i^*$$

with equality on the left (right) if and only if $\mathbf{a} = (a_1, \ldots, a_m)$ and $\mathbf{b} = (b_1, \ldots, b_m)$ are oppositely (similarly) ordered. Here the $a_i^*(a_i')$ are the numbers a_i in decreasing (increasing) order.

An example involving more than two vectors is the following one of H. D. Ruderman [12]:

(1.2)
$$\prod_{j=1}^{m} \sum_{k=1}^{n} a_{k,j} \ge \prod_{j=1}^{m} \sum_{k=1}^{n} a_{k,j}^{*}$$

where $a_{k,j} > 0$ for all k, j, and for each k the $a_{k,j}^*$ are the numbers $a_{k,1}, \ldots, a_{k,m}$ in decreasing order. A condition for equality was not given.

Other inequalities of these types are possible, and general theorems have been given by G. G. Lorentz [7] and D. London [6].

Workers with inequalities generally recognize that many inequalities which are proved for real numbers by real variable methods also hold in more general systems. In Section 3 we let $\varphi : T_1 \times T_2 \to G$ where T_1, T_2 are ordered sets, and G is a partially ordered abelian group, and we give a necessary and sufficient condition on φ so that

$$\sum_{j=1}^{n} \varphi(a_{j}^{*}, b_{j}') \leq \sum_{j=1}^{n} \varphi(a_{j}, b_{j}) \leq \sum_{j=1}^{n} \varphi(a_{j}^{*}, b_{j}^{*})$$

for all chains $\mathbf{a} \in T_{\mathbf{1}^n}$, $\mathbf{b} \in T_{\mathbf{2}^n}$. Also we give a necessary and sufficient condition on φ so that equality holds on the right (left) if and only if \mathbf{a} and \mathbf{b} are similarly (oppositely) ordered. We give a sufficient condition so that $\varphi(\mathbf{a}^*, \mathbf{b}') \ll \varphi(\mathbf{a}, \mathbf{b}) \ll \varphi(\mathbf{a}^*, \mathbf{b}^*)$, where \ll denotes a preorder relation of

Received September 22, 1971 and in revised form, May 16, 1972.

Hardy, Littlewood, and Polya. Similar results to these are given when φ is a function of *n* variables.

W. A. J. Luxemburg [9] has proved analogs of discrete rearrangement inequalities for measurable functions on a finite measure space. In Section 5, all our discrete results are generalized for real valued essentially bounded measurable functions on a finite measure space. For specific choices of φ the inequalities are shown to hold for even larger classes of functions. The concept of "similarly ordered" is generalized for measurable functions to give a necessary and sufficient condition for equality.

Finally in Sections 4 and 6 we give numerous examples to show how to obtain many known rearrangement inequalities. Our analysis gives conditions for equality, in many cases for the first time.

2. Definitions and notation. Let *T* be a partially ordered set. If $\mathbf{a} = (a_1, \ldots, a_m) \in T^m$, then **a** will be called a *chain* if $\{a_1, \ldots, a_m\}$ is linearly ordered. If **a** is a chain, then $\mathbf{a}^* = (a_1^*, \ldots, a_m^*)(\mathbf{a}' = (a_1', \ldots, a_m'))$ denotes the vector obtained by rearranging the components of **a** in decreasing (increasing) order. If **a** and **b** are chains in a partially ordered abelian group *G* (written additively), then $\mathbf{b} \ll \mathbf{a}$ means $\sum_{i=1}^k b_i^* \leq \sum_{i=1}^k a_i^*$ for all $1 \leq k \leq m$; and $\mathbf{b} \prec \mathbf{a}$ means $\mathbf{b} \ll \mathbf{a}$ and $\sum_{i=1}^m b_i^* = \sum_{i=1}^m a_i^*$. It will be notationally simpler and should cause no confusion to denote every partial order under consideration by \leq . A partial order is understood to be anti-symmetric, and x < y is used to mean $x \leq y$ and $x \neq y$.

Let T_1 and T_2 be partially ordered sets. Chains $\mathbf{a} \in T_1^m$ and $\mathbf{b} \in T_2^m$ are said to be *similarly (oppositely) ordered* if for every $1 \leq i, j \leq m, a_i < a_j$ implies $b_i \leq b_j$ ($b_j \leq b_i$).

Let T_1, \ldots, T_n be partially ordered sets, and let

$$\mathbf{a}_k = (a_{k,1}, \ldots, a_{k,m}) \in (T_k)^m.$$

It is sometimes necessary to substitute values for some of the variables x_i in (x_1, \ldots, x_n) and then consider the result as a function of the remaining x_i . Let I, J, and K be disjoint subsets of $N = \{1, \ldots, n\}$. To denote the result of substituting $a_{i,j}$ for x_i when $i \in I$, $a_{i,k}$ for x_i when $i \in J$, and $a_{i,l}$ for x_i when $i \in K$, we use the notation $(a_{I,j}, a_{J,k}, a_{K,l})$. In addition, $(\mathbf{a}_1, \ldots, \mathbf{a}_n)$ denotes the sequence of vectors given by $j \mapsto (a_{i,j}, \ldots, a_{n,j})$, and similarly for $(\mathbf{a}_I^*, \mathbf{a}_J')$ when $\{I, J\}$ is a partition of $\{1, \ldots, n\}$.

Let φ : $T_1 \times \ldots \times T_n \to G$. When I and J are partitions of $N = \{1, \ldots, n\}$, we define conditions (A) and (A^*) on φ as follows.

(A)
$$[(A^*)] \text{ If } x_i, y_i \in T_i \text{ with } x_i < y_i, \text{ and } k \neq i,$$

then $\varphi(y_i) - \varphi(x_i)$ is [strictly] increasing in u_k when k and i are in the same set I or J, and [strictly] decreasing in u_k when k and i are in different sets I and J, for all $1 \leq i, k \leq n$.

PETER W. DAY

If $G = \mathbf{R}$, if $T_k = [r_k, s_k]$ with $r_k < s_k$, if the first partials of φ are separately continuous on $T_1 \times \ldots \times T_n$, and if the second partials of φ exist on $T =]r_1, s_1[\times \ldots \times]r_n, s_n[$, then [1, Theorems 5–7 and 5–10] implies that condition (A) is equivalent to:

 $(A)' \quad \partial^2 \varphi / \partial u_i \partial u_j \ge 0$, when *i* and *j* are in the same set *I* or *J* ≤ 0 , when *i* and *j* are in different sets *I* and *J*

on T for all $1 \leq i \neq j \leq n$.

A sufficient differentiability condition for (A^*) is $(A^*)'$:

 φ satisfies (A)' and in addition, $\{u_i \in]r_i, s_i[: \partial^2 \varphi / \partial u_i \partial u_j = 0\}$ contains no open interval for all $r_k < u_k < s_k$, and $1 \leq k \neq i \leq n$.

Let (X, Λ, μ) be a finite measure space with $\alpha = \mu(X) < \infty$, and let $M = M(X, \mu)$ denote the set of all extended real valued measurable functions on X. If $f \in M$, then the *decreasing rearrangement* δ_f of f is defined by

$$\delta_f(t) = \inf\{s \in \mathbf{R} : \mu(\{x : f(x) > s\}) \leq t\} \text{ for } 0 \leq t \leq \alpha.$$

Also $\iota_f(t) = \delta_f((\alpha - t) -)$ denotes the *increasing rearrangement* of f, 1_E denotes the *characteristic function* of $E \in \Lambda$; $f \mid E$ denotes the *restriction of* f to E; and we let $I_f = [\text{ess. inf } f, \text{ess. sup } f].$

If $f, g \in M$ then $f \sim g$ means $\delta_f = \delta_g$. This is equivalent to having $\mu(\{f > t\}) = \mu(\{g > t\})$ for all $t \in \mathbf{R}$. Let $(t_1, \ldots, t_n) > (u_1, \ldots, u_n)$ mean $t_i > u_i, 1 \leq i \leq n$. For measurable $\mathbf{f}, \mathbf{g} : X \to \mathbf{R}^n$ we define $\mathbf{f} \sim \mathbf{g}$ to mean $\mu(\{\mathbf{f} > \mathbf{t}\}) = \mu(\{\mathbf{g} > \mathbf{t}\})$ for all $\mathbf{t} \in \mathbf{R}^n$.

We will say that $f, g \in M$ are similarly ordered if ess. $\sup f | A < \operatorname{ess.inf} f | B$ implies ess. $\sup g | A \leq \operatorname{ess.inf} g | B$ whenever $A, B \in \Lambda$ are disjoint and each has positive measure. Analogously, $f, g \in M$ are called *oppositely ordered* if f and -g are similarly ordered.

3. The discrete case. This section is devoted to the proof of the following theorem.

(3.1) THEOREM. Let $\varphi: T_1 \times \ldots \times T_n \to G$, where each T_k $(k = 1, \ldots, n)$ is linearly ordered, and G is a partially ordered abelian group. Let $\{I, J\}$ be a partition of $N = \{1, \ldots, n\}$.

(i) φ satisfies condition (A) if and only if

(1)
$$\sum_{j=1}^{m} \varphi(a_{i,j}, \ldots, a_{n,j}) \leq \sum_{j=1}^{m} \varphi(a_{I,j}^{*}, a_{J,j}')$$

for all $\mathbf{a}_k = (a_{k,1}, \ldots, a_{k,m}) \in (T_k)^m, k = 1, \ldots, n.$

(ii) φ satisfies condition (A*) if and only if the following are equivalent for all $\mathbf{a}_k \in (T_k)^m$, k = 1, ..., n.

- (a) Equality occurs in (1).
- (b) \mathbf{a}_p and \mathbf{a}_q are similarly ordered whenever p and q are in the same set

I or J, and oppositely ordered when p and q are in different sets I and J, for all $1 \leq p, q \leq n$.

(c) $\varphi(\mathbf{a}_1,\ldots,\mathbf{a}_n) \sim \varphi(\mathbf{a}_I^*,\mathbf{a}_J').$

(iii) Suppose the range of φ is linearly ordered. If φ satisfies condition (A) and is increasing (respectively decreasing) in u_k for $k \in I$ and decreasing (respectively increasing) in u_k for $k \in J$, then

(2)
$$\varphi(\mathbf{a}_1,\ldots,\mathbf{a}_n) \ll \varphi(\mathbf{a}_I^*,\mathbf{a}_J')$$

for all chains $\mathbf{a}_k \in T_k^m$ $(k = 1, \ldots, n)$.

Proof. To prove necessity of (A) for (1), let $1 \leq k, i \leq n$, let $x_i, y_i \in T_i$ with $x_i < y_i$, let $\mathbf{a}_i = (x_i, y_i, \dots, y_i)$, let $u_k, v_k \in T_k$ with $u_k < v_k$, and for $j \neq i, k$ let $u_j \in T_j$ and $\mathbf{a}_j = (u_j, \dots, u_j)$. Case 1: k, i are in the same set I or J. Let $\mathbf{a}_k = (v_k, u_k, \dots, u_k)$. After cancelling terms in (1) we obtain

$$\varphi(x_i, v_k) + \varphi(y_i, u_k) \leq \varphi(y_i, v_k) + \varphi(x_i, u_k),$$

so

$$\varphi(y_i, u_k) - \varphi(x_i, u_k) \leq \varphi(y_i, v_k) - \varphi(x_i, v_k)$$

and hence (A) is true in this case. Case 2: k, i are in different sets I and J. Let $\mathbf{a}_k = (u_k, v_k, \ldots, v_k)$. The proof is similar to Case 1. This completes the proof of necessity.

Before continuing we introduce some notation. For $\mathbf{a}_k \in T_k^m$ write $\mathbf{b}_N = S_{i,j}\mathbf{a}_N$ if $1 \leq i < j \leq m$ are such that for $P = \{k \in I : a_{k,i} < a_{k,j}\}$, and $Q = \{k \in J : a_{k,i} > a_{k,j}\}$ we have: \mathbf{b}_k for $k \in P \cup Q$ is the sequence obtained from \mathbf{a}_k by interchanging $a_{k,i}$ and $a_{k,j}$, while $\mathbf{b}_k = \mathbf{a}_k$ for other k.

Assume $\mathbf{b}_N = S_{i,j}\mathbf{a}_N$ with P and Q as above, and let $\boldsymbol{\psi} = \varphi(a_{P,i}, a_{Q,i}) - \varphi(a_{P,j}, a_{Q,j})$. Also, for $0 \leq k \leq n$ let

$$P_k = P \cap \{0,\ldots,k\}$$
 and $Q_k = Q \cap \{0,\ldots,k\}.$

Then

$$\psi = \sum_{k=0}^{n-1} \left[\varphi(a_{P,i}, a_{Q-Q_{k,i}}, a_{Q_{k,j}}) - \varphi(a_{P,i}, a_{Q-Q_{k+1},i}, a_{Q_{k+1,j}}) \right] \\ + \sum_{k=0}^{n-1} \left[\varphi(a_{P-P_{k,i}}, a_{P_{k,j}}, a_{Q,j}) - \varphi(a_{P-P_{k+1,i}}, a_{P_{k+1,j}}, a_{Q,j}) \right]$$

is a sum of differences like that in (A), so

(3)
$$\psi(a_{I-P,i}, a_{J-Q,i}) \leq \psi(a_{I-P,j}, a_{J-Q,j}).$$

On writing it out, this is the same as

(4)
$$\varphi(a_{N,i}) + \varphi(a_{N,j}) \leq \varphi(b_{N,i}) + \varphi(b_{N,j}),$$

so

(5)
$$\sum_{r=1}^{m} \varphi(a_{N,r}) \leq \sum_{r=1}^{m} \varphi(b_{N,r}).$$

PETER W. DAY

If (A^*) holds, inequality (3) and hence (5) will be strict unless $P \cup Q \neq \emptyset$ or $a_{k,i} = a_{k,j}$ for all $k \in (I - P) \cup (J - Q)$.

There are $\mathbf{b}(1), \ldots, \mathbf{b}(q)$ such that $\mathbf{b}(1) = \mathbf{a}_N, \mathbf{b}(q) = (\mathbf{a}_I^*, \mathbf{a}_J)$ and for each $1 \leq k \leq n-1$ there are *i* and *j* such that $\mathbf{b}(k+1) = S_{i,j}\mathbf{b}(k)$. Hence $\sum_{j=1}^m \varphi(b(1)_j) \leq \ldots \leq \sum_{j=1}^m \varphi(b(q)_j)$, which proves (1).

In (ii) it is clear that (b) \Rightarrow (c) \Rightarrow (a) always. We begin by assuming (A^*) holds and show that (a) \Rightarrow (b). Suppose (b) does not hold. Then an examination of cases shows there are $1 \leq i < j \leq m$ such that for P and Q as above we have $P \cup Q \neq \emptyset$, and there is a $k \in (I - P) \cup (J - Q)$ such that $a_{k,i} \neq a_{k,j}$. Hence letting $\mathbf{b}_N = S_{i,j}\mathbf{a}_N$ we have $\sum_{r=1}^m \varphi(a_{N,r}) < \sum_{1}^m \varphi(b_{N,r}) \leq \sum_{1}^m \varphi(b_{I,r}^*, b_{J,r}') = \sum_{1}^m \varphi(a_{I,r}^*, a_{J,r}')$, since $\mathbf{b}_k^* = \mathbf{a}_k^*, k = 1, \ldots, n$. Conversely if (a) \Rightarrow (b), then the arguments used in proving necessity of (A) for (1) show that (A^*) holds.

We turn now to the proof of (iii). Since $\varphi(\mathbf{a}_I^*, \mathbf{a}_J') \sim \varphi(\mathbf{a}_I', \mathbf{a}_J^*)$, it suffices to prove (2) assuming φ is increasing in the *I*-variables and decreasing in the *J*-variables. In this case let $\mathbf{b}_N = S_{i,j}\mathbf{a}_N$. Then

(6)
$$\varphi(b_{N,j}) \leq \varphi(a_{N,i}), \varphi(a_{N,j}) \leq \varphi(b_{N,i}).$$

We call $\varphi(a_{N,i})$ and $\varphi(a_{N,j})$ the "old terms", and $\varphi(b_{N,i})$ and $\varphi(b_{N,j})$ the "new terms". These are the only terms where $\varphi(\mathbf{a}_N)$ and $\varphi(\mathbf{b}_N)$ differ.

Let $1 \leq k \leq m$, define sequences

$$\boldsymbol{\alpha} = (\varphi(a_N)_r^* : 1 \leq r \leq k), \quad \boldsymbol{\beta} = (\varphi(b_N)_r^* : 1 \leq r \leq k),$$

let $\sum \alpha = \sum_{r=1}^{k} \varphi(a_{N})_{r}^{*}$ and define $\sum \beta$ similarly. We show that $\sum \alpha \leq \sum \beta$.

If exactly one of the old terms occurs in α , then (6) implies that the only new term in β is $\varphi(b_{N,i})$. For if $\varphi(b_{N,j})$ is in β , then (6) implies that β contains both new terms, so there are m - k terms of $\varphi(\mathbf{a}_N)$ which are $\leq \varphi(b_{N,j})$, in which case (6) implies that both old terms occur in α . Hence β is obtained from α by replacing an old term by the larger term $\varphi(b_{N,i})$. Thus $\sum \alpha \leq \sum \beta$.

If both old terms occur in α , then (4) implies their sum is \leq the sum of the new terms, which is \leq the sum of $\varphi(b_{N,i})$ and any term $\geq \varphi(b_{N,j})$, in case $\varphi(b_{N,j})$ is not in \mathfrak{g} . Hence $\sum \alpha \leq \sum \mathfrak{g}$.

If none of the old terms occur in α , then either $\alpha = \beta$, or β is obtained from α by replacing one term of α by the larger term $\varphi(b_{N,i})$. Thus $\sum \alpha \leq \sum \beta$. The proof of (iii) is finished as in (i). This completes the proof of the theorem.

When φ is a function of two variables, conditions (A) and (A*) simplify, and the arguments proving (3.1) have a symmetry which shows how small the sums can get.

(3.2) COROLLARY. Let $\varphi : T_1 \times T_2 \to G$. (i) The inequality

(1)
$$\sum_{j=1}^{m} \varphi(a_{j}^{*}, b_{j}') \leq \sum_{j=1}^{m} \varphi(a_{j}, b_{j}) \leq \sum_{j=1}^{m} \varphi(a_{j}^{*}, b_{j}^{*})$$

934

holds for all $\mathbf{a} \in (T_1)^m$ and $\mathbf{b} \in (T_2)^m$ if and only if $\Delta_{c,d}\varphi(y) = \varphi(d, y) - \varphi(c, y)$ is increasing in $y \in T_2$ whenever $d > c, d, c \in T_1$.

(ii) $\Delta_{c,d}\varphi$ is strictly increasing whenever d > c if and only if the following are equivalent: (a) Equality occurs in (1) on the left (right); (b) **a** and **b** are oppositely (similarly) ordered; (c) $\varphi(\mathbf{a}^*, \mathbf{b}') \sim \varphi(\mathbf{a}, \mathbf{b}) (\varphi(\mathbf{a}^*, \mathbf{b}^*) \sim \varphi(\mathbf{a}, \mathbf{b}))$.

(iii) If the range of φ is totally ordered, and in addition to (i), φ is increasing (or decreasing) in both variables, then $\varphi(\mathbf{a}^*, \mathbf{b}') \ll \varphi(\mathbf{a}, \mathbf{b}) \ll \varphi(\mathbf{a}^*, \mathbf{b}^*)$.

(3.3) Remarks. (i) In (3.2.i) above, replacing φ by $-\varphi$ gives the condition when the inequalities (1) reverse. The corresponding condition in (iii) is that φ be increasing in one variable and decreasing in the other, in which case, $\varphi(\mathbf{a}^*, \mathbf{b}^*) \ll \varphi(\mathbf{a}, \mathbf{b}) \ll \varphi(\mathbf{a}^*, \mathbf{b}')$.

(ii) The inequalities in (3.1), (3.2) and (3.3.i) may be written equivalently by interchanging primes and asterisks, since, for example, $\varphi(\mathbf{a}^*, \mathbf{b}') \sim \varphi(\mathbf{a}', \mathbf{b}^*)$.

4. Examples for the discrete case. In this section we illustrate the previous theorems for particular choices of φ . In all cases, $G = \mathbf{R}$.

(4.1) $T_1 = T_2 = \mathbf{R}$ and $\varphi(x, y) = x + y : \mathbf{a}^* + \mathbf{b}' \prec \mathbf{a} + \mathbf{b} \prec \mathbf{a}^* + \mathbf{b}^*$. (4.2) $T_1 = T_2 = \mathbf{R}$ and $\varphi(x, y) = x - y : \mathbf{a}^* - \mathbf{b}^* \prec \mathbf{a} - \mathbf{b} \prec \mathbf{a}^* - \mathbf{b}'$. (4.3) $\varphi(x, y) = xy$: For $T_1 = T_2 = \mathbf{R}$

we obtain (1.1) with the indicated condition for equality.

For $T_1 = T_2 = [0, \infty [\text{ or } T_1 = T_2 =] -\infty, 0]$ we obtain $\mathbf{a}^* \mathbf{b}' \ll \mathbf{a} \mathbf{b} \ll \mathbf{a}^* \mathbf{b}^*$ whenever

$$\mathbf{a}, \mathbf{b} \in [0, \infty [^m \text{ or } \mathbf{a}, \mathbf{b} \in] -\infty, 0]^m.$$

When $T_k = [0, \infty[(k = 1, ..., n), I = \{1, ..., n\}$ and $J = \emptyset$ then $\varphi(u_1, ..., u_n) = u_1 ... u_n$ satisfies (A) and we obtain a companion to (1.4), also proved by Ruderman:

$$\sum_{j=1}^{m} \prod_{i=1}^{n} a_{i,j} \leq \sum_{j=1}^{m} \prod_{i=1}^{n} a_{i,j}^{*}.$$

If all $a_{i,j} > 0$, then the inequality is strict unless all of the sequences $\mathbf{a}_k = (a_{k,1}, \ldots, a_{k,m})$ are similarly ordered.

(4.4) $\varphi(x, y) = \log(1 + xy)$

with $T_1 \times T_2 \subset \{(x, y) : xy > -1\}$ gives:

$$\prod_{i=1}^{m} (1 + a_i^* b_i') \leq \prod_{i=1}^{m} (1 + a_i b_i) \leq \prod_{i=1}^{m} (1 + a_i^* b_i^*)$$

whenever $a_i^*b_i' > -1$ for i = 1 and i = m. The inequality is strict except as indicated in (3.2.ii). The choice $T_1 = T_2 = [0, \infty [\text{ or }] -\infty, 0]$ gives:

$$\log(1 + \mathbf{a}^*\mathbf{b}') \ll \log(1 + \mathbf{a}\mathbf{b}) \ll \log(1 + \mathbf{a}^*\mathbf{b}^*)$$

whenever $\mathbf{a}, \mathbf{b} \in [0, \infty [^m \text{ or }] - \infty, 0]^m$.

(4.5)
$$\varphi(x, y) = -\log(x + y), T_1 \times T_2 \subset \{(x, y) : x + y > 0\}:$$

 $-\log(\mathbf{a^*} + \mathbf{b'}) \ll -\log(\mathbf{a} + \mathbf{b}) \ll -\log(\mathbf{a^*} + \mathbf{b^*})$

whenever $a_m^* + b_m^* > 0$, and in particular we get an inequality of Minc [10]:

$$\prod_{i=1}^{m} (a_i^* + b_i^*) \leq \prod_{i=1}^{m} (a_i + b_i) \leq \prod_{i=1}^{m} (a_i^* + b_i').$$

The inequality is strict except as indicated by (3.2.i). The example $\mathbf{a} = (6, 5, 2, 1)$ $\mathbf{b} = (-3, -4, -2, 1)$ shows this inequality may fail under the condition $a_i + b_i \ge 0$ for all *i* (but it will hold for vectors of length ≤ 3). This inequality is also easily seen to hold for all $a_i, b_i \ge 0$.

Analogously, $\varphi(u_1, \ldots, u_n) = -\log(u_1 + \ldots + u_n)$ with

$$T_1 \times \ldots \times T_n \subset \{(u_1, \ldots, u_n) : u_1 + \ldots + u_n > 0\}$$

gives Ruderman's Inequality (1.2) whenever $\sum_{k=1}^{n} a_{k,m}^* > 0$. The inequality is strict unless all the \mathbf{a}_k are similarly ordered.

(4.6) Suppose φ satisfies the hypotheses of (3.1.iii) and H is increasing and convex on an interval containing the range of φ . Then $\varphi_1 = H \circ \varphi$ satisfies condition (A). In this way [11, p. 165, Theorem 2] and (3.1.i) may be used to prove (3.1.iii). If in addition, φ satisfies (A*) and H is strictly convex, then φ_1 satisfies (A*). The proof follows easily from [11, p. 164, the third inequality from the bottom].

(4.7) Two theorems of D. London [6] may be obtained using (3.2) and (4.6). Replace a_i by $1/a_i$, so that his results are stated without quotients. His conditions on F in both theorems are the same as saying that F is convex and increasing on $[0, \infty]$. Hence let H = F, let $\varphi(x, y) = \log(1 + xy)$ for Theorem 1, and let $\varphi(x, y) = xy$ for Theorem 2. If F is strictly convex, we obtain his conditions for equality.

(4.8) Ruderman [12] has observed that (1.2) generalizes the inequality between the arithmetic and geometric means. Using (3.1) we may obtain the following inequality for certain quasi-arithmetic symmetric means. Let U be an open interval of **R**, let $f, g: U \to \mathbf{R}$ be strictly monotone and let $f \circ g^{-1}$ be convex on g[U]. If f is increasing then

$$g^{-1}([g(r_1) + \ldots + g(r_n)]/n) \leq f^{-1}([f(r_1) + \ldots + f(r_n)]/n)$$

for all $r_1, \ldots, r_n \in U$, while if f is decreasing, the inequality reverses. If $f \circ g^{-1}$ is strictly convex, the inequality is strict unless $r_1 = \ldots = r_n$. To prove this, in (3.1.i.1) let

$$\mathbf{a}_{1} = (r_{1}, r_{2}, \ldots, r_{n-1}, r_{n}),$$
$$\mathbf{a}_{2} = (r_{2}, r_{3}, \ldots, r_{n}, r_{1}), \ldots, \mathbf{a}_{n} = (r_{n}, r_{1}, \ldots, r_{n-2}, r_{n-1})$$

and note that

$$\varphi(u_1,\ldots,u_n)=f\circ g^{-1}([g(u_1)+\ldots+g(u_n)]/n)$$

936

satisfies (A) with $I = \{1, \ldots, n\}$. If $f \circ g^{-1}$ is strictly convex, then φ satisfies (A*), and the inequality is strict unless all the \mathbf{a}_k are similarly ordered, in which case $r_1 = \ldots = r_n$.

(4.9) For $\varphi(x, y) = (x + y)^p$ with real p > 0 we have:

(i) $(a^* + b')^p \ll (a + b)^p \ll (a^* + b^*)^p$ if p > 1,

(ii)
$$\sum_{j=1}^{m} (a_j^* + b_j^*)^p \leq \sum_{j=1}^{m} (a_j + b_j)^p \leq \sum_{j=1}^{m} (a_j^* + b_j')^p$$
 if $p < 1$,

whenever $a_m^* + b_m^* \ge 0$. The inequalities are strict except as indicated in (3.2) and (3.3). If p is an integer, then (i) holds for all $\mathbf{a}, \mathbf{b} \in \mathbf{R}^m$. The example $\mathbf{a} = (1, 2, 3), \mathbf{b} = (3, 1, 2)$ shows that relation \ll cannot be used in (ii).

5. The continuous case. In this section we show how to generalize Theorems (3.1) and (3.2) for L^{∞} functions on a finite measure space (X, Λ, μ) when φ is jointly continuous. If $f_1, \ldots, f_n \in L^{\infty}$ and $\varphi: I_{f_1} \times \ldots \times I_{f_n} \to \mathbf{R}$ is bounded, then the function $\varphi(f_1, \ldots, f_n)$ defined by $x \mapsto \varphi(f_1(x), \ldots, f_n(x))$ is in L^{∞} . If $\{I, J\}$ is a partition of $\{1, \ldots, n\}$ then $(\delta_{\mathbf{f}_I}, u_{\mathbf{f}_J})$ denotes (g_1, \ldots, g_n) where $g_i = \delta_{f_i}$ for $i \in I$ and $g_i = u_{f_i}$ for $i \in J$.

(5.1) THEOREM. Let $\varphi : T_1 \times \ldots \times T_n \to \mathbf{R}$ be continuous, where T_1, \ldots, T_n are intervals of \mathbf{R} , and let $\{I, J\}$ be a partition of $\{1, \ldots, n\}$.

(i) If φ satisfies condition (A) then

(1)
$$\int \varphi(f_1,\ldots,f_n)d\mu \leq \int_0^\alpha \varphi(\delta_{\mathbf{f}_I},\iota_{\mathbf{f}_J})$$

for all $f_i \in L^{\infty}$ such that $I_{f_i} \subset T_i$, i = 1, ..., n. If (X, Λ, μ) is non-atomic, then (A) is necessary for (1).

(ii) If φ satisfies (A^{*}) then the following are equivalent:

- (a) Equality holds in (1).
- (b) f_i and f_j are similarly ordered whenever i and j are in the same set I or J, and oppositely ordered whenever i and j are in different sets I and J for all 1 ≤ i, j ≤ n.

(c)
$$\varphi(f_1,\ldots,f_n) \sim \varphi(\delta_{\mathbf{f}_I},\iota_{\mathbf{f}_J})$$

(iii) If φ satisfies (A) and is increasing (respectively decreasing) in u_i for $i \in I$ and decreasing (respectively increasing) for $i \in J$, then for all f_i as in (i) we have

$$\varphi(f_1,\ldots,f_n)\ll\varphi(\delta_{\mathbf{f}_I},\iota_{\mathbf{f}_I}).$$

(5.2) COROLLARY. Let $\varphi : T_1 \times T_2 \to \mathbf{R}$ be continuous, where T_1 and T_2 are intervals of \mathbf{R} , and let $f, g \in L^{\infty}$ with $I_f \subset T_1$ and $I_g \subset T_2$.

(i) If $\Delta_{c,d}\varphi(y)$ is increasing in $y \in T_2$ whenever d > c and $d, c \in T_1$, then

(1)
$$\int_0^\alpha \varphi(\delta_f, \iota_g) \leq \int \varphi(f, g) d\mu \leq \int_0^\alpha \varphi(\delta_f, \delta_g) d\mu$$

PETER W. DAY

(ii) If $\Delta_{c,d}\varphi$ is strictly increasing, then the following are equivalent: (a) Equality occurs in (1) on the left (right); (b) f and g are oppositely (similarly) ordered; (c) $\varphi(\delta_f, \iota_g) \sim \varphi(f, g) (\varphi(\delta_f, \delta_g) \sim \varphi(f, g))$.

(iii) If in addition to (i) φ is increasing in both variables or decreasing in both variables, then

(2)
$$\varphi(\delta_f, \iota_g) \ll \varphi(f, g) \ll \varphi(\delta_f, \delta_g).$$

(5.3) *Remark*. The conditions that the inequalities in (5.2) reverse are the same as in (3.3). If φ satisfies these conditions, then (5.2) may be applied to $\varphi_1(x, y) = \varphi(x, r + s - y)$, f, and $g_1 = r + s - g$, where $I_g = [r, s]$.

We begin by showing that it suffices to prove (5.1) and (5.2) for nonatomic measure spaces by embedding (X, Λ, μ) in a non-atomic m.s. $(X^{\sharp}, \Lambda^{\sharp}, \mu^{\sharp})$. (See [9] or [2] for details of this method.) If $f \in M(X, \mu)$, then the corresponding member of $M(X^{\sharp}, \mu^{\sharp})$ is denoted by f^{\sharp} . Then $\varphi(f_1^{\sharp}, \ldots, f_n^{\sharp})$ $= \varphi(f_1, \ldots, f_n)^{\sharp} \sim \varphi(f_1, \ldots, f_n)$. In addition it is not hard to see that f and g are similarly (oppositely) ordered if and only if f^{\sharp} and g^{\sharp} are similarly (oppositely) ordered. Thus if (5.1) and (5.2) are true when (X, Λ, μ) is nonatomic, then they are true for any finite m.s.

Before proceeding with the proof when (X, Λ, μ) is non-atomic, we require some lemmas. The first two are needed when the measure space is not separable, for otherwise it is measure theoretically $[0, \alpha]$.

(5.4) LEMMA. Let (X, Λ, μ) be non-atomic. Suppose $\{D_k\}_{k=1}^N$ is a partition of X by measurable sets. If $\epsilon > 0$, then there is a partition $\{E_i\}_{i=1}^n$ of X by measurable sets such that $\mu(E_i) = \mu(X)/n$ (i = 1, ..., n) and $\mu(\bigcup \{E_i : E_i \text{ intersects more than one } D_k\}) < \epsilon$.

Proof. Let $\alpha = \mu(X)$. If $\alpha = 0$, the lemma is trivially true. Otherwise, rename the sets D_k so that $\mu(D_k) = 0$ for $1 \leq k < p$ and $\mu(D_k) > 0$ for $p \leq k \leq N$. There is a $\phi : [0, \alpha] \to \Lambda$ such that $\mu(\phi(t)) = t, t \leq u$ implies $\phi(t) \subset \phi(u), \quad \phi(0) = \bigcup_{1 \leq k < p} D_k, \quad \text{and} \quad \phi(\sum_{1 \leq k \leq q} \mu(D_k)) = \bigcup_{1 \leq k \leq q} D_k \quad \text{for}$ $q = p, \ldots, N$ (use [2, (5.6)]). For any *n* such that $\alpha/n \leq \min\{\mu(D_k):$ $p \leq k \leq N\}$ and for $E_i = \phi(\alpha i/n) - \phi(\alpha(i-1)/n)$ ($i = 1, \ldots, n$) we have that each E_i intersects at most two sets D_k of positive measure, and at most N - 1 of these E_i intersect more than one D_k . To finish the proof, choose *n* so that also $\alpha(N-1)/n < \epsilon$.

(5.5) LEMMA. Suppose (X, Λ, μ) is non-atomic. Let $\{s(k)_i\}_{i=1}^{\infty} (k = 1, ..., n)$ be n sequences of simple functions. Then there are n sequences $\{t(k)_i\}_{i=1}^{\infty}$, (k = 1, ..., n) of simple functions such that

(i) For each $i, t(1)_i, \ldots, t(n)_i$ have the same sets of constancy, and these sets have equal measure;

(ii) For each k = 1, ..., n, $s(k)_i - t(k)_i \rightarrow 0$ μ -almost everywhere as $i \rightarrow \infty$;

(iii) For each $k = 1, \ldots, n$ and $i \ge 1$, $|t(k)_i| \le |s(k)_i|$.

Proof. For clarity of exposition, we prove the lemma in the case n = 2. The proof for larger n will be readily apparent. Before considering sequences, let $s(1) = \sum_{i=1}^{n} a_i 1_{A_i}$ and $s(2) = \sum_{j=1}^{n} b_j 1_{B_j}$ where $\{A_i\}$ and $\{B_j\}$ partition X, and let $\{D_k\}_{k=1}^{N} = \{A_i \cap B_j : 1 \leq i \leq n, 1 \leq j \leq p\}$. Let $\epsilon > 0$. Then there is a measurable partition $\{E_q\}_{q=1}^r$ as in Lemma (5.4). For each $q = 1, \ldots, r$, if E_q intersects only $A_i \cap B_j$ then $E_q \subset A_i \cap B_j$, and for k = 1, 2 we define $t(k)|E_q = s(k)|(A_i \cap B_j)$; we define t(k) = 0 elsewhere. Then $|t(k)| \leq |s(k)|$ and $\mu(\{s(k) \neq t(k)\}) < \epsilon$. Hence given $\{s(k)_i\}_{i=1}^{\infty}$ there are sequences $\{t(k)_i\}_{i=1}^{\infty}$ satisfying (i) and (iii) such that $\mu(\{s(k)_i \neq t(k)_i\}) < 2^{-i}$. Then

$$\mu(\{s(k)_i - t(k)_i \not\rightarrow 0\}) = \\ \mu\left(\bigcup_{q=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{i=N}^{\infty} \{|s(k)_i - t(k)_i| > 1/q\}\right) \leq \lim_{q \to \infty} \lim_{N \to \infty} \sum_{i=N}^{\infty} 2^{-i} = 0,$$

and the proof is finished.

(5.6) PROPOSITION. Suppose (X, Λ, μ) is non-atomic, let $f_1, \ldots, f_n \in M(X, \mu)$, let $\{I, J\}$ be a partition of $\{1, \ldots, n\}$, and let $F_1, \ldots, F_n \in [0, \alpha]$ with F_i right continuous and decreasing (increasing) when $i \in I$ $(i \in J)$. Then the following three conditions are equivalent.

(i) $(f_1, ..., f_n) \sim (F_1, ..., F_n)$.

(ii) There is a measure preserving map $\sigma : X \to [0, \alpha]$ such that $F_i \circ \sigma = f_i$ μ -almost everywhere, $1 \leq i \leq n$.

(iii) f_i and f_j are similarly ordered when *i* and *j* are in the same set *I* or *J*, oppositely ordered when *i* and *j* are in different sets *I* and *J*, and $F_i = \delta_{f_i}$ for $i \in I$, $F_j = \iota_{f_j}$ for $j \in J$.

Proof. Let $A \subseteq B[\mu]$ mean $\mu(A \setminus B) = 0$, i.e., $\mathbf{1}_A \leq \mathbf{1}_B \mu$ -almost everywhere. Writing $\mathbf{f} = (f_1, \ldots, f_n)$, $\mathbf{F} = (F_1, \ldots, F_n)$, and $\mathbf{t} = (t_1, \ldots, t_n)$, the proof given in [2, Theorem (6.2)] shows (i) \Rightarrow (ii). Also, (ii) \Rightarrow (iii) is straightforward.

We prove (iii) \Rightarrow (i) first in the case $J = \emptyset$.

I. If f and g are similarly ordered, then for all $t \in \mathbf{R}$, ess.sup $g|\{f \le t\} \le$ ess.inf $g|\{f > t\}$. This follows from ess.sup $g|\{f > t + 1/n\} \rightarrow$ ess.sup $g|\{f > t\}$ as $n \rightarrow \infty$.

II. If f and g are similarly ordered, and t, $u \in \mathbf{R}$, then $\{f > t\} \cap \{g > u\} = \{f > t\}$ or $\{g > u\} [\mu]$. Indeed, let

$$A = \{ f \le t \} \cap \{ g > u \}, \qquad B = \{ f > t \} \cap \{ g \le u \},$$

and suppose both $\mu(A), \mu(B) > 0$. Then ess.inf $g|B \leq u < \text{ess.sup } g|A$, while (I) implies ess.sup $g|A \leq \text{ess.inf } g|B$, a contradiction. Hence $\mu(A) = 0$ or $\mu(B) = 0$.

III. If $\{f > t\} \subset \{g > u\} [\mu]$ then $\{\delta_f > t\} \subset \{\delta_g > u\}$. Indeed, $\{\delta_f > t\} = [0, \mu\{f > t\}[\subset [0, \mu\{g > u\}[= \{\delta_g > u\}].$

IV. It follows from (II) and (III) that for all $\mathbf{t} \in \mathbf{R}^n$, $\mu\{\mathbf{f} > \mathbf{t}\} = \mu(\bigcap \{f_i > t_i\}) = m(\bigcap \{\delta_{f_i} > t_i\}) = m\{\mathbf{F} > \mathbf{t}\}$, so $\mathbf{f} \sim \mathbf{F}$.

To deduce the general case from this one, let $\varphi(t_1, \ldots, t_n) = (u_1, \ldots, u_n)$, where $u_i = t_i$ if $i \in I$, $= -t_i$ if $i \in J$, let $(f_1', \ldots, f_n') = \varphi(f_1, \ldots, f_n)$, and let $F_i' = \delta_{f_i'}$. By the $J = \emptyset$ case, $\mathbf{F}' \sim \mathbf{f}'$, so $\mathbf{F} = \varphi(\mathbf{F}') \sim \varphi(\mathbf{f}') = \mathbf{f}$ (because $\delta_{-f} = -\iota_f$).

We can now prove (5.1) and (5.2). For clarity of exposition we will only present a proof of (5.2). The proof of (5.1) will then be clear. With regard to (5.1.ii) we remark that (5.6) shows that (b) \Rightarrow (c) \Rightarrow (a) always. The proof of (5.2) will illustrate the proof of (a) \Rightarrow (b) when n = 2.

Proof of (5.2). Let $v = \sum_{j=1}^{m} a_j \mathbf{1}_{E_j}$ and $w = \sum_{j=1}^{m} b_j \mathbf{1}_{E_j}$, where $a_j \in T_1$, $b_j \in T_2$ $(1 \leq j \leq m)$ and $\mu(E_j) = \alpha/m$. In case (i), (3.2.i) gives

(*)
$$\int_0^\alpha \varphi(\delta_v, \iota_w) \leq \int \varphi(v, w) d\mu \leq \int_0^\alpha \varphi(\delta_v, \delta_w)$$

while in case (ii), (3.2.iii) gives for $t = k\alpha/p$ $(1 \le k \le m)$

(**)
$$\int_0^t \delta_{\varphi(\delta_v, \iota_w)} \leq \int_0^t \delta_{\varphi(v,w)} \leq \int_0^t \delta_{\varphi(\delta_v, \delta_w)}.$$

Now in (**) each of the integrands is constant on each of the intervals $[(j-1)\alpha/n, j\alpha/n]$, so the integrals are linear functions of t on these intervals, and hence (**) holds for all $0 \leq t \leq \alpha$. Using now (5.5) there are sequences v_i and w_i of simple functions like v and w above such that $v_i \rightarrow f$, $w_i \rightarrow g$, $|v_i| \leq |f|$ and $|w_i| \leq |g|$, so $\delta_{v_i} \rightarrow \delta_f$ and $\delta_{w_i} \rightarrow \delta_g$ almost everywhere. Since φ is bounded on $I_f \times I_g$, each integrand in (*) or (**) is bounded by a constant depending only on f and g. Taking limits and using the dominated convergence theorem, we have that (*) or (**) holds with v and w replaced by f and g respectively.

We now show the condition for equality on the right in (3.2.i.1). Assume φ satisfies (A^*) , suppose f and g are not similarly ordered, and we will show that the inequality on the right is strict. There are disjoint sets A and B of positive measure such that

ess.sup f | A < ess.inf f | B and t = ess.sup g | A > ess.inf g | B = r.

Let $r < s_1 < s_2 < t$ and let

$$D \subset \{x \in A : g(x) \ge s_2\}$$
 and $E \subset \{x \in B : g(x) \le s_1\}$

with $0 < \mu(D) = \mu(E) = \beta$. Then let $\sigma_D : D \to [0, \beta]$ and $\sigma_E : E \to [0, \beta]$ be measure preserving and define

$$f' = \delta_{f|D} \circ \sigma_D$$
 on D , $= \delta_{f|E} \circ \sigma_E$ on E , and $= f$ elsewhere;
 $g' = \delta_{g|E} \circ \sigma_D$ on D , $= \delta_{g|D} \circ \sigma_E$ on E , and $= g$ elsewhere.

Then $f' \sim f$, $g' \sim g$, $\delta_{f|D} < \delta_{f|E}$, and $\delta_{g|E} < \delta_{g|D}$. Hence

$$\begin{split} \int_{D} \varphi(f,g) d\mu &+ \int_{E} \varphi(f,g) d\mu \leq \int_{0}^{\beta} \left[\varphi(\delta_{f|D}, \delta_{g|D}) + \varphi(\delta_{f|E}, \delta_{g|E}) \right] \\ &< \int_{0}^{\beta} \left[\varphi(\delta_{f|D}, \delta_{g|E}) + \varphi(\delta_{f|E}, \delta_{g|D}) \right] \\ &= \int_{D} \varphi(f',g') d\mu + \int_{E} \varphi(f',g') d\mu. \end{split}$$

Adding

$$\int_{X-(D \cup E)} \varphi(f,g) d\mu = \int_{X-(D \cup E)} \varphi(f',g') d\mu$$

we obtain

$$\int \varphi(f,g)d\mu < \int \varphi(f',g')d\mu \leq \int_0^\alpha \varphi(\delta_{f'},\delta_{g'}) = \int_0^\alpha \varphi(\delta_f,\delta_g),$$

and the proof is finished.

(5.7) Remark. Depending on the choice of φ and the intervals T_i , Theorems (5.1) and (5.2) may hold for a larger set of functions than L^{∞} . Indeed, the proof shows that in (5.2) inequalities (1) or (2) will hold whenever limit and integral can be interchanged in (*) or (**). The condition for equality holds if (5.2.1) holds for f | A and g | A for all $A \in \Lambda$ whenever it holds for f and g.

For example, suppose $f_1, \ldots, f_m \in L^p$ implies $\varphi(f_1, \ldots, f_m) \in L^1$. Now it follows from [9, p. 93] that $|v| \leq |f|$ implies $|\delta_v| \leq |\delta_f|$ and $|\iota_v| \leq |\iota_f|$, so we may use [3] and the dominated convergence theorem to conclude that (5.1.1) and (5.2.1) hold for all L^p functions. Finally, since $f_1, \ldots, f_m \in L^p$ implies $f_1|A, \ldots, f_m|A \in L^p$, the condition for equality also holds for all L^p functions. Other illustrations appear in the following examples.

6. Examples for the continuous case.

(6.1) (i) $\delta_f + \iota_g \prec f + g \prec \delta_f + \delta_g$ for all $f, g \in L^1$. (ii) $\delta_f - \delta_g \prec f - g \prec \delta_f - \iota_g$ for all $f, g \in L^1$.

The (i) and (ii) are easily seen to be equivalent using [9, p. 93]. While $\delta_{f+g} \prec \delta_f + \delta_g$ is well-known (see [9, p. 108]), the fact that $\delta_f - \delta_g \prec f - g$ is new. Then a theorem of Luxemburg [9, p. 107] implies $|\delta_f - \delta_g| \ll |f - g|$, generalizing [8, Proposition 1, p. 34]. It then follows that $||f_\beta - f||_1 \rightarrow 0$ implies $||\delta_{f\beta} - \delta_f||_1 \rightarrow 0$, where $\{f_\beta\}$ is a net. Using [9, (9.1)], the inequality $\delta_f - \delta_g \prec f - g$ can be written equivalently:

$$\int_{E} \delta_{f} + \int_{E} \delta_{g} (\alpha - t) dt \leq \int_{0}^{m(E)} \delta_{f+g}$$

for all Lebesgue measurable $E \subset [0, \alpha]$, where *m* denotes Lebesgue measure. This is an interesting generalization of [9, (10.1)].

(6.2) An inequality of Hardy-Littlewood-Polya-Luxemburg:

$$\int_0^\alpha \delta_f \iota_g \leq \int fg \, d\mu \leq \int_0^\alpha \delta_f \delta_g$$

holds for all $f, g \in L^{\infty}$, and, using monotone convergence, it is easily seen to hold for all $0 \leq f, g \in M$. Then as in [9, p. 102], it may be shown to hold whenever $\delta_{|f|}\delta_{|g|} \in L^1[0, \alpha]$. The inequalities are strict except as indicated in (5.2). Similarly, $\delta_{f}\iota_g \ll fg \ll \delta_f\delta_g$ for all $0 \leq f, g \in M$ such that $\delta_f\delta_g \in L^1[0, \alpha]$.

(6.3) (i)
$$\int_0^\alpha \log(1+\delta_f \iota_g) \leq \int \log(1+fg) d\mu \leq \int_0^\alpha \log(1+\delta_f \delta_g) d\mu$$

holds for all $f, g \in L^{\infty}$ satisfying both

(ii)
$$\delta_f(0)\iota_g(0) > -1 \text{ and } \delta_f(\alpha-)\iota_g(\alpha-) > -1,$$

because (ii) is equivalent to: $I_f \times I_g \subset \{(x, y) : xy > -1\}$. In addition, using monotone convergence, (i) can be shown to hold if $0 \leq f, g \in M$ or $0 \geq f, g \in M$. Then (i) can be shown to hold for all $f, g \in M$ satisfying (ii) using the following observations. First, $\log(1 + fg) = \log(1 + f^+g^+) + \log(1 - f^+g^-) + \log(1 - f^-g^+) + \log(1 + f^-g^-)$. Next, when (ii) holds for the pair f, g it also holds for each of the pairs: $f^+, g^+; f^+, -g^-; -f^-, g^+; -f^-, -g^-$. Finally, when (ii) holds, then: f unbounded above implies $g \geq 0$; f unbounded below implies $g \leq 0$; and the same is true when f and g are interchanged. Clearly if $f, g \in M$ satisfy (ii) so do f |A| and g|A| for any $A \in \Lambda$. Hence the inequalities are strict as indicated in (5.2).

Similarly, $\log(1 + \delta_g \iota_g) \ll \log(1 + fg) \ll \log(1 + \delta_f \delta_g)$ for all $0 \leq f, g \in M$ or $0 \geq f, g \in M$ such that $\log(1 + \delta_f \delta_g) \in L^1[0, \alpha]$.

(6.4) (i)
$$\int_0^\alpha \log(\delta_f + \delta_g) \leq \int \log(f + g) d\mu \leq \int_0^\alpha \log(\delta_f + \iota_g)$$

for all $f, g \in L^{\infty}$ such that

(ii)
$$\delta_f(\alpha-) + \delta_g(\alpha-) > 0,$$

since (ii) is equivalent to $I_f \times I_g \subset \{(x, y) : x + y > 0\}$. Actually, (i) holds for all $f, g \in M$ satisfying (ii) since f and g are then bounded below, so we may approximate them by increasing sequences of bounded functions satisfying (ii) and use the B. Levi monotone convergence theorem [5, p. 172]. The inequalities are strict except as indicated in (5.3). Similarly, if $f, g \in M$ satisfy (ii) and $\log(\delta_f + \iota_g) \in L^1[0, \alpha]$ then $-\log(\delta_f + \iota_g) \ll -\log(f + g) \ll -\log(\delta_f + \delta_g)$. (6.5) We have the following continuous version of London's Theorems.

(0.5) We have the following continuous version of London's Theorems Suppose $0 \le f, g \in M$ or $0 \ge f, g \in M$.

942

(i) If H is convex, increasing and continuous on $[0, \infty]$, then

$$\int_0^\alpha H(\delta_f \iota_g) \leq \int H(fg) d\mu \leq \int_0^\alpha H(\delta_f \delta_g).$$

(ii) If $H(e^x)$ is convex, increasing and continuous on $[0, \infty]$, then

$$\int_0^\alpha H(1+\delta_f\iota_g) \leq \int H(1+fg)d\mu \leq \int_0^\alpha H(1+\delta_f\delta_g).$$

In either case, if *H* is strictly convex, then we have equality on the left (right) if and only if *f* and *g* are oppositely (similarly) ordered if and only if $\delta_{f}\iota_{g} \sim fg (\delta_{f}\delta_{g} \sim fg)$.

(6.6) For real p > 0 we have:

(i)
$$(\delta_f + \iota_g)^p \ll (f + g)^p \ll (\delta_f + \delta_g)^p$$
 if $p > 1$,
(ii) $\int_0^\alpha (\delta_f + \delta_g)^p \leq \int (f + g)^p d\mu \leq \int_0^\alpha (\delta_f + \iota_g)^p$ if $p < 1$,

whenever (a) $\delta_f(\alpha -) + \delta_h(\alpha -) \ge 0$ and $f, g \in L^p$; or (b) $0 \le f, g \in M$; or (c) p is an integer and $f, g \in L^p$. The (i) gives a lower bound to an inequality of Chong and Rice [2, p. 88]. The inequalities are strict except as indicated in (5.2) and (5.3).

References

- 1. T. M. Apostol, Mathematical analysis (Addison-Wesley, 1957).
- 2. K. M. Chong and N. M. Rice, *Equimeasurable rearrangements of functions*, Queen's Papers in Pure and Applied Mathematics, No. 28 (Queen's University, Kingston, Ontario, Canada, 1971).
- 3. P. R. Halmos, Functions of Integrable Functions, J. Indian Math. Soc. 11 (1947), 81-84.
- 4. G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities* (Cambridge University Press, Cambridge, 1934).
- 5. E. Hewett and K. Stromberg, *Real and abstract analysis* (Springer-Verlag, New York, 1965).
- 6. David London, Rearrangement inequalities involving convex functions, Pacific J. Math. 34 (1970), 749-752.
- 7. G. G. Lorentz, An Inequality for rearrangements, Amer. Math. Monthly 60 (1953), 176-179.
- G. G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, J. Functional Analysis 2 (1968), 31-51.
- 9. W. A. J. Luxemburg, *Rearrangement invariant Banach function spaces*, Queen's Papers in Pure and Applied Math. 10 (1967), 83-144.
- 10. Henryk Minc, Rearrangement theorems, Notices Amer. Math. Soc. 17 (1970), 400.
- 11. D. S. Mitrinovic, Analytic inequalities (Springer-Verlag, New York, 1970).
- 12. H. D. Ruderman, Two new inequalities, Amer. Math. Monthly 59 (1952), 29-32.

Carnegie-Mellon University, Pittsburgh, Pennsylvania